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ABSTRACT. The notion the spread of a matrix was first introduced fifty years ago in algebra. In
this article, we define the spread of the shape operator by applying the same idea to submanifolds
of Riemannian manifolds. We prove that the spread of shape operator is a conformal invariant for
any submanifold in a Riemannian manifold. Then, we prove that, for a compact submanifold of

a Riemannian manifold, the spread of the shape operator is bounded above by a geometric quan-
tity proportional to the Willmore-Chen functional. For a complete non-compact submanifold,
we establish a relationship between the spread of the shape operator and the Willmore-Chen
functional. In the last section, we obtain a necessary and sufficient condition for a surface of
rotation to have finite integral of the spread of the shape operator.
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1. INTRODUCTION

In the classic matrix theoryspread of a matrixhas been defined by Mirsky inl[7] and then
mentioned in various references, as for exanigle [6].A et M,,(C),n > 3, and let\;, ..., A\,
be the characteristic roots df The spreadof A is defined to be(A) = max; ; |\; —\;|. Letus
denote byj|A|| the Euclidean norm of the matrig, i.e. [[A|]* = 7" |a;;|*. We use also the
classical notatiort’; for the sum of all 2-square principal subdeterminantd off A € M,,(C)
then we have the following inequalities (see [6]):

@) sta) < (2041P - 2jrap)

(1.2) s(A) < V2[|A]].
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If Ae M,(R), then:

2

(1.3) s(A) < {2 (1 - 1) (trA)? — ABy(A)|

n

with equality if and only ifn — 2 of the characteristic roots of are equal to the arithmetic
mean of the remaining two.
Consider now an isometrically immersed submanifdlét of dimensionn > 2 in a Rie-

mannian manifold M/"** ). Then the Gauss and Weingarten formulae are given by
VxY =VxY + h(X,Y),
Vx&=—AX + Dx¢,

for every X, Y € I'(T'M) and¢ € I'(vM). Take a vector) € v,M and consider the linear
mapping4, : T,M — T,M. Let us consider the eigenvalugg ..., A" of A,. We put

(1.4) L,(p) = slup ()\l) :ilnf n()\;)

L, is the spread of the shape operator in the directioWe definethe spread of the shape
operator at the poinp by
(1.5) L(p) = sup Ly(p).
nevp M
Supposel/ is a compact submanifold af .
Let us remark that whei/? is a surface we have

Ly(p) = (N () = A (0)* = 4(H(p)|” — K(p)),
wherev is the normal vector g, H is the mean curvature, ard is the Gaussian curvature.
In [1] it is proved that for a surfac@/? in E*** the geometric quantity|H|? — K)dV is a
conformal invariant. As a corollary, one obtains for an orientable surfaE&fihthat L2dV is
a conformal invariant.
Leté, 1, .., & be an orthonormal frame in the normal fibre bunelle. Let us recall the
definition ofthe extrinsic scalar curvaturscom [2]'

ext = n _ 1 Z Z )\n+r)\31+r'

r=1 i<j

In [2] it is proved that for a submanifold/™ of a Riemannian manifold)/, g), the geometric
quantity(| H|* — ext)g is invariant under any conformal change of metricMfis compact (see
also [2]), this result implies that fav/, an-dimensional compact submanifold of a Riemannian
manifold (M, g), the geometric quantity (| H|? — ext)dV is a conformal invariant.

Let us prove the following fact.

Proposition 1.1. Let M be a submanifold of the Riemannian manif@ld, ). Then the spread
of the shape operator is a conformal invariant.

Proof. The context and the idea of the proof are similar to the one given in [3, pp. 204-205].
Let us considep a nowhere vanishing positive function dih. We have the conformal change
of metric in the ambient space given by

g =0y
Let us denote by andh* the second fundamental forms &f in (M, g) and (M, g*), respec-
tively. Then we have (se&![3]):

9(AX,Y) = g(AeX,Y) + g(X, Y)g(U, §),
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whereU is the vector field defined by = (dp)*. Letey,..., e, be the principal normal
directions of A; with respect tog. Thenp~'ey, ..., p 'e,, form an orthonormal frame ai/
with respect tgy*, and they are the principal directions 4f. Therefore

L*(p) = sup L.
£ evp Mi[|€*||«=1

— sup ( sup (Ag)" — ilnf (/\é)*)

gr vy M;||€%]|w=1 \i=1,..,n j=1,m

= sup [ sup ()\2 + (U, f)) — inf . (/\é +9(U, 5))}

gev,Mi|l¢l|=1 Li=1,..,n J=1,.,

— {sup (Ag)_,mfn(Ag)}:L(p).

cevpM;|le]|=1 Li=1,..n =1L,

This proves the proposition. O

When ) is a surface, botl, and L2dV are conformal invariants.

Theshape discriminantf the submanifold/ in A w.r.t. a normal directiom was discussed
in [9]. Let A, be the shape operator associated with an arbitrary normal veater The shape
discriminant ofn is defined by

2
(1.6) D, = 2||A,|)* — ﬁ(trace A,)?,

where||4,|]> = (A})? +--- + (A)?, at every poinp € M C M.
The following pointwise double inequality was proved|in [9]:

(L.7) D, / (Z) <I12<D,

We will use this inequality later on. The proof of this fact is algebraically related to the proof of
Chen’s fundamental inequality with classical curvature invariants (see [4]). The alternate proof
of this result is presented in [10].

2. GEOMETRIC INEQUALITIES ON COMPACT SUBMANIFOLDS

In this section, we study the relationship between the spread of the shape operator’s spectrum
and the conformal invariant fromI[2]. The main result is Proposftioh 2.1. For its proof we need
a few preliminary steps.

Proposition 2.1. Let M be a compact submanifold of a Riemannian manifdligis. Then the
following inequality holds:

2.1) (/M LdV)2 (ol (M))=2 < 2n(n — 1) (/M(|H]2 - ext)’idv> "

The equality holds if and only if either = 2 or M is a totally umbilical submanifold of
dimensiom > 3.

Before presenting the proof, let us see what this inequality means. For any conformal diffeo-
morphisme of the ambient spac#/, the quantity

(L. Ld%)z (wol($(M))

is bounded above by the conformal invariant geometric quantity expresged]in (2.1).
First, let us prove the following.
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Lemma 2.2. Let M™ C M"™** be a compact submanifold andan arbitrary point in M.
Consider an orthonormal normal frang, ..., ¢, at p and let D, be the shape discriminant
corresponding t@,, wherea = 1, ..., s. Then we have

1 S
2.2 _ D, = |H]? — )
@2) s 2 Do = AP e
Proof. Since

Ly (z e
a=1 1=
ext— — ZZ NN

a=1 i<j
we have
2 7 %
(2.3) |H|? — ext = ZZA e ZZ)\ N
a=1 i=1 a=1 i<j

A direct computation yields

2(n — 1) & .
(2.4) Dy = (” ) S0 = Z)\’ N

i=1 l<j

Summing froma = 1 to o = s in (2.4) and comparing the result with (R.3) one may get

2.2). O

From the cited result in [2] and the previous lemma, we have:

Corollary 2.3. If M is a compact submanifold in the ambient spa¢ethen
/ > Do | dav
M a=1

Let us remark that fon = 2 this is a well-known fact.

is a conformal invariant.

Lemma 2.4. Let M be a submanifold in the arbitrary ambient spaté With the previous
notations we have

A(HP — ext) < L2(p) < 2n(n — 1)(|H|* — ext)
at each poinp € M. The equalities holds if and only if p is an umbilical point.

Proof. This is a direct consequence of Lemmg 2.2 (1.7). O

Proof. We may prove now Propositign 2.1. Letbe an arbitrary point ofi/ and letn, be a
normal direction such that(p) = L,,(p). Consider the completion af, up to a orthonormal
normal base), = n, ..., ns. Then we have

(2.5) L2(p) ) < ZL2 ) < 2n(n—1)(|H|? — ext).
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By applying Holder’s inequality, one has:

(/M LdV)2 < (/M LQdV) (vol(M)).

Applying Holder’s inequality one more time yields

2

/M (|H|* — ext) dV < </M (|H|? — ext)? dv)Z (vol(M)) ™= .

Therefore, by using the inequality established in Leimp 2.4, we have

(/M chv)2 < (/M L%ﬂ/) (vol (M)

< 2n(n — 1)vol(M)/ (|H|* — ext) dV

< onto 1) ol)) 5 ([ (- ey

Let us discuss when the equality case may occur. We have seen that we get an identity if
n=2.

Now, let us assume > 3. The first inequality in[(2.}5) is equality atif there exists — 1
umbilical directions (i.e. L,(p) = 0 for s = 2,...,n). The second inequality if (3.5) is
equality if and only ifp is an umbilical point (see [9]). Finally, the two Hélder inequalities
are indeed equalities if and only if there exist real numideasid ;. satisfyingL(p) = 0 and
|H|*> — ext = p at everyp € M. The first equality conditions impose pointwigép) = 0,
which yields# = 1 = 0. This means that/ is totally umbilical. O

3. THE NONCOMPACT CASE

Let M be ann-dimensional noncompact submanifold of(an+- d)-dimensional Riemannian
manifold (M, g).

Proposition 3.1. Let M™ ¢ M"*¢ be a complete noncompact submanifold and . ., n; an
orthonormal basis of the normal bundle. Suppose fat’ M/, > 0and L, € L*(M). Then

/ (|H|? — ext)dV < oo.
M

Proof. We use the inequality (1).7). It is sufficient to prove locally the inequality:

d
|H|? — ext < ZDi
=1
This is true since, elementary, the following inequality holds:

d 2
(A&)* -+ (X0 — 2n ZAWsz [(AL)? +(Ai)2}—%{2(kz>}.

1<j

This is equivalent to

d d
n(n—1)) ()7 =202 Y AN, <2(n—1)°> (A)?—4(n—1)> AN,
i=1 i=1

1<J 1<J
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or

(n® —3n +2) {Z(A;)Q} +2(n” = 2n+2) ) AN, >0,

=1 1<J
which holds by using the hypothesis and that 2.
The inequality is thex-component of the invariant inequality we are going to prove. By
adding upd such inequalities and by considering the improper integral/oof the appropriate
functions, the conclusion follows. This is due to

/(|H|2—extdv</ ZDdV<(Z)i/MLde

by the first inequality ifn 1]7. O

In the next proposition we establish a relation betwgefl(p)]*dV and the Willmore-Chen
integral [,,(|H| — ext)dV, studied in[2].

Proposition 3.2. Let M c M"*? be a complete noncompact orientable submanifold. If
L(p) € L*(M), then [, (|H|* — ext)dV < oc.

Proof. By direct computation, we have:

(3.1) /M(|H|2—ext)d T /ZZ — X))V

a=1 i<j
2
D> et
a=1 i<j
d
=— [ L? :
o (p)dV.

Let us discuss now two examples. First, let us consitiercatenoiddefined by
fe(u,v) = (c cosu cosh E, ¢ sinu cosh E,U) .
C C
Using the classical formulas for example fram [8] one finds:

1
A =X\ = ~cosh™2-= Y
c c’

Therefore, we have

> <2 < eldt
/_L(p)dv:/_ Ecosh_Q%dv:4/_ooe§5ﬁ:47r<oo.

[e.9] o0

Let us considethe pseudospherghose profile functions are given by (see, for examgle [5]):

c(v) = ae” v

= / V1 —e2t/adt
0

for 0 < v < oo. For simplicity, let us consider just the “upper” part of the pseudosphere. We
have

v/a

/\1 = ¢ V1-— €—2v/a7

a

J. Inequal. Pure and Appl. Math4(4) Art. 74, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

THE SPREAD OF THESHAPE OPERATOR ASCONFORMAL INVARIANT 7

1
Ay = — (ae”/“\/ 1— 6—2”/a> .

o0 et/a 1 [ dy
LdV:/ —dt:—/ ~ .
/M 0 aV1l—e 2/ 2/ y—1

A natural question is to find a characterization for surfaces of rotation that have finite integral
of the spread of shape operator.

Consider surfaces of revolution whose profile curves are described)as: (y(s), s) (see,
for example,[[8]). Then we have the following.

Remark that:

Proposition 3.3. Let M be a surface of rotation in Euclideahspace defined by

F(s,) = (y(s) cost, y(s) sint, ).

Then the integral of the spread of the shape operatofbis finite if and only if there exists
an integrableC>°(R) function f > 0 which satisfies the following second order differential
equation:

—yy" =1+ () £ f(s)y(1+ (v)?)2.

Proof. For the proof, we use the classical formulas from [5, p. 228]. We have fer k,,.c,idian,
and respectively foks = kporaiier

yll+ ()7
Then, the condition that the integral is finite means that there exists an integrable fyhction

such that
/|)\1 —)\2|ds:/f(s)ds.
R R

If we assume thaf € C°, then the equality between the function under the integral holds
everywhere and a straightforward computation yields the claimed equality. O

For example, for the catenojfis) = 0.
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