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ABSTRACT. In this paper we have proved two theorems concerning an inclusion between two
absolute summability methods by using any absolute summability factor.
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1. I NTRODUCTION

Let
∑

an be a given infinite series with partial sums(sn), andrn = nan. By un andtn we
denote then-th (C, 1) means of the sequences(sn) and(rn), respectively. The series

∑
an is

said to be summable|C, 1|k , k ≥ 1, if (see [4])

(1.1)
∞∑

n=1

nk−1 |un − un−1|k < ∞.

But sincetn = n(un − un−1) (see [7]), the condition (1.1) can also be written as

(1.2)
∞∑

n=1

1

n
|tn|k < ∞.

The series
∑

an is said to be summable|C, 1; δ|k k ≥ 1 andδ ≥ 0, if (see [5])

(1.3)
∞∑

n=1

nδk−1 |tn|k < ∞.

If we takeδ = 0, then|C, 1; δ|k summability is the same as|C, 1|k summability.
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Let (pn) be a sequence of positive numbers such that

(1.4) Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

(1.5) Tn =
1

Pn

n∑
v=0

pvsv

defines the sequence(Tn) of the(N̄ , pn) mean of the sequence(sn), generated by the sequence
of coefficients(pn) (see [6]).

The series
∑

an is said to be summable
∣∣N̄ , pn

∣∣
k
, k ≥ 1, if (see [1])

(1.6)
∞∑

n=1

(
Pn

pn

)k−1

|∆Tn−1|k < ∞

and it is said to be summable
∣∣N̄ , pn; δ

∣∣
k
, k ≥ 1 andδ ≥ 0, if (see [3])

(1.7)
∞∑

n=1

(
Pn

pn

)δk+k−1

|∆Tn−1|k < ∞,

where

(1.8) ∆Tn−1 = − pn

PnPn−1

n∑
v=1

Pv−1av, n ≥ 1.

In the special case whenδ = 0 (resp.pn = 1 for all values ofn)
∣∣N̄ , pn; δ

∣∣
k

summability is the
same as

∣∣N̄ , pn

∣∣
k

(resp.|C, 1; δ|k) summability.
Concerning inclusion relations between|C, 1|k and

∣∣N̄ , pn

∣∣
k

summabilities, the following
theorems are known.

Theorem 1.1. ([1]).Let k ≥ 1 and let (pn) be a sequence of positive numbers such that as
n →∞

(1.9) (i) Pn = O(npn), (ii) npn = O(Pn).

If the series
∑

an is summable|C, 1|k , then it is also summable
∣∣N̄ , pn

∣∣
k
.

Theorem 1.2. ([2]). Let k ≥ 1 and let (pn) be a sequence of positive numbers such that
condition (1.9) of Theorem 1.1 is satisfied. If the series

∑
an is summable

∣∣N̄ , pn

∣∣
k
, then it is

also summable|C, 1|k .

2. THE M AIN RESULT

The aim of this paper is to generalize the above theorems for|C, 1; δ|k and
∣∣N̄ , pn; δ

∣∣
k

summa-
bilities, by using a summability factors. Now, we shall prove the following theorems.

Theorem 2.1.Letk ≥ 1 and0 ≤ δk < 1. Let(pn) be a sequence of positive numbers such that
Pn = O(npn) and

(2.1)
∞∑

n=v+1

(
Pn

pn

)δk−1
1

Pn−1

= O

{(
Pv

pv

)δk
1

Pv

}
.

J. Inequal. Pure and Appl. Math., 4(4) Art. 66, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


INCLUSION THEOREMS FORABSOLUTE SUMMABILITY METHODS 3

Let
∑

an be summable|C, 1; δ|k. Then
∑

anλn is summable
∣∣N̄ , pn; δ

∣∣
k
, if (λn) satisfies the

following conditions:

(2.2) n∆λn = O

(
Pn

npn

) 1−δk
k

,

(2.3) λn = O

(
Pn

npn

) 1
k

.

Theorem 2.2. Let k ≥ 1 and0 ≤ δk < 1. Let (pn) be a sequence of positive numbers such
that npn = O(Pn) and satisfies the condition (2.1). Let

∑
an be summable

∣∣N̄ , pn; δ
∣∣
k
. Then∑

anλn is summable|C, 1; δ|k , if (λn) satisfies the following conditions:

(2.4) n∆λn = O

(
npn

Pn

) 1−δk
k

(2.5) λn = O

(
npn

Pn

) 1
k

.

Remark 2.3. It may be noted that, if we takeλn = 1 andδ = 0 in Theorem 2.1 and Theorem
2.2, then we get Theorem 1.1 and Theorem 1.2, respectively. In this case condition (2.1) reduces
to

m+1∑
n=v+1

pn

PnPn−1

=
m+1∑

n=v+1

(
1

Pn−1

− 1

Pn

)
= O

(
1

Pv

)
as m →∞,

which always holds.

Proof of Theorem 2.1.Since

tn =
1

n + 1

n∑
v=1

vav

we have that

an =
n + 1

n
tn − tn−1.

Let (Tn) denote the(N̄ , pn) mean of the series
∑

anλn. Then, by definition and changing the
order of summation, we have

Tn =
1

Pn

n∑
v=0

pv

v∑
i=0

aiλi =
1

Pn

n∑
v=0

(Pn − Pv−1)avλv.

Then, forn ≥ 1, we have

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1avλv.

By Abel’s transformation, we have

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

Pv∆λv
v + 1

v
tv −

pn

PnPn−1

n−1∑
v=1

pvλv
v + 1

v
tv

+
pn

PnPn−1

n−1∑
v=1

Pv

v
λv+1tv +

pn

Pn

λn
n + 1

n
tn

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.
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Since

|Tn,1 + Tn,2 + Tn,3 + Tn,4|k ≤ 4k(|Tn,1|k + |Tn,2|k + |Tn,3|k + |Tn,4|k),

to complete the proof of the theorem, it is enough to show that

(2.6)
∞∑

n=1

(
Pn

pn

)δk+k−1

|Tn,r|k < ∞ for r = 1, 2, 3, 4.

Now, whenk > 1, applying Hölder’s inequality with indicesk andk′, where1
k

+ 1
k′

= 1, we
get

m+1∑
n=2

(
Pn

pn

)δk+k−1

|Tn,1|k

≤
m+1∑
n=2

(
Pn

pn

)δk−1
1

P k
n−1

(
n−1∑
v=1

Pv
v + 1

v
|tv| |∆λv|

)k

= O(1)
m+1∑
n=2

(
Pn

pn

)δk−1
1

P k
n−1

(
n−1∑
v=1

|tv| |v∆λv|
Pv

vpv

pv

)k

= O(1)
m+1∑
n=2

(
Pn

pn

)δk−1
1

P k
n−1

(
n−1∑
v=1

|tv| |v∆λv| pv

)k

= O(1)
m+1∑
n=2

(
Pn

pn

)δk−1
1

Pn−1

n−1∑
v=1

|tv|k |v∆λv|k pv

(
1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)
m∑

v=1

|tv|k |v∆λv|k pv

m+1∑
n=v+1

(
Pn

pn

)δk−1
1

Pn−1

= O(1)
m∑

v=1

|tv|k |v∆λv|k
(

Pv

pv

)δk−1

= O(1)
m∑

v=1

vδk−1 |tv|k = O(1) as m →∞.

by virtue of the hypotheses of Theorem 2.1.
Again using Hölder’s inequality,

m+1∑
n=2

(
Pn

pn

)δk+k−1

|Tn,2|k

= O(1)
m+1∑
n=2

(
Pn

pn

)δk−1
1

Pn−1

n−1∑
v=1

pv |tv|k |λv|k
(

1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)
m∑

v=1

pv |tv|k |λv|k
m+1∑

n=v+1

(
Pn

pn

)δk−1
1

Pn−1
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= O(1)
m∑

v=1

(
Pv

pv

)δk−1

|tv|k |λv|k

= O(1)
m∑

v=1

vδk−1 |tv|k |λv|k

= O(1)
m∑

v=1

vδk−1 |tv|k = O(1) as m →∞,

by virtue of the hypotheses of Theorem 2.1.
Also

m+1∑
n=2

(
Pn

pn

)δk+k−1

|Tn,3|k

≤
m+1∑
n=2

(
Pn

pn

)δk−1
1

P k
n−1

(
n−1∑
v=1

Pv
|λv+1|

v
|tv|

)k

= O(1)
m+1∑
n=2

(
Pn

pn

)δk−1
1

P k
n−1

(
n−1∑
v=1

vpv
|λv+1|

v
|tv|

)k

= O(1)
m+1∑
n=2

(
Pn

pn

)δk−1
1

Pn−1

n−1∑
v=1

pv |λv+1|k |tv|k
(

1

Pn−1

n∑
v=1

pv

)k−1

= O(1)
m∑

v=1

pv |λv+1|k |tv|k
m+1∑

n=v+1

(
Pn

pn

)δk−1
1

Pn−1

= O(1)
m∑

v=1

|tv|k
(

Pv

pv

)δk−1

|λv+1|k

= O(1)
m∑

v=1

vδk−1 |tv|k = O(1) as m →∞,

by virtue of the hypotheses of Theorem 2.1.
Lastly

m∑
n=1

(
Pn

pn

)δk+k−1

|Tn,4|k = O(1)
m∑

n=1

(
Pn

pn

)δk−1

|λn|k |tn|k

= O(1)
m∑

n=1

(
Pn

npn

)δk−1

|λn|k |tn|k nδk−1

= O(1)
m∑

n=1

nδk−1 |tn|k = O(1) as m →∞,

by virtue of the hypotheses of Theorem 2.1.
This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2.Let (Tn) denotes the(N̄ , pn) mean of the series
∑

an. We have

Tn =
1

Pn

n∑
v=0

pvsv =
1

Pn

n∑
v=0

(Pn − Pv−1)av.
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Since

Tn − Tn−1 =
pn

PnPn−1

n∑
v=0

Pv−1av,

we have that

(2.7) an =
−Pn

pn

∆Tn−1 +
Pn−2

pn−1

∆Tn−2.

Let

tn =
1

n + 1

n∑
v=1

vavλv.

By using (2.7) we get

tn =
1

n + 1

n∑
v=1

v

(
−Pv

pv

∆Tv−1 +
Pv−2

pv−1

∆Tv−2

)
λv

=
1

n + 1

n−1∑
v=1

(−v)
Pv

pv

∆Tv−1λv −
nPnλn

(n + 1)pn

∆Tn−1 +
1

n + 1

n∑
v=1

v
Pv−2

pv−1

∆Tv−2λv

=
1

n + 1

n−1∑
v=1

(−v)
Pv

pv

∆Tv−1λv +
1

n + 1

n−1∑
v=1

(v + 1)
Pv−1

pv

∆Tv−1λv+1 −
nPnλn

(n + 1)pn

∆Tn−1

=
1

n + 1

n−1∑
v=1

∆Tv−1

pv

{−vλvPv + (v + 1)λv+1Pv−1} −
nPnλn

(n + 1)pn

∆Tn−1

=
1

n + 1

n−1∑
v=1

∆Tv−1

pv

{−vλvPv + (v + 1)λv+1(Pv − pv)} −
nPnλn

(n + 1)pn

∆Tn−1

=
1

n + 1

n−1∑
v=1

∆Tv−1

pv

{−vλvPv + (v + 1)λv+1Pv − (v + 1)λv+1pv} −
nPnλn

(n + 1)pn

∆Tn−1

=
1

n + 1

n−1∑
v=1

∆Tv−1

pv

{−(∆vλv)Pv − (v + 1)λv+1pv} −
nPnλn

(n + 1)pn

∆Tn−1

=
1

n + 1

n−1∑
v=1

−Pv

pv

∆Tv−1{v∆λv − λv+1} −
1

n + 1

n−1∑
v=1

∆Tv−1(v + 1)λv+1

− nPnλn

(n + 1)pn

∆Tn−1

= − 1

n + 1

n−1∑
v=1

vPv

pv

∆λv∆Tv−1 +
1

n + 1

n−1∑
v=1

Pv

pv

∆Tv−1λv+1

− 1

n + 1

n−1∑
v=1

(v + 1)λv+1∆Tv−1 −
nPnλn

(n + 1)pn

∆Tn−1

= tn,1 + tn,2 + tn,3 + tn,4, say.

Since

|tn,1 + tn,2 + tn,3 + tn,4|k ≤ 4k(|tn,1|k + |tn,2|k + | |tn,3|k + |t4|k),
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to complete the proof of Theorem 2.2, it is enough to show that

∞∑
n=1

nδk−1 |tn,r|k < ∞ for r = 1, 2, 3, 4.

Now, whenk > 1 applying Hölder’s inequality with indicesk andk′, where 1
k

+ 1
k′

= 1, we
have that

m+1∑
n=2

nδk−1 |tn,1|k ≤
m+1∑
n=2

nδk−1 1

nk

(
n−1∑
v=1

Pv

pv

v |∆λv| |∆Tv−1|

)k

≤
m+1∑
n=2

1

n2−δk

n−1∑
v=1

(
Pv

pv

)k

|∆λv|k vk |∆Tv−1|k
(

1

n

n−1∑
v=1

1

)k−1

≤
m+1∑
n=2

1

n2−δk

n−1∑
v=1

(
Pv

pv

)k

|∆λv|k vk |∆Tv−1|k

= O(1)
m∑

v=1

(
Pv

pv

)k

|∆λv|k vk |∆Tv−1|k
m+1∑

n=v+1

1

n2−δk

= O(1)
m∑

v=1

(
Pv

pv

)k

|∆λv|k vk |∆Tv−1|k
1

v1−δk

= O(1)
m∑

v=1

(
Pv

pv

)δk+k−1

|∆Tv−1|k

= O(1) as m →∞,

by virtue of the hypotheses of Theorem 2.2.
Again using Hölder’s inequality,

m+1∑
n=2

nδk−1 |tn,2|k ≤
m+1∑
n=2

nδk−1−k

(
n−1∑
v=1

|λv+1|
Pv

pv

|∆Tv−1|

)k

≤
m+1∑
n=2

1

n2−δk

n−1∑
v=1

(
Pv

pv

)k

|λv+1|k |∆Tv−1|k
(

1

n

n−1∑
v=1

1

)k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

|λv+1|k |∆Tv−1|k
m+1∑

n=v+1

1

n2−δk

= O(1)
m∑

v=1

(
Pv

pv

)k

|λv+1|k |∆Tv−1|k
1

v1−δk

= O(1)
m∑

v=1

(
Pv

pv

)
)δk+k−1 |∆Tv−1|k

= O(1) as m →∞,
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Also, we have that

m+1∑
n=2

nδk−1 |tn,3|k ≤
m+1∑
n=2

nδk−1−k

(
n−1∑
v=1

(v + 1) |λv+1| |∆Tv−1|

)k

= O(1)
m+1∑
n=2

nδk−1−k

(
n−1∑
v=1

v |λv+1| |∆Tv−1|

)k

= O(1)
m+1∑
n=2

1

n2−δk

n−1∑
v=1

vk |λv+1|k |∆Tv−1|k
(

1

n

n−1∑
v=1

1

)k−1

= O(1)
m+1∑
n=2

1

n2−δk

n−1∑
v=1

vk |λv+1|k |∆Tv−1|k

= O(1)
m∑

v=1

vk |λv+1|k |∆Tv−1|k
m+1∑

n=v+1

1

n2−δk

= O(1)
m∑

v=1

vδk+k−1 |∆Tv−1|k

= O(1)
m∑

v=1

(
Pv

pv

)δk+k−1

|∆Tv−1|k

= O(1) as m →∞,

by virtue of the hypotheses of Theorem 2.2.
Finally, we have that

m∑
n=1

nδk−1 |tn,4|k = O(1)
m∑

n=1

(
Pn

pn

)k

nδk−1 |λn|k |∆Tn−1|k

= O(1)
m∑

n=1

(
Pn

pn

)δk+k−1

|∆Tn−1|k

= O(1) as m →∞,

by virtue of the hypotheses of Theorem 2.2.
Therefore, we get that

m∑
n=1

nδk−1 |tn,r|k = O(1) as m →∞, for r = 1, 2, 3, 4.

This completes the proof of Theorem 2.2. �
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