
volume 4, issue 3, article 49,
2003.

Received 21 October, 2003;
accepted 27 October, 2003.

Communicated by: S.S. Dragomir

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure and
Applied Mathematics

REPORT OF THE GENERAL INEQUALITIES 8 CONFERENCE
SEPTEMBER 15–21, 2002, NOSZVAJ, HUNGARY

COMPILED BY ZSOLT PÁLES
Institute of Mathematics and Informatics
University of Debrecen
Debrecen, Hungary.
EMail : pales@math.klte.hu

c©2000Victoria University
ISSN (electronic): 1443-5756
GI8-03

Please quote this number (GI8-03) in correspondence regarding this paper with the Editorial Office.

mailto:sever@csm.vu.edu.au
http://jipam.vu.edu.au/
mailto:pales@math.klte.hu
http://www.vu.edu.au/


Report of the General
Inequalities 8 Conference;

September 15–21, 2002,
Noszvaj, Hungary

Compiled by Zsolt Páles

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 63

J. Ineq. Pure and Appl. Math. 4(3) Art. 49, 2003

http://jipam.vu.edu.au

Abstract

Report of the General Inequalities 8 Conference, September 15–21, 2002,
Noszvaj, Hungary.

2000 Mathematics Subject Classification: Not applicable.
Key words: General Inequalities 8 Conference Report

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Problems and Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.1 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.2 Problem and Remark. . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.3 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
3.4 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.5 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.6 Remark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.7 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
3.8 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
3.9 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
3.10 Remark and Problem. . . . . . . . . . . . . . . . . . . . . . . . . . .49
3.11 Remark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
3.12 Remark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
3.13 Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
3.14 Remark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

http://jipam.vu.edu.au/
mailto:pales@math.klte.hu
http://jipam.vu.edu.au/
http://www.ams.org/msc/


Report of the General
Inequalities 8 Conference;

September 15–21, 2002,
Noszvaj, Hungary

Compiled by Zsolt Páles

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 63

J. Ineq. Pure and Appl. Math. 4(3) Art. 49, 2003

http://jipam.vu.edu.au

4 Addenda. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.1 Addenda zuGewöhnliche Differentialgleichungen

mit quasimonoton wachsenden rechten Seiten in geord-
neten Banachräumen. . . . . . . . . . . . . . . . . . . . . . . . . . .58

4.2 Addendum toWeak persistence in Lotka-Volterra
populations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

5 List of Participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
References

http://jipam.vu.edu.au/
mailto:pales@math.klte.hu
http://jipam.vu.edu.au/


Report of the General
Inequalities 8 Conference;

September 15–21, 2002,
Noszvaj, Hungary

Compiled by Zsolt Páles

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 63

J. Ineq. Pure and Appl. Math. 4(3) Art. 49, 2003

http://jipam.vu.edu.au

1. Introduction
The General Inequalities meetings have a long tradition extending to almost
thirty years. The first 7 meetings were held in the Mathematical Research In-
stitute at Oberwolfach. The 7th meeting was organized in 1995. Due to the
long time having elapsed since this meeting and the growing interest in inequal-
ities, the Scientific Committee of GI7 (consisting of Professors Catherine Ban-
dle (Basel), W. Norrie Everitt (Birmingham), László Losonczi (Debrecen), and
Wolfgang Walter (Karlsruhe)) agreed that the 8th General Inequalities meeting
be held in Hungary. It took place from September 15 to 21, 2002, at the De La
Motte Castle in Noszvaj and was organized by the Institute of Mathematics and
Informatics of the University of Debrecen.

The Scientific Committee of GI8 consisted of Professors Catherine Bandle
(Basel), László Losonczi (Debrecen), Michael Plum (Karlsruhe), and Wolfgang
Walter (Karlsruhe) as Honorary Member.

The Local Organizing Committee consisted of Professors Zoltán Daróczy,
Zsolt Páles, and Attila Gilányi as Secretary, The Committee Members were
ably assisted by Mihály Bessenyei, Borbála Fazekas, and Attila Házy.

The 36 participants came from Australia (4), Canada (1), Czech Republic
(1), Germany (4), Hungary (9), Japan (2), Poland (3), Romania (3), Switzerland
(2), Sweden (3), United Kingdom (1), and the United States of America (3).

Professor Walter opened the Symposium on behalf of the Scientific Com-
mittee. Professor Páles then welcomed the participants on behalf of the Local
Organizing Committee.

The talks at the symposium focused on the following topics: convexity and
its generalizations; mean values and functional inequalities; matrix and operator
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inequalities; inequalities for ordinary and partial differential operators; integral
and differential inequalities; variational inequalities.

A number of sessions were, as usual, devoted to problems and remarks.
On the evening of Tuesday, September 17, the Gajdos Band performed Hun-

garian Folk Music which was received with great appreciation.
On Wednesday, the participants visited the Library and Observatory of the

Eszterházy College of Eger and the famous fortress of the city. The excursion
concluded with a dinner in Eger.

The scientific sessions were followed on Thursday evening by a festive ban-
quet in the De La Motte Castle. The conference was closed on Friday by Pro-
fessor Catherine Bandle.

Abstracts of the talks are in alphabetical order of the authors. These are
followed by the problems and remarks (in approximate chronological order),
two addenda to earlier GI volumes, and finally, the list of participants. In the
cases where multiple authors are listed, the talk was presented by the first named
author.
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2. Abstracts

TSUYOSHI ANDO

Löwner Theorem of Indefinite Type

ABSTRACT

The most familiar form of the Löwner theorem on matrices says thatA ≥
B ≥ 0 implies A

1
2 ≥ B

1
2 . HereA ≥ B means the Löwner ordering, that is,

bothA andB are Hermitian andA−B is positive semidefinite.
We will show that if bothA andB have only non-negative eigenvalues andJ

is an (indefinite) Hermitian involution thenJA ≥ JB implies JA
1
2 ≥ JB

1
2 .

We will derive this as a special case of the following result. If a real valued
functionf(t) on [0,∞) is matrix-monotone of all order in the sense of Löwner
then JA ≥ JB impliesJ · f(A) ≥ J · f(B). Heref(A) is defined by usual
functional calculus.

The classical Löwner theorem shows thatt
1
2 is matrix-monotone of all order.

CATHERINE BANDLE

Rayleigh-Faber-Krahn Inequalities and Auasilinear Boundary Value Problems

ABSTRACT

The classical Rayleigh-Faber-Krahn inequality states that among all domains
of given area the circle has the smallest principal frequency. The standard proof

http://jipam.vu.edu.au/
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is by Schwarz symmetrization. This technique extends to higher dimensions and
to the best Sobolev constants. For weighted Sobolev constants symmetrization
doesn’t apply. In this talk we propose a substitute. Emphasis is put on the case
with the critical exponent. As an application we deriveL∞-bounds for Emden
type equations involving thep-Laplacian.

SORINA BARZA

Duality Theorems Over Cones of Monotone Functions in Higher Dimensions

ABSTRACT

Let f be a non-negative function defined onRn
+ which is monotone in each

variable separately. If1 < p < ∞ , g ≥ 0 and v a product weight, then
equivalent expression for

sup

∫
Rn

+
fg(∫

Rn
+
fpv
) 1

p

are given, where the supremum is taken over all such functionsf .
The same type of results over the cone of radially decreasing functions, but

in this case for general weight functions will be also considered.
Applications of these results in connection with boundedness of Hardy type

operators will be pointed out.
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MIHÁLY BESSENYEI AND ZSOLT PÁLES

Higher-order Generalizations of Hadamard’s Inequality

ABSTRACT

Let I ⊂ R be a proper interval. A functionf : I → R is said to ben-
monotone, if

(−1)n

∣∣∣∣∣∣∣∣∣∣∣

f(x0) . . . f(xn)
1 . . . 1
x0 . . . xn
...

...
xn−1

0 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣
≥ 0,

wheneverx0 < . . . < xn, x0, . . . , xn ∈ I. Obviously, a functionf is 2-
monotone if and only if it is convex. According to Hadamard’s classical result,
the inequalities

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

hold for any convex, i.e., for2-monotone functionf : [a, b] → R. Our goal is to
generalize this result forn-monotone functions and present some applications.
For instance, if the functionf : [a, b] → R is supposed to be3-monotone, one
can deduce that

f(a) + 3f
(
a+2b

3

)
4

≤ 1

b− a

∫ b

a

f(x)dx ≤
f(b) + 3f

(
2a+b

3

)
4

.
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MALCOLM BROWN

Everitt’s HELP Inequality and Its Successors

ABSTRACT

In 1971 Everitt introduced the inequality(∫ →b

a

(pf ′
2
+ qf 2)dx

)2

≤ K

∫ b

a

wf 2dx

∫ b

a

w
(
w−1(−(pf ′)′ + qf)

)2
dx

for functionsf from

{f : [a, b) → Rf, pf ′ ∈ ACloc[a, b)f, w−1(−(pf ′)′ + qf) ∈ L2(a, b;w)}.

He showed that the validity of the inequality, (ie. finiteK) and cases of equality
were dependent on the spectral properties of the operator defined from
1/w(−(pf ′)′ + qf)) in the Hilbert spaceL2

w[a, b).
The talk will explore the class of inequalities

A2(f) ≤ KB(f)C(f)

which have associated with them a self-adjoint operator acting in a domain of a
Hilbert space. This class will generate examples of inequalities between mem-
bers of infinite sequences and also inequalities between a function and its higher
order derivatives.
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R.C. BROWN

Some Separation Criteria and Inequalities Associated with Linear Differential
and Partial Differential Operators

ABSTRACT

In a series of remarkable papers between 1971 and 1977 W. N. Everitt and
M. Giertz determined several sufficient conditions forseparation, i.e., given a
second order symmetric differential operatorMw[y] = w−1(−(py′)′ + qy) de-
fined inL2(w; I), I = (a, b) with one or both end-points singular, the property
thaty,Mw[y] ∈ L2(w; I) =⇒ w−1qy ∈ L2(w; I). Here we trace some recent
developments concerning this problem and its generalizations to the higher or-
der case and classes of partial differential operators due to the Russian school,
D. B. Hinton, and the author.

Several new criteria for separation are given. Some of these are quite differ-
ent than those of Everitt and Giertz; others are natural generalizations of their
results, and some can be extended so that they yield separation for partial dif-
ferential operators. We also point out a separation problem for non-selfadjoint
operators due to Landau in 1929 and study the connection between separation
and other spectral properties ofMw and associated operators.

This paper is published online athttp://jipam.vu.edu.au/v4n3/
130_02.html .
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CONSTANTIN BUŞE

A Landau-Kallman-Rota’s Type Inequality For Evolution Semigroups

ABSTRACT

LetX be a complex Banach space,R+ the set of all non-negative real num-
bers and letJ be either, orR or R+. The Banach space of allX-valued, bounded
and uniformly continuous functions onJ will be denoted byBUC(J, X) and the
Banach space of allX-valued, almost periodic functions onJ will be denoted by
AP (J, X). C0(R+, X) is the subspace ofBUC(R+, X) consisting of all func-
tions for whichlimt→∞ f(t) = 0 andC00(R+, X) is the subspace ofC0(R+, X)
consisting of all functionsf for which f(0) = 0. It is known thatAP (J, X) is
the smallest closed subspace ofBUC(J, X) containing functions of the form:
t 7→ eiµtx;µ ∈ R, x ∈ X, t ∈ J. The set of allX-valued functions onR+ for
which there existtf ≥ 0 andFf in AP (R, X) such thatf(t) = 0 if t ∈ [0, tf ]
and f(t) = Ff (t) if t ≥ tf will be denoted byA0(R+, X). The smallest
closed subspace ofBUC(R+, X) which containsA0(R+, X) will be denoted
by AP0(R+, X). AAP0(R+, X) denotes here the subspace ofBUC(R+, X)
consisting of all functionsh : R+ → X for which there existtf ≥ 0 and
Ff ∈ AP (R+, X) such thath = f + g and(f + g)(0) = 0. Let X one of the
following spaces:C00(R+, X), AP0(R+, X), AAP0(R+, X). The main result
can be formulated as follows:

Theorem. Let f be a function belonging toX and U = {U(t, s) : t ≥ s ≥
0} be an1-periodic evolution family of bounded linear operators acting on
X. If U is bounded (i.e.,supt≥s≥0 ||U(t, s)|| = M < ∞) and the functions

http://jipam.vu.edu.au/
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g(·) :=
·∫

0

U(·, s)f(s)ds andh(·) :=
·∫

0

(· − s)U(·, s)f(s)ds belong toX then

||g||X ≤ 4M2||f ||X||h||X.

PIETRO CERONE

On Some Results Involving TheČebyšev Functional and Its Generalizations

ABSTRACT

Recent results involving bounds of theČebyšev functional to include means
over different intervals are extended to a measurable space setting. Sharp bounds
are obtained for the resulting expressions of the generalizedČebyšev function-
als where the means are over different measurable sets.

This paper is published online athttp://jipam.vu.edu.au/v4n3/
124_02.html .
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PÉTER CZINDER AND ZSOLT PÁLES

Minkowski-type Inequalities For Two Variable Homogeneous Means

ABSTRACT

There is an extensive literature on the Minkowski-type inequality

(1) Ma,b(x1 + y1, x2 + y2) ≤Ma,b(x1, x2) +Ma,b(y1, y2)

and its reverse, whereMa,b stands for the Gini mean

Ga,b(x1, x2) =

(
xa1 + xa2
xb1 + xb2

) 1
a−b

(a− b 6= 0),

or for the Stolarsky mean

Sa,b(x1, x2) =

(
xa1 − xa2

a

b

xb1 − xb2

) 1
a−b

( ab(a− b) 6= 0 )

with positive variables. (These mean values can be extended for any real pa-
rametersa andb.)

A possibility to generalize (1) is that each appearance ofMa,b is replaced by
a different mean, that is, we ask for necessary and/or sufficient conditions such
that

Ma0,b0(x1 + y1, x2 + y2) ≤Ma1,b1(x1, x2) +Ma2,b2(y1, y2)

or the reverse inequality be valid for all positivex1, x2, y1, y2.
We summarize our main results obtained in this field.
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ZOLTÁN DARÓCZY AND ZSOLT PÁLES

On The Comparison Problem For a Class of Mean Values

ABSTRACT

Let I ⊆ R be a non-empty open interval. The functionM : I2 → I is called
a strict pre-mean onI if

(i) M(x, x) = x for all x ∈ I and

(ii) min{x, y} < M(x, y) < max{x, y} if x, y ∈ I andx 6= y.

The functionM : I2 → I is called a strict mean onI if M is a strict pre-
mean onI andM is continuous onI2.

Denote byCM(I) the class of continuous and strictly monotone real func-
tions defined on the intervalI.

LetL : I2 → I be a fixed strict pre-mean andp, q ∈]0, 1]. We callM : I2 →
I anL-conjugated mean of order(p, q) on I if there exists aϕ ∈ CM(I) such
that

M(x, y) = ϕ−1[pϕ(x) + qϕ(y) + (1− p− q)ϕ(L(x, y)] =: L(p,q)
ϕ (x, y)

for all x, y ∈ I.
In the present paper we treat the problem of comparison (and equality of)L-

conjugated means of order(p, q), that is, the inequalityL(p,q)
ϕ (x, y) ≤ L

(p,q)
ψ (x, y)

wherex, y ∈ I; ϕ, ψ ∈ CM(I) andp, q ∈]0, 1]. Our results include several clas-
sical cases such as the weighted quasi-arithmetic and the conjugated arithmetic
means.
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SILVESTRU SEVER DRAGOMIR

New Inequalities of Grüss Type For Riemann-Stieltjes Integral

ABSTRACT

New inequalities of Grüss type for Riemann-Stieltjes integral and applica-
tions for different weights are given.

This paper is published online athttp://rgmia.vu.edu.au/v5n4.
html as Article 3.

A.M. FINK

Best Possible Andersson Inequalities

ABSTRACT

Andersson has shown that iffi are convex and increasing withfi(0) = 0,
then ∫ 1

0

(f1 · · · fn)dx ≥
2n

n+ 1

(∫ 1

0

f1(x)dx

)
· · ·
(∫ 1

0

fn(x)dx

)
.

We turn this into a “best possible inequality” which cannot be generalized by
expanding the set of functionsfi and the measures.

This paper is published online athttp://jipam.vu.edu.au/v4n3/
106_02.html .
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ROMAN GER

Stability ofψ−Additive Mappings and Orlicz∆2-Condition

ABSTRACT

We deal with a functional inequality of the form

(1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(‖x‖) + ψ(‖y‖) ,

showing, among others, that given two selfmappingsϕ, ψ of the halfline[0,∞)
enjoying the celebrated Orlicz∆2 conditions:

ϕ(2t) ≤ kϕ(t), ψ(2t) ≤ `ψ(t)

for all t ∈ [0,∞), with some constantsk, ` ∈ [0, 2), for every mapf between a
normed linear space(X, ‖·‖) and a Banach space(Y, ‖·‖) satisfying inequality
(1) there exists exactly one additive mapa : X −→ Y such that

‖f(x)− a(x)‖ ≤ 1

2− k
ϕ(‖x‖) +

1

2− `
ψ(‖x‖)

for all x ∈ X. This generalizes (in several simultaneous directions) a result of
G. Isac & Th. M. Rassias (J. Approx. Theory, 72 (1993), 131-137); see also the
monographStability of functional equations in several variablesby Donald H.
Hyers, George Isac and Themistocles M. Rassias (Birkhäuser, Boston-Basel-
Berlin, 1998, Theorem 2.4).
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ATTILA GILÁNYI AND ZSOLT PÁLES
On Convex Functions of Higher Order

ABSTRACT

Higher-order convexity properties of real functions are characterized in terms
of Dinghas-type derivatives. The main tool used is a mean value inequality for
those derivatives.

ATTILA HÁZY AND ZSOLT PÁLES
On Approximately Midconvex Functions

ABSTRACT

A real valued functionf defined on an open convex setD is called(ε, δ)-
midconvex if it satisfies

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ ε|x− y|+ δ for x, y ∈ D.

The main result states that iff is locally bounded from above at a point ofD
and is(ε, δ)-midconvex then it satisfies the convexity-type inequality
f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) + 2δ + 2εϕ(λ)|x− y| for x, y ∈ D, λ ∈ [0, 1],

whereϕ : [0, 1] → R is a continuous function satisfying
max

(
− λ log2 λ, −(1− λ) log2(1− λ)

)
≤ ϕ(λ) ≤ cmax

(
− λ log2 λ, −(1− λ) log2(1− λ)

)
with 1 < c < 1.4. The particular caseε = 0 of this result is due to Nikodem
and Ng [1], the specializationε = δ = 0 yields the theorem of Bernstein and
Doetsch [2].
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GERD HERZOG

Semicontinuous Solutions of Systems of Functional Equations

ABSTRACT

For a metric spaceΩ, and functionsF : Ω×R(1+m)n → Rn andgj : Ω → Ω
the following functional equation is considered:

F (ω, u(ω), u(g1(ω)), . . . , u(gm(ω))) = 0.

We assume thatRn is ordered by a cone and prove the existence of upper and
lower semicontinuous solutions under monotonicity and quasimonotonicity as-
sumptions onF . For example, the results can be applied to systems of elliptic
difference equations.
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JÓZSEF KOLUMBÁN

Generalization of Ky Fan’s Minimax Inequality

ABSTRACT

We give a generalization of the following useful theorem:

Theorem. (Ky Fan, 1972) LetX be a nonempty, convex, compact subset of a
Hausdorff topological vector spaceE and letf : X ×X → R such that

∀y ∈ X, f(·, y) : X → R is upper semicontinuous,

∀x ∈ X, f(x, ·) : X → R is quasiconvex

and
∀x ∈ X, f(x, x) ≥ 0.

Then there exists an elementx0 ∈ X, such thatf(x0, y) ≥ 0 for eachy ∈ X.

ALOIS KUFNER

Hardy’s Inequality and Compact Imbeddings

ABSTRACT

It is well known that the valuep∗ = Np
N−p is the critical value of the imbedding

of W 1,p(Ω) into Lq(Ω), Ω ⊂ RN . In the talk, an analogue of this critical value
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for imbeddings betweenweightedspaces will be determined. More precisely, a
valuep∗ = p∗(p, q, u, v) will be determined such that the Hardy inequality(∫ b

a

|f(t)|qu(t) dt
) 1

q

≤ C

(∫ b

a

|f ′(t)|pv(t) dt
) 1

p

with 1 < p ≤ ∞ andf(b) = 0 expresses an imbedding which is compact for
q < p∗ and does not hold forq > p∗.

Applications to the spectral analysis of certain nonlinear differential opera-
tors will be mentioned.

ROLAND LEMMERT AND GERD HERZOG

Second Order Elliptic Differential Inequalities in Banach Spaces

ABSTRACT

We derive monotonicity results for solutions of partial differential inequal-
ities (of elliptic type) in ordered normed spaces with respect to the boundary
values. As a consequence, we get an existence theorem for the Dirichlet bound-
ary value problem by means of a variant of Tarski’s Fixed Point Theorem.
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LÁSZLÓ LOSONCZI
Sub- and Superadditive Integral Means

ABSTRACT

If f : I → R is continuous and strictly monotonic on the intervalI then for
everyx1, x2 ∈ I, x1 < x2 there is a points ∈]x1, x2[ such that

f(s) =

∫ x2

x1
f(u) du

x2 − x1

thus s = f−1

(∫ x2

x1
f(u) du

x2 − x1

)
.

This numbers is called theintegral f -mean of x1 and x2 and denoted by
If (x1, x2). Clearly, (requiringIf to have the mean property or be continuous)
we have for equal argumentsIf (x, x) = x (x ∈ I). By the help of divided
differencesIf can easily be defined for more than two variables.

Here we completely characterize the sub- and superadditive integral means
on suitable intervalsI, that is we give necessary and sufficient conditions for
the inequality

If (x1 + y1, . . . , xn + yn) ≤ If (x1, . . . , xn) + If (y1, . . . , yn) (xi, yi ∈ I)
and its reverse.

RAM N. MOHAPATRA
Grüss Type Inequalities and Error of Best Approximation

ABSTRACT

In this paper we consider recent results on Grüss type inequalities and pro-
vide a connection between a Grüss type inequality and the error of best approx-
imation. We also consider unification of discrete and continuous Grüss type
inequalities.
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CONSTANTIN P. NICULESCU

Noncommutative Extensions of The Poincaré Recurrence Theorem

ABSTRACT

Recurrence was introduced by H. Poincaré in connection with his study on
Celestial Mechanics and refers to the property of an orbit to come arbitrar-
ily close to positions already occupied. More precisely,if T is a measure-
preserving transformation of a probability space(Ω,Σ, µ), then for everyA ∈
Σ with µ(A) > 0 there exists ann ∈ N? such thatµ(T−nA ∩ A) > 0.

In his famous solution to the Szemerédi theorem, H. Furstenberg [1], [2] was
led to formulate the following multiple recurrence theorem which extends the
Poincaré result:For every measure-preserving transformationT of a probabil-
ity space(Ω,Σ, µ) , everyA ∈ Σ with µ(A) > 0 and everyk ∈ N?,

(1) lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

The aim of our talk is to discuss the formula (1) in the context ofC∗-dynamical
systems. Details appear in [4].
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KAZIMIERZ NIKODEM, MIROSŁAW ADAMEK AND
ZSOLT PÁLES

On (K,λ)-Convex Set-valued Maps

ABSTRACT

Let D be a convex set,λ : D2 → (0, 1) be a given function andK be a
convex cone in a vector spaceY . A set-valued mapF : D → n(Y ) is called
(K,λ)-convexif
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λ(x, y)F (x) + (1− λ(x, y))F (y) ⊂ F
(
λ(x, y)x+ (1− λ(x, y))y

)
+K

for all x, y ∈ D. The mapF is said to beK-convexif

tF (x) + (1− t)F (y) ⊂ F (tx+ (1− t)y) +K, x, y ∈ D, t ∈ [0, 1].

Conditions under which(K,λ)-convex set-valued maps areK-convex are dis-
cussed. In particular, the following generalizations of the theorems of Bernstein–
Doetsch and Sierpinski are given.

Theorem 1. LetD ⊂ Rn be an open convex set,λ : D2 → (0, 1) be a function
continuous in each variable,Y be a locally convex space andK be a closed
convex cone inY . If a set-valued mapF : D → c(Y ) is (K,λ)-convex and
locallyK-upper bounded at a point ofD, then it isK-convex.

Theorem 2. Let Y , K, andD be such as in Theorem1 andλ : D2 → (0, 1)
be a continuously differentiable function. If a set-valued mapF : D → c(Y ) is
(K,λ)-convex and Lebesgue measurable, then it is alsoK-convex.
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ZSOLT PÁLES

Comparison of Generalized Quasiarithmetic Means

ABSTRACT

If f1, . . . , fk (wherek ≥ 2) are strictly increasing continuous functions de-
fined on an open intervalI, then thek-variable function

Mf1,...,fk
(x1, . . . , xk) :=

(
f1 + · · ·+ fk

)−1
(
f1(x1) + · · ·+ fk(xk)

)
defines ak-variable mean onI. In the casef1 = · · · = fk = f , the result-
ing mean is a so-calledquasiarithmetic mean, therefore, functions of the form
Mf1,...,fk

can be considered as generalizations of quasiarithmetic means.
In our main results, we offer necessary and sufficient conditions onf1, . . . , fk

andg1, . . . , gk in order that the comparison inequality

Mf1,...,fk
(x1, . . . , xk) ≤ Mg1,...,gk

(x1, . . . , xk)

be valid for allx1, . . . , xk ∈ I.
In another result, a characterization of generalized quasiarithmetic means in

terms of regularity properties and functional equations is also presented.
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CHARLES PEARCE

On The Relative Values of Means

ABSTRACT

A consequence of the AGH inequality for a pair of distinct positive numbers
is that the AG gap exceeds the GH gap. Scott has shown that this does not
extend ton > 2 numbers and gives a counterexample forn = 4.

The question of what happens for generaln has been addressed by Lord
and by Pěcaríc and the present author, who showed that a number of analytical
and statistical issues are involved. These studies left further open questions,
including explicit representations for the functional forms of certain extrema.

The present study proceeds with these and related questions.

This paper is published online athttp://jipam.vu.edu.au/v4n3/
008_03.html .

LARS-ERIK PERSSON AND ALOIS KUFNER

Weighted Inequalities of Hardy Type

ABSTRACT

I briefly present some historical remarks and recent developments of some
Hardy type inequalities and their limit (Carleman–Knopp type) inequalities.
Some open questions are mentioned.
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MICHAEL PLUM, H. BEHNKE, U. MERTINS, AND Ch. WIENERS

Eigenvalue Enclosures Via Domain Decomposition

ABSTRACT

A computer-assisted method will be presented which provides eigenvalue
enclosures for the Laplacian with Neumann boundary conditions on a domain
Ω ⊂ R2. While upper eigenvalue bounds are easily accessible via the Rayleigh-
Ritz method, lower bounds require much more effort. On the one hand, we
propose an appropriate setting of Goerisch’s method for this purpose; on the
other hand, we introduce a new kind of of homotopy to obtain the spectral a
priori information needed for Goerisch’s method (as for any other method pro-
viding lower eigenvalue bounds). This homotopy is based on a decomposition
of Ω into simpler subdomains and their “continuous” rejoining. As examples,
we consider a bounded domainΩ with two “holes”, and an acoustic waveguide,
whereΩ is an infinite strip minus some compact obstacle. Moreover, we discuss
an application to the (nonlinear) Gelfand equation.
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SABUROU SAITOH, V.K. TUAN AND M. YAMAMOTO

Reverse Convolution Inequalities and Applications

ABSTRACT

Reverse convolution norm inequalities and their applications to various in-
verse problems are introduced which are obtained in the references.

At first, for some general principle, we show that we can introduce various
operators in Hilbert spaces through by linear and nonlinear transforms and we
can obtain various norm inequalities, by minimum principle.

From a special case, we obtain weightedLp norm inequalities in convolu-
tions and we can show many concrete applications to forward problems.

On the basis of the elementary proof in the weightedLp convolution inequal-
ities, by using reverse Hölder inequalities, we can obtain reverse weightedLp
convolution inequalities and concrete applications to various inverse problems.

By elementary means, we can obtain reverse Hölder inequalities for weak
conditions which have very important applications and related reverse weighted
Lp convolution inequalities. We show concrete applications to inverse heat
source problems.

We recently found that the theory of reproducing kernels is applied basically
in Statistical Learning Theory. See, for example, F. Cucker and S. Smale, On
the mathematical foundations of learning,Bull. Amer. Math. Soc., 39 (2001),
1–49. When we have time, I would like to present our recent convergence rate
estimates and related norm inequalities whose types are appeared in Statistical
Learning Theory.
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ANTHONY SOFO
An Integral Approximation in Three Variables

ABSTRACT

In this presentation I will describe a method of approximating an integral in
three independent variables. The Ostrowski type inequality is established by the
use of Peano kernels and improves a result given by Pachpatte. This paper is

published online athttp://jipam.vu.edu.au/v4n3/125_02.html .

http://jipam.vu.edu.au/
mailto:pales@math.klte.hu
http://jipam.vu.edu.au/
http://jipam.vu.edu.au/v4n3/138_02.html
http://jipam.vu.edu.au/v4n3/138_02.html
http://jipam.vu.edu.au/v4n3/125_02.html


Report of the General
Inequalities 8 Conference;

September 15–21, 2002,
Noszvaj, Hungary

Compiled by Zsolt Páles

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 30 of 63

J. Ineq. Pure and Appl. Math. 4(3) Art. 49, 2003

http://jipam.vu.edu.au

SILKE STAPELKAMP

The Brézis-Nirenberg Problem onHn and Sobolev Inequalities

ABSTRACT

We consider the equation∆Hnu+u
2n

n−2
−1+λu = 0 in a domainD′ in hyperbolic

spaceHn, n ≥ 3 with Dirichlet boundary conditions. For different values ofλ
we search for positive solutionsu ∈ H1,2

0 (D′).
Existence holds forλ∗ < λ < λ1, where we can compute the value ofλ∗

exactly ifD′ is a geodesic ball. For this result we should derive some Sobolev
type inequalities.

The existence result will be used to develop some results for more general
equations of the form∆ρu + u

2n
n−2

−1 + λu = 0. Here∆ρ = ρ−n∇(ρn−2∇u)
denotes the Laplace-Beltrami operator corresponding to the conformal metric
ds = ρ(x)|dx|.

It turns out that ifρ = ρ1ρ2 you can find an inequality forρ1 andρ2 that
gives you an existence result.

JACEK TABOR

On Localized Derivatives and Differential Inclusions

ABSTRACT

It often happens that a function is not differentiable at a given point, but to some
extent it seems that the "nonexistent derivative" has some properties.
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Let us look for example at the functionx(t) := |t|. Thenx is not differen-
tiable at zero, but there exist left and right derivatives, which equal to−1 and
1, respectively. Thus in a certain sense, which we make formal below, we may
say that the derivative belongs to the set{−1, 1}. Let us now consider another
example. As we now there exist a Banach spaceX and a lipschitz with constant
1 function which is nowhere differentiable. This suggest that the "nonexistent
derivative" of this function belongs to the unit ball.

The above ideas lead us to the following definition. We assume thatI is a
subinterval of the real line and thatX is a Banach space.

Definition. Letx : I → X and letV be a closed subset ofX. We say that the
derivative ofx at t is localized inV , which we writeDx(t) b V , if

lim
h→0

d

(
x(t+ h)− x(t)

h
;V

)
= 0,

whered(a;B) denotes the distance of the pointa from the setB

One of the main results we prove is:

Theorem. Letx : I → X and letV be a closed convex subset ofX. We assume
thatDx(t) b V for t ∈ I. Then

x(q)− x(p)

q − p
∈ V for p, q ∈ I.

As a direct corollary we obtain a local characterization of increasing func-
tions.

Corollary. Letx : I → R. Thenx is increasing iffDx(t) b R+ for t ∈ I.
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WOLFGANG WALTER

Infinite Quasimonotone Systems of ODEs With Applications to Stochastic
Processes

ABSTRACT

We deal with the initial value problem for countably infinite linear sys-
tems of ordinary differential equations of the formy′(t) = A(t)y(t) where
A(t) = (aij(t) : i, j ≥ 1) is an infinite, essentially positive matrix, i.e.,
aij(t) ≥ 0 for i 6= j. The main novelty of our approach is the systematic
use of a classical theorem on sub- and supersolutions for finite linear systems
which leads easily to the existence of a unique nonnegative minimal solution
and its properties. Application to generalized stochastic birth and death pro-
cesses leads to conditions for honest and dishonest probability distributions.
The results hold forL1-coefficients. Our method extends to nonlinear infinite
systems of quasimonotone type.

ANNA WEDESTIG

Some New Hardy Type Inequalities and Their Limiting Carleman-Knopp Type
Inequalities

ABSTRACT

New necessary and sufficient conditions for the weighted Hardy’s inequal-
ity is proved. The corresponding limiting Carleman-Knopp inequality is also
proved and also the corresponding limiting result in two dimensions is pointed
out.
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3. Problems and Remarks
3.1. Problem

Investigating the stability properties of convexity, Hyers and Ulam [1] obtained
the following result:

Theorem 1. LetD ⊂ Rn be a convex set. Then there exists a constantcn such
that if a functionf : D → R is ε-convex onD, i.e., if it satisfies

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε (x, y ∈ D, t ∈ [0, 1])

(whereε is a nonnegative constant), then it is of the formf = g + h, whereg is
a convex function andh is a bounded function with‖h‖ ≤ cnε.

An analogous result was obtained for(ε, δ)-convex real functions in [2]:

Theorem 2. Let D ⊂ R be an open interval. Assume thatf : D → R is
(ε, δ)-convex onD, i.e., if it satisfies
(1)
f(tx+(1−t)y) ≤ tf(x)+(1−t)f(y)+ε+δt(1−t)‖x−y‖ (x, y ∈ D, t ∈ [0, 1])

(whereε andδ are nonnegative constants), then it is of the formf = g + h+ `,
whereg is a convex function andh is a bounded function with‖h‖ ≤ ε/2 and`
is a Lipschitz function with Lipschitz modulus not greater thanδ.

Problem. LetD ⊂ Rn be an open convex set. Do there exist constantscn and
dn so that whenever a functionf : D → R satisfies (1) then it must be of the
form f = g + h + `, whereg is convex,h is bounded with‖h‖ ≤ cnε, and` is
Lipschitz with Lipschitz modulus not greater thandnδ.
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3.2. Problem and Remark

László Fuchs and I, working then as now mainly in algebra and analysis, respec-
tively, wrote 55 years ago a paper in geometry, that Fuchs considers a “folly
of his youth” - I don’t - and that was called “beautiful” by L. E. J. Brouwer
(maybe because it contained no proof by contradiction) and published in his
journal Compositio Mathematica8 (1950), 61–67. The result was as follows.

Inscribe a convex (not necessarily regular)n-gon into a circle and by drawing
tangents at the vertices, also a circumscribedn-gon. The sum of areas of these
two polygons has an absolute (fromn independent) minimum at the pair of
squares. The proof was analytic.

The problem has been raised repeatedly of finding a geometric proof. No
such proof has been found up to now and the problem seems to be rather diffi-
cult.
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The above result implies that there is no minimum forn-gon pairs with fixed
n ≥ 5. Paul Erd̋os asked in 1983 whether the pair of regular triangles yields
the minimal area-sum for inscribed and circumscribed triangles. The answer is
yes, as proved by Jürg Rätz and by me independently. Both of us used analytic
methods.

Of course, again a search for a geometric proof was launched immediately.
This proved easier to find. With P. Schöpf (Univ. Graz, Austria) we found
an essentially geometric proof in 2000 and it appeared recently in Praxis der
Mathematik4 (2002), 133–135.

János Aczél.

3.3. Problem

Let f be an increasing continuous function mapping a unit interval[0, 1] onto
itself. Letn ∈ N.

Definition. Let V be a subset of a vector spaceX. We say thatV is (n, f)-
convex if for everyα1, . . . , αn ∈ [0, 1] such thatf(α1) + · · · + f(αn) = 1 and
everyv1, . . . , vn ∈ V we haveα1v1 + · · ·+ αnvn ∈ V .

Problem. Find (characterize) allf such that every(2, f)-convex set is(n, f)-
convex for arbitraryn ∈ N.

Jacek Tabor.
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3.4. Problem

(i) The implication

W 1,p
0 (Ω) → Lq(Ω) ⇒ W 1,p

0 (Ω) → Lq̂(Ω) for q̂ < q

follows easily by Hölder’s inequality, provided

(1) measΩ <∞.

(ii) For weighted Sobolev spaces (a, b weight functions), the implication

(2) W 1,p
0 (Ω; a) → Lq(Ω; b) ⇒ W 1,p

0 (Ω; a) → Lq̂(Ω; b) for q̂ < q

follows easily by Hölder’s inequality, provided

(3) b ∈ L1(Ω).

Notice that (1) means (3) for b ≡ 1.

Problem. Is (3) not only sufficient, but also necessary for the implication(2)?

Alois Kufner.
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3.5. Problem

A classic result due to Opial [6] says that the best constantK of the inequality

(1)
∫ 1

0

|yy′| dx ≤ K

∫ 1

0

(y′)2 dx, y(0) = y(1) = 0

for all real functionsy ∈ D, where

D = {y : y is absolutely continuous andy′ ∈ L2(0, 1)}

is 1
4

and that the extremalssc are of the form

sc(x) =

{
cx if 0 ≤ x ≤1

2
,

c(1− x) if 1
2
< x ≤ 1,

wherec is a constant.
We note that the existence of an inequality of the form (1) is quite easy

to prove. For, if we apply the Cauchy-Schwarz and a form of the Wirtinger
inequality [4, p. 67] we see that∫ 1

0

|yy′| dx ≤
(∫ 1

0

y2 dx

) 1
2
(∫ 1

0

(y′)2 dx

) 1
2

≤ 1

π

∫ 1

0

(y′)2 dx.

The nontrivial part of (1) is the determination of the least value ofK and the
characterization of the extremals. The original proof of Opial [6] assumed that
y > 0. This restriction was eliminated by Olech [5]. At least six proofs are
known and may be found in [1], [4]. In order to get a feeling for the subtleties
involved in Opial’s inequality we give a proof which is close to Olech’s.
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Proof. Fory ∈ D satisfying the boundary conditions of (1) let p ∈ (0, 1) satisfy∫ p

0

|y′| dx =

∫ 1

p

|y′| dx.

Define

Y (x) =


∫ x

0
|y′| if x ∈ [0, p]∫ 1

x
|y′| if x ∈ (p, 1].

Evidently,Y (0) = Y (1) = 0, |y| ≤ Y , Y ∈ D, and

K−1 ≤
∫ 1

0
|Y ′|2 dx∫ 1

0
|Y Y ′| dx

≤
∫ 1

0
|y′|2 dx∫ 1

0
|yy′| dx

.

Thus an extremal of (1) (if any) will be found among the classD′ ⊂ D consist-
ing of thosey satisfyingy(0) = y(1) = 0 which are nondecreasing on(0, p],
nonincreasing on(p, 1], and such thaty(p) = 1. Then

∫ 1

0
|yy′| dx = 1, and

K−1 = inf
y∈D′

∫ 1

0

|y′|2 dx.

The extremal is evidently a linear spline with a unique knot atp. Moreover,

K−1 = inf
p∈(0,1)

(
1

p
+

1

1− p

)
= 4.

By a variation of the above proof [3] one can show that∫ 1

0

|yy′| dx ≤ 1

4

∫ 1

0

(y′)2 dx whenevery(0) + y(1) = 0
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for y ∈ D.

Now consider the inequality

(2)
∫ 1

0

|yy′| dx ≤ K

∫ 1

0

(y′)2 dx whenever
∫ 1

0

y dx = 0,

wherey ∈ D. An upper bound forK in (2) is also 1
π
. If we sety = x − 1

2
a

calculation shows that a lower bound onK = 1
4
.

Conjecture. The best value ofK in (2) is also 1
4

and all extremals are of the
form sc(x) = c

(
x− 1

2

)
for any constantc.

Remark. While (2) is simple in form it is much harder to handle than (1). As
in the previous case the main difficulty is caused by the absolute value signs on
the left side, but the technique we used to prove (1) no longer seems applicable
since it is hard to construct a piecewise monotone functions with the properties
of Y while preserving the condition

∫ 1

0
s dx = 0.

However, one can verify the conjecture if certain assumptions are made
about the extremals. For instance we can suppose:

(i) The extremals is a linear spline with one knot.

(ii) The extremal up to multiplication by constants is unique.

If (i) is granted we can show thatK = 1
4

by an extremely laborious calcula-
tion. Since the argument based on (ii) is fairly short we present it here.

Lemma. Assumption(ii) ⇒ K = 1
4

ands(t) = t− 1
2

is an extremal.

http://jipam.vu.edu.au/
mailto:pales@math.klte.hu
http://jipam.vu.edu.au/


Report of the General
Inequalities 8 Conference;

September 15–21, 2002,
Noszvaj, Hungary

Compiled by Zsolt Páles

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 40 of 63

J. Ineq. Pure and Appl. Math. 4(3) Art. 49, 2003

http://jipam.vu.edu.au

Proof. Suppose there is an extremals of (2). Because
∫ 1

0
s = 0, s has at least

one zeroc ∈ (0, 1).
Case (1) If c = 1

2
, we know from a standard “half interval” Opial inequality

[4, Theorem2′, p. 114] that∫ 1
2

0

|ss′| dx ≤ 1

2
· 1

2

∫ 1
2

0

s′2 dx(3) ∫ 1

1
2

|ss′| dx ≤ 1

2
· 1

2

∫ 1

1
2

s′2 dx.(4)

From which it follows thats satisfies (2) with K ≤ 1
4
.

Case (2) If c 6= 1
2
. Consider̃s(t) = s(1− t). s̃ is also an extremal of (2). By

hypothesis̃s(t) = ks(t). Takingt = 1
2

shows thatk = 1. Hence ift = 1
2
± u,

1 − t = 1
2
∓ u and s is symmetric with respect tot = 1

2
. With no loss of

generality we can assume thatc ∈
(
0, 1

2

)
; there is then another zeroc′ ∈

(
1
2
, 1
)
.

Again using [4, Theorem2′] yields that∫ c

0

|ss′| dx ≤ c

2

∫ 1
2

0

s′2 dx∫ 1
2

c

|ss′| dx ≤
1
2
− c

2

∫ 1
2

0

s′2 dx

which implies (3). The argument for (4) is similar usingc′.
Thus in either Case (1) or (2)K ≤ 1

4
. Sinces(t) = t − 1

2
gives equality in

(2) and
∫ 1

0
s = 0,K = 1

4
.
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However, neither (i) nor (ii) is evident (although a calculus of variations
argument will show thats is at least piecewise linear).

Another route to the solution of the problem may be to use a technique de-
vised by Boyd [2] to find best constants in general Opial-like inequalities. Boyd
considers the operatorK : L2(0, 1) → L2(0, 1) defined by

Kf(x) =

∫ 1

0

k(x, t)f(t)σ(t) dt,

wherek(x, t) is nonnegative and measurable on(0, 1)×(0, 1), andσ is a positive
a.e. measurable function. It is then shown [2, Theorem 1] that the best constant
C of the inequality

(5)
∫ 1

0

|K(f(x)| |f(x)|σ(x) dx ≤ C

∫ 1

0

|f(x)|2σ(x) dx

is an eigenvalue of(K + K∗)/2. Boyd uses this method to find the best con-
stants of a family of higher order generalizations of (1). However the calcula-
tions needed to put the inequality in the format (5) and to solve the eigenvalue
problem are challenging.
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3.6. Remark

Let I ⊂ R be an interval andf, g : I → R be given functions,f ≤ g. It is well
known that iff is concave andg is convex (or conversely), then there exists
an affine functionh : I → R such thatf ≤ h ≤ g on I. Of course these
conditions are sufficient but not necessary for the existence of such a function.
A full characterization of functions which can be separated by an affine one
gives the following theorem [5] (cf. also [2], [4] for further generalizations).

Theorem. Let f, g : I → R. There exists an affine functionh : I → R such
f ≤ h ≤ g if and only if

f(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

and
g(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)

for all x, y ∈ I andt ∈ [0, 1].

The first of the above inequalities is equivalent to the separability off andg
by a convex function (cf. [1]). From this result one can obtain (takingg = f+ε)
the classical (one dimensional) Hyers-Ulam stability theorem [3] stating that if
f : I → R is ε-convex, i.e., it satisfies the condition

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε, x, y ∈ I, t ∈ [0, 1],

then there exists a convex functionh : I → R such thatf ≤ h ≤ f + ε.
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3.7. Problems

Concerning Hardy type inequalities, we have posed the following problems.

Problem 1. Let p > 1, 0 < λ < 1, 0 < b ≤ ∞ and g ∈ C∞
0 [0, b]. Find

necessary and sufficient conditions on the weightsu = u(x), 0 ≤ x ≤ b, and
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v = v(x, y), 0 ≤ x, y ≤ b, so that

(1)

(∫ b

0

|g(x)|p u(x)dx
) 1

p

≤ K

(∫ b

0

∫ b

0

|g(x)− g(y)|p

|x− y|1+λp
v(x, y)dxdy

) 1
p

holds for some finiteK > 0 andλ 6= 1
p
.

Remark 1. The (lower fractional order Hardy) inequality(1) holds, e.g., if
u(x) = x−pλ andv(x, y) ≡ 1 except forλ = 1

p
, where a counterexample can be

found.

Problem 2. Let p > 1, 0 < λ < 1, 0 < b ≤ ∞ and g ∈ AC[0, b]. Find
necessary and sufficient conditions on the weightsv = v(x), 0 ≤ x ≤ b, and
u = u(x, y), 0 ≤ x, y ≤ b, so that

(2)

(∫ b

0

∫ b

0

|g(x)− g(y)|p

|x− y|1+λp
u(x, y)dxdy

) 1
p

≤ K

(∫ b

0

|g′(x)|p v(x)dx
) 1

p

holds for some finiteK > 0.

Remark 2. The (upper fractional order Hardy) inequality(2) holds e.g. if
u(x, y) = 1, v(x) = x(1−λ)p andK = 2

1
pλ−1(p(1− λ))−

1
p .

Problem 3 (A). Letg ∈ L2(0,∞). Then

‖g‖L2 = ‖g −Hg‖L2 = ‖g − Sg‖L2 ,

where

Hg(x) :=
1

x

∫ x

0

g(y)dy, Sg(x) =

∫ ∞

x

g(y)

y
dy.
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Question 1. Describe all the (averaging) operatorsA such that

‖g‖L2 = ‖g − Ag‖L2 .

Problem 3 (B). Let g ∈ Lp([0,∞], x−αp−1) =: Lp(x−αp−1) with p ≥ 1 and
α > −1, α 6= 0. Then

(3) ‖g‖Lp(x−αp−1) ≈ ‖g −Hg‖Lp(x−αp−1)

where

Hg(x) :=
1

x

∫ x

0

g(y)dy.

Question 2. Describe all the (averaging) operatorsA such that(3) holds with
H replaced byA.

Lars-Erik Persson.

3.8. Problem

If numbersy1, . . . , yn (andy0 = 0) are given positive numbers so that∆yk ≥ 0
(k = 0, . . . , (n−1)), ∆yk = yk+1−yk and∆2yk ≥ 0 then there is a continuous
convex function∆2f ≥ 0 such thatf(i) = yi, (i = 0, . . . , k). The piecewise
linear function that interpolates the points(i, yi) will do.

Now if I add the conditions that∆3yk ≥ 0 and ask for a continuous function
f which interpolates the points(i, yi) and∆3f ≥ 0, then in general this cannot
be done. So the problem is to find a finite set of conditions on the{yi} ensure
the existence of a functionf with the required properties.

A.M. Fink.
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3.9. Problems

Letm ≥ 2 an integer and

µm := min
|z|=1,z∈C

∣∣∣∣∣
m∑
k=1

kzm−k

∣∣∣∣∣ .
Problem 1. Find µm (as a function ofm).

Problem 2. Prove or disprove that for oddm

(3.1) µm ≥
m

2
sec

π

2m+ 2
.

Introducingz = eit we have

(3.2)

∣∣∣∣∣
m∑
k=1

kzm−k

∣∣∣∣∣
2

=

[
m

2
+

1

2

(
sin mt

2

sin t
2

)2
]2

+

[
m sin t− sinmt

4 sin2 t
2

]2

which shows thatµm ≥ m
2

, moreoverµm = m
2

if m is even as in this case the

right hand side of(3.2) equals
(
m
2

)2
for t = π.

Problems1 and2 are related to the location of zeros of self-inversive poly-
nomials through the following results.

Theorem 1. (P. Lakatos [1], [ 2]) All zeros of reciprocal polynomialPm(z) =∑m
k=1Akz

k with real coefficientAk ∈ R (andAm 6= 0, Ak = Am−k for all
k = 1, . . . , n) are on the unit circle, provided that

(3.3) |Am| ≥
m−1∑
k=1

|Ak − Am| .
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Moreover, the zeroseiuj of Pm can be arranged such that

(3.4)
∣∣eiuj − εj

∣∣ ≤ π

m+ 1
(j = 1, . . . ,m)

whereεj = ei
2πj

m+1 (j = 1, . . . ,m) are the(m + 1)st roots of unity, except
the root1.

Theorem 2. (A. Schinzel [4].) All zeros of the self-inversive polynomialPm(z) =∑m
k=1Akz

k (whereAk ∈ C, Am 6= 0, εĀk = Am−k for all k = 0, . . . ,mwith
fixedε ∈ C, |ε| = 1) are on the unit circle, provided that

(3.5) |Am| ≥ inf
c∈C

m∑
k=0

|cAk − Am| .

The first theorem has been generalized by proving that its statements remain
valid if m is odd and (3.3) is replaced by

|Am| ≥ cos2 π

2(m+ 1)

m∑
k=1

|Ak − Am|

and similarly, the second theorem remains valid ifm is odd and (3.5) is replaced
by

|Am| ≥
m

2µm

m∑
k=0

|cAk − Am| .

(see Lakatos-Losonczi [3]).
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3.10. Remark and Problem

LetM andN be strict means in the usual sense, i.e.,

min(x, y) <

{
M(x, y)

N(x, y)

}
< max(x, y)

if x 6= y andM(x, x) = N(x, x) = x. Then the two sequences

x1 = x, y1 = y, xn+1 = M(xn, yn), yn+1 = N(xn, yn), (n = 1, 2, . . .)
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converge to the same limit

lim
n→∞

xn = lim
n→∞

yn := GM,N(x, y).

Substitutingxn, yn into

(1) f(M(x, y)) + f(N(x, y)) ≤ f(x) + f(y),

iterating the inequality, and tending to∞ with n, we get, iff is continuous,

(2) 2f(GM,N(x, y)) ≤ f(x) + f(y).

Problem. Under what conditions onM andN does(2) follow from(1) without
assuming continuity off?

In what follows, we solve in two particular cases the correspondingequa-
tions

(1=) f(M(x, y)) + f(N(x, y)) = f(x) + f(y)

(2=) 2f(GM,N(x, y)) = f(x) + f(y).

1. M(x, y) =
x+ y

2
, N(x, y) =

2xy

x+ y
. HereGM,N(x, y) =

√
xy. Hence

the continuous solution of (2=) and thus also of (1=) is given byf(x) =
a log x+b.Without assuming any regularity, Bruce Ebanks recently proved
(to appear in Publ. Math.) that the two equations have the same general
solution f(x) = `(x) + b, where` is an arbitrary solution of̀(xy) =
`(x) + `(y).

http://jipam.vu.edu.au/
mailto:pales@math.klte.hu
http://jipam.vu.edu.au/


Report of the General
Inequalities 8 Conference;

September 15–21, 2002,
Noszvaj, Hungary

Compiled by Zsolt Páles

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 51 of 63

J. Ineq. Pure and Appl. Math. 4(3) Art. 49, 2003

http://jipam.vu.edu.au

2. M(x, y) =
x+ y

2
, N(x, y) =

√
xy. In this caseGM,N is Gauss’s medium

arithmetico-geometricum. It follows from a result of Gy. Maksa (Publ.
Math. Debrecen, 24 (1977), 25–29), again without any regularity assump-
tion, that every solution of (1=), that is, of

f

(
x+ y

2

)
+ f(

√
xy) = f(x) + f(y)

is constant.

Remark. The above two results would not be surprising iff were supposed
(continuous and) strictly monotonic. Then(2=) would become

GM,N(x, y) = f−1

(
f(x) + f(y)

2

)
,

makingGM,N a quasi-arithmetic mean. Now,GM,N(x, y) =
√
xy is a quasi-

arithmetic mean withf(x) = a log x+b (a 6= 0) while the medium arithmetico-
geometricum is not quasi-arithmetic. What is surprising is that the statements
1 and2 hold without any regularity assumption.

János Aczél and Zsolt Páles.
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3.11. Remark

Lars-Erik Persson has asked for an elementary proof of the identities

‖f − Aif‖L2(0,∞) = ‖f‖L2(0,∞)

(
f ∈ L2(0,∞); i = 1, 2

)
,

with A1 andA2 denoting the averaging operators

(A1f)(x) :=
1

x

∫ x

0

f(t)dt, (A2f)(x) :=

∫ ∞

x

1

t
f(t)dt.

Indeed, forf ∈ L2(0,∞),

‖f‖2
L2(0,∞) − ‖f − A1f‖2

L2(0,∞)

= 2 Re〈A1f, f〉L2(0,∞) − ‖A1f‖2
L2(0,∞)

=

∫ ∞

0

1

x
· 2 Re

[∫ x

0

f(t)dt · f(x)

]
dx− ‖A1f‖2

L2(0,∞)

=

∫ ∞

0

1

x

d

dx

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 dx− ∫ ∞

0

1

x2

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 dx
=

[
1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2
]∞

0

by partial integration. So it suffices to show that

lim
x→0

1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 = lim
x→∞

1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 = 0.
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The first limit being0 is immediate by the Cauchy-Schwarz inequality:

1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 ≤ ∫ x

0

|f(t)|2 dt −→ 0 asx→ 0.

For the second, we observe that, for any0 < y < x <∞,

0 ≤ 1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2
≤ 1

x

[∫ y

0

|f(t)| dt+

∫ x

y

|f(t)| dt
]2

≤ 2

x

[∫ y

0

|f(t)| dt
]2

+
2

x

[∫ x

y

|f(t)| dt
]2

≤ 2

x

[∫ y

0

|f(t)| dt
]2

+
2

x
(x− y)

∫ x

y

|f(t)|2 dt

≤ 2

x

[∫ y

0

|f(t)| dt
]2

+ 2

∫ ∞

y

|f(t)|2 dt.

For givenε > 0, choose nowy such that second term is less thanε/2, and then
x0 > y such that the first term is less thanε/2 (for x ≥ x0).

For the averaging operatorA2, we obtain similarly

‖f‖2
L2(0,∞) − ‖f − A2f‖2

L2(0,∞)

=

∫ ∞

0

2 Re

[∫ ∞

x

1

t
f(t)dt · f(x)

]
dx− ‖A2f‖2

L2(0,∞)
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= −
∫ ∞

0

x
d

dx

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2 dx− ∫ ∞

0

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2 dx
= −

[
x

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2
]∞

0

,

and

x

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2 ≤ x

∫ ∞

x

1

t2
dt

∫ ∞

x

|f(t)|2 dt

=

∫ ∞

x

|f(t)|2 dt −→ 0 asx→∞.

To prove that the above boundary term vanishes also at0, let 0 < x < y < ∞.
Then,

x

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2 ≤ 2x

[∫ y

x

1

t
|f(t)| dt

]2

+ 2x

[∫ ∞

y

1

t
|f(t)| dt

]2

≤ 2x

∫ y

x

1

t2
dt

∫ y

x

|f(t)|2 dt+ 2x

[∫ ∞

y

1

t
|f(t)| dt

]2

≤ 2

∫ y

0

|f(t)|2 dt+ 2x

[∫ ∞

y

1

t
|f(t)| dt

]2

which is less than a givenε > 0 (for y sufficiently small andx sufficiently small
depending ony), similarly to the arguments forA1.

Michael Plum.
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3.12. Remark

We describe solutions to the functional inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε (‖x‖+ ‖y‖)

for f : Rn → X.

Jacek Tabor.

3.13. Problem

Let−∞ < α, β <∞ and consider forf ≥ 0 the (Gini) means

Gα,β[f, x] =



(∫ x
0
fα(t)dt∫ x

0
fβ(t)dt

) 1
α−β

, α 6= β

exp

(∫ x
0
fα(t) log f(t)dt∫ x

0
fα(t)dt

)
, α = β.

Let also{p, q} ∈ R2
+ (or to some suitable subset ofR2

+),

a) Find necessary and sufficient conditions on the weightsu(x) andv(x) so
that, for0 < b ≤ ∞,

(1)

(∫ b

0

(Gα,β[f, x])
q u(x)dx

) 1
q

≤ C

(∫ b

0

fp(x)v(x)dx

) 1
p
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for some finiteC > 0. Find also “good” estimates of the least constantC
in (1) [i.e. good control of the corresponding operator norm].

b) The same question whenGα,β[f, x] is replaced by other interesting means,
e.g., those presented on this conference.

Remark 1. For the caseα = 1, β = 0, p > 1, q > 0 (1) is just a modern
form of Hardy’s inequality so we have a complete solution of our problem. Also,
according to results e.g. presented in this conference we have the similar precise
information for the geometric mean caseα = β = 0, p, q > 0. Moreover, for
the power mean caseα > 0, β = 0 we also get satisfactory results by just
making an obvious substitution in the arithmetic mean (=the Hardy) case.

Remark 2. The scale of meansGα,β has the interesting property that it is in-
creasing in bothα andβ. This means that we can get sufficient conditions when
(1) holds by just using the information pointed out in Remark1.

Alois Kufner, Zsolt Páles, and Lars-Erik Persson.

3.14. Remark

Saborou Saitoh has asked for a simple proof of the inequality

inf
‖g‖≤R

∫ ∞

−∞
|uf (x, t)− ug(x, t)|2 dx ≤ (‖f‖ −R)2
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for all f ∈ L2(R), ‖f‖ ≥ R, andt ≥ 0, where

uf (x, t) :=
1√
4πt

∫ ∞

−∞
f(y) exp

(
−|x− y|2

4t

)
dy.

Indeed,uf solves the Cauchy problem for the heat equation,

∂uf
∂t

= ∆uf (x ∈ R, t > 0), uf (·, 0) = f a.e. onR.

Then, forf andg in L2(R) and allt > 0,

1

2

d

dt
‖uf (·, t)− ug(·, t)‖2 =

〈
∂uf
∂t

(·, t)− ∂ug
∂t

(·, t), uf (·, t)− ug(·, t)
〉
L2(R)

= 〈∆uf (·, t)−∆ug(·, t), uf (·, t)− ug(·, t)〉L2(R)

= −‖∇uf (·, t)−∇ug(·, t)‖2 ≤ 0

by partial integration sinceu(·, t) and∇u(·, t) decay exponentially atx = ±∞.
Thus,

‖uf (·, t)− ug(·, t)‖2 ≤ ‖uf (·, 0)− ug(·, 0)‖2 = ‖f − g‖2.

For‖f‖ ≥ R andg := R
‖f‖f , we therefore have

‖uf (·, t)− ug(·, t)‖2 ≤
(

1− R

‖f‖

)2

‖f‖2 = (‖f‖ −R)2

and‖g‖ = R, which establishes the result.

Michael Plum.
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4. Addenda

4.1. Addenda zu Gewöhnliche Differentialgleichungen mit
quasimonoton wachsenden rechten Seiten in geordneten
Banachräumen

von Alice Chaljub-Simon, Roland Lemmert, Sabina Schmidt und Peter Volk-
mann, General Inequalities 6, International Series of Numerical Mathematics
103, Birkhäuser, Basel, 1992, pp. 307-320.

1. In Lemma 2 auf S. 311 soll II) wie folgt lauten:

II) Ausx, y ∈ E, x ≤ y, xα = yα folgt fα(x) ≤ fα(y).

(In dieser Form wird II) später benutzt; der Beweis ist ähnlich dem Beweise der
ursprünglichen Form von II).)

2. Auf S. 317, 14.-16. Z. v.o. sind die beiden Sätze “In Wirklichkeit ...
verfeinert werden.” zu ersetzen durch: Für normale KegelK brauchte nur
f : [0, T ] × U → E mit einer UmgebungU von a vorausgesetzt zu werden,
und dann konnte die Existenz einer lokalen Lösung von (12) gezeigt werden.
(Vgl. die Folgerung auf S. 388 von [6]; die Normalität vonK ist dort den Vo-
raussetzungen hinzuzufügen!) Entsprechende lokale Versionen können auch für
den hier gegebenen Satz 2 bewiesen werden.

3. Auf S. 317, 8.-1. Z. v.u. (durch den Druck entstellt) soll es heißen:

C+(M) = {x | x ∈ C(M), x = (xα)α∈M mit xα ≥ 0 (α ∈M)}

der natürliche Ordnungskegel inC(M).
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SATZ 3. IstM ein metrischer Raum, dessen Metrik nicht diskret ist (d.h. in
M gibt es mindestens einen Häufungspunkt), und wirdE = C(M) geordnet
durchK = C+(M), so gibt es eine stetige, beschränkte, monoton wachsende
Funktionf : E → E und eina ∈ E derart, daß das Anfangswertproblem

(37) u(0) = a, u′(t) = f(u(t)) (0 ≤ t ≤ T )

für jedesT > 0 unlösbar ist.

Peter Volkmannn.

4.2. Addendum to Weak persistence in Lotka-Volterra
populations

by Raymond M. Redheffer and Peter Volkmann, General Inequalities 7, Inter-
national Series of Numerical Mathematics 123, Birkhäuser, Basel, 1997, pp.
369-373.

The remark on page 371 pertaining toy1 − y2 overlooks the fact thatf(t)
and g(t) depend ony. The statement of Example 1 remains unchanged but
the assertion thatlimm(t) = 1 in Example 2 should be replaced by1/5 ≤
lim infm(t) ≤ lim supm(t) ≤ 3. This oversight was brought to our attention
by Dr. Roland Uhl.

Peter Volkmannn.
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