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Abstract

In this note, we review score functions properties and discuss inequalities on
the Fisher Information Matrix of a random vector subjected to linear non-invertible
transformations. We give alternate derivations of results previously published
in [6] and provide new interpretations of the cases of equality.
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1. Introduction
The Fisher information matrixJX of a random vectorX appears as a useful
theoretic tool to describe the propagation of information through systems. For
instance, it is directly involved in the derivation of the Entropy Power Inequality
(EPI), that describes the evolution of the entropy of random vectors submitted
to linear transformations. The first results about information transformation
were given in the 60’s by Blachman [1] and Stam [5]. Later, Papathanasiou
[4] derived an important series of Fisher Information Inequalities (FII) with
applications to characterization of normality. In [6], Zamir extended the FII
to the case of non-invertible linear systems. However, the proofs given in his
paper, completed in the technical report [7], involve complicated derivations,
especially for the characterization of the cases of equality.

The main contributions of this note are threefold. First, we review some
properties of score functions and characterize the estimation of a score function
under linear constraint. Second, we give two alternate derivations of Zamir’s FII
inequalities and show how they can be related to Papathanasiou’s results. Third,
we examine the cases of equality and give an interpretation that highlights the
concept of extractable component of the input vector of a linear system, and its
relationship with the concepts of pseudoinverse and gaussianity.
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2. Notations and Definitions
In this note, we consider a linear system with a (n× 1) random vector inputX
and a (m× 1) random vector outputY , represented by am× n matrixA, with
m ≤ n as

Y = AX.

Matrix A is assumed to have full row rank (rankA = m).
Let fX andfY denote the probability densities ofX andY . The probability

densityfX is supposed to satisfy the three regularity conditions (cf. [4])

1. fX(x) is continuous and has continuous first and second order partial deriva-
tives,

2. fX(x) is defined onRn andlim||x||→∞ fX(x) = 0,

3. the Fisher information matrixJX (with respect to a translation parameter)
is defined as

[JX ]i,j =

∫
Rn

[
∂ ln fX(x)

∂xi

∂ ln fX(x)

∂xj

]
fX(x)dx,

and is supposed nonsingular.

We also define the score functionsφX(·) : Rn → Rn associated withfX

according to:

φX(x) =
∂ ln fX(x)

∂x
.
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The statistical expectation operatorEX is

EX [h(X)] =

∫
Rn

h(x)fX(x)dx.

EX,Y andEX|Y will denote the mutual and conditional expectations, computed
with the mutual and conditional probability density functionsfX,Y andfX|Y
respectively.

The covariance matrix of a random vectorg(X) is defined by

cov[g(X)] = EX

[
(g(X)− EX [g(X)])(g(X)− EX [g(X)])T

]
.

The gradient operator∇X is defined by

∇Xh(X) =

[
∂h(X)

∂x1

, . . . ,
∂h(X)

∂xn

]T

.

Finally, in what follows, a matrix inequality such asA ≥ B means that
matrix (A−B) is nonnegative definite.
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3. Preliminary Results
We derive here a first theorem that extends Lemma 1 of [7]. The problem ad-

dressed is to find an estimator̂φX (X) of the score functionφX (X) in terms
of the observationsY = AX. Obviously, this estimator depends ofY , but this
dependence is omitted here for notational convenience.

Theorem 3.1. Under the hypotheses expressed in Section2, the solution to the
minimum mean square estimation problem

(3.1) φ̂X (X) = arg min
w

EX,Y

[
||φX (X)− w(Y )||2

]
subject toY = AX,

is

(3.2) φ̂X (X) = AT φY (Y ) .

The proof we propose here relies on elementary algebraic manipulations ac-
cording to the rules expressed in the following lemma.

Lemma 3.2. If X and Y are two random vectors such thatY = AX, where
A is a full row-rank matrix then for any smooth functionsg1 : Rm → R, g2 :
Rn → R, h1 : Rn → Rn, h2 : Rm → Rm,

Rule 0 EX [g1 (AX)] = EY [g1 (Y )]

Rule 1 EX [φX (X) g2 (X)] = −EX [∇Xg2 (X)]

Rule 2 EX

[
φX (X) hT

1 (X)
]

= −EX

[
∇XhT

1 (X)
]
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Rule 3 ∇XhT
2 (AX) = AT∇Y hT

2 (Y )

Rule 4 EX

[
∇XφT

Y (Y )
]

= −AT JY .

Proof. Rule 0 is proved in [2, vol. 2, p.133]. Rule 1 and Rule 2 are easily
proved using integration by parts. ForRule 3, denote byhk thekth component
of vectorh = h2, and remark that

∂
∂xj

hk (AX) =
m∑

i=1

∂hk(AX)
∂yi

∂yi

∂xj

=
m∑

i=1

Aij [∇Y hk (Y )]i

=
[
AT∇Y hk (Y )

]
j
.

Now hT (Y ) =
[
hT

1 (Y ) , . . . , hT
n (Y )

]
so that

∇XhT (Y ) =
[
∇XhT

1 (AX) , . . . ,∇XhT
n (AX)

]
= AT∇Y hT (Y ) .

Rule 4can be deduced as follows:

EX

[
∇XφT

Y (Y )
]

Rule 3
= AT EX

[
∇Y φT

Y (Y )
]

Rule 0
= AT EY

[
∇Y φT

Y (Y )
]

Rule 2
= −AT EY

[
φY (Y ) φY (Y )T

]
.
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For the proof of Theorem3.1, we will also need the following orthogonality
result.

Lemma 3.3.For all multivariate functionsh : Rm → Rn, φ̂X (X) = AT φY (Y )
satisfies

(3.3) EX,Y

(
φX (X)− φ̂X (X)

)T

h (Y ) = 0.

Proof. Expand into two terms and compute first term using the trace operator
tr(·)

EX,Y

[
φX (X)T h (Y )

]
= tr EX,Y

[
φX (X) hT (Y )

]
Rule 2, Rule 0

= −tr EY

[
∇XhT (Y )

]
Rule 3
= −tr AT EY

[
∇Y hT (Y )

]
.

Second term writes

EX,Y

[
φ̂X (X)

T

h (Y )

]
= tr EX,Y

[
φ̂X (X)hT (Y )

]
= tr EY

[
AT φY (Y ) hT (Y )

]
= tr AT EY

[
φY (Y ) hT (Y )

]
Rule 2
= −tr AT EY

[
∇Y hT (Y )

]
thus the terms are equal.

Using Lemma3.2and Lemma3.3we are now in a position to prove Theorem
3.1.
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Proof of Theorem3.1. From Lemma3.3, we have

EX,Y

[(
φX(X)− φ̂X(X)

)
h(Y )

]
= EX,Y

[(
φX(X)− AT φY (Y )

)
h(Y )

]
= EY

[
EX|Y

[(
φX(X)− AT φY (Y )

)
h(Y )

]]
= 0.

Since this is true for allh, it means the inner expectation is null, so that

EX|Y [φX(X)] = AT φY (Y ) .

Hence, we deduce that the estimator̂φX(X) = AT φY (Y ) is nothing else but
the conditional expectation ofφX(X) givenY . Since it is well known (see [8]
for instance) that the conditional expectation is the solution of the Minimum
Mean Square Error (MMSE) estimation problem addressed in Theorem3.1, the
result follows.

Theorem3.1not only restates Zamir’s result in terms of an estimation prob-
lem, but also extends its conditions of application since our proof does not re-
quire, as in [7], the independence of the components ofX.
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4. Fisher Information Matrix Inequalities
As was shown by Zamir [6], the result of Theorem3.1 may be used to derive
the pair of Fisher Information Inequalities stated in the following theorem:

Theorem 4.1.Under the assumptions of Theorem3.1,

(4.1) JX ≥ AT JY A

and

(4.2) JY ≤
(
AJ−1

X AT
)−1

.

We exhibit here an extension and two alternate proofs of these results, that
do not even rely on Theorem3.1. The first proof relies on a classical matrix in-
equality combined with the algebraic properties of score functions as expressed
by Rule 1to Rule 4. The second (partial) proof is deduced as a particular case
of results expressed by Papathanasiou [4].

The first proof we propose is based on the well-known result expressed in
the following lemma.

Lemma 4.2. If U =
[

A
C

B
D

]
is a block symmetric non-negative matrix such that

D−1 exists, then
A−BD−1C ≥ 0,

with equality if and only ifrank(U) = dim(D).

Proof. Consider the blockL∆M factorization [3] of matrix U :

U =

[
I BD−1

0 I

]
︸ ︷︷ ︸

L

[
A−BD−1C 0

0 D

]
︸ ︷︷ ︸

∆

[
I 0

D−1C I

]
︸ ︷︷ ︸

MT

.
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We remark that the symmetry ofU implies thatL = M and thus

∆ = L−1UL−T

so that∆ is a symmetric nonnegative definite matrix. Hence, all its principal
minors are non-negative, and

A−BD−1C ≥ 0.

Using this matrix inequality, we can complete the proof of Theorem4.1 by
considering the two following(m + n)× (m + n) matrices

U1 = E

[
φX (X)
φY (Y )

] [
φT

X (X) φT
Y (Y )

]
,

U2 = E

[
φY (Y )
φX (X)

] [
φT

Y (Y ) φT
X (X)

]
.

For matrixU1, we have, from Lemma4.2

(4.3) EX

[
φX (X) φT

X (X)
]
≥ EX,Y

[
φX (X) φT

Y (Y )
]

×
(
EY

[
φY (Y ) φT

Y (Y )
])−1

EX,Y

[
φY (Y ) φT

X (X)
]
.

Then, using the rules of Lemma3.2, we can recognize that

EX

[
φX (X) φT

X (X)
]

= JX ,

EY

[
φY (Y ) φT

Y (Y )
]

= JY ,

EX,Y

[
φX (X) φT

Y (Y )
]

= −EY

[
∇φT

Y (Y )
]

= AT JY ,

EX,Y

[
φY (Y ) φT

X (X)
]

=
(
AT JY

)T
= JY A.
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Replacing these expressions in inequality (4.3), we deduce the first inequality
(4.1).

Applying the result of Lemma4.2to matrixU2 yields similarly

JY ≥ JT
Y AJ−1

X AT JY .

Multiplying both on left and right byJ−1
Y =

(
J−1

Y

)T
yields inequality (4.2).

Another proof of inequality (4.2) is now exhibited, as a consequence of a
general result derived by Papathanasiou [4]. This result states as follows.

Theorem 4.3. (Papathanasiou [4]) If g(X) is a functionRn → Rm such that,
∀i ∈ [1, m], gi(x) is differentiable andvar[gi(X)] ≤ ∞, the covariance matrix
cov[g(X)] of g(X) verifies:

cov[g(X)] ≥ EX

[
∇T g(X)

]
J−1

X EX [∇g(X)] .

Now, inequality (4.2) simply results from the choiceg(X) = φY (AX), since
in this casecov[g(X)] = JY andEX

[
∇T g(X)

]
= −JY A. Note that Papathana-

siou’s theorem does not allow us to retrieve inequality (4.1).
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5. Case of Equality in Matrix FII
We now explicit the cases of equality in both inequalities (4.1) and (4.2). Case
of equality in inequality (4.2) was already characterized in [7] and introduces
the notion of ‘extractable components’ of vectorX. Our alternate proof also
makes use of this notion and establishes a link with the pseudoinverse of matrix
A.

Case of equality in inequality (4.1)

The case of equality in inequality (4.1) is characterized by the following theo-
rem.

Theorem 5.1. Suppose that componentsXi of X are mutually independent.
Then equality holds in (4.1) if and only if matrixA possesses(n − m) null
columns or, equivalently, ifA writes, up to a permutation of its column vectors

A = [A0 | 0m×(n−m)],

whereA0 is am×m non-singular matrix.

Proof. According to the first proof of Theorem4.1 and the case of equality in
Lemma4.2, equality holds in (4.1) if there exists a non-random matrixB and a
non-random vectorc such that

φX (X) = BφY (Y ) + c.

However, as random variablesφX (X) andφY (Y ) have zero-mean,EX [φ(X)] =
0,
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EY [φ(Y )] = 0, then necessarilyc = 0. Moreover, applyingRule 2andRule 4
yields

EX,Y

[
φX (X) φY (Y )T

]
= AT JY

on one side, and
EX,Y

[
φX (X) φY (Y )T

]
= BJY

on the other side, so that finallyB = AT and

φX (X) = AT φY (Y ) .

Now, sinceA has rankm, it can be written, up to a permutation of its columns,
under the form

A = [A0 |A0M ] ,

whereA0 is an invertiblem × m matrix, andM is anm × (n−m) matrix.
SupposeM 6= 0 and express equivalentlyX as

X =

[
X0

X1

]
}m
}n−m

so that

Y = AX

= A0X0 + A0MX1

= A0X̃,
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with X̃ = X0 + MX1. SinceA0 is square and invertible, it follows that

φY (Y ) = A−T
0 φX̃

(
X̃

)
so that

φX = AT φY (Y )

= AT A−T
0 φX̃

(
X̃

)
=

[
AT

0

MT AT
0

]
A−T

0 φX̃

(
X̃

)
=

[
I

MT

]
φX̃

(
X̃

)
=

 φX̃

(
X̃

)
MT φX̃

(
X̃

)  .

As X has independent components,φX can be decomposed as

φX =

[
φX0 (X0)
φX1 (X1)

]
so that finally [

φX0 (X0)
φX1 (X1)

]
=

 φX̃

(
X̃

)
MT φX̃

(
X̃

)  ,
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from which we deduce that

φX1 (X1) = MT φX0 (X0) .

As X0 andX1 are independent, this is not possible unlessM = 0, which is the
equality condition expressed in Theorem5.1.

Reciprocally, if these conditions are met, then obviously, equality is reached
in inequality (4.1).

Case of equality in inequality (4.2)

Assuming that components ofX are mutually independent, the case of equality
in inequality (4.2) is characterized as follows:

Theorem 5.2. Equality holds in inequality (4.2) if and only if each component
Xi of X verifies at least one of the following conditions

a) Xi is Gaussian,

b) Xi can be recovered from the observation ofY = AX, i.e. Xi is ‘ex-
tractable’,

c) Xi corresponds to a null column ofA.

Proof. According to the (first) proof of inequality (4.2), equality holds, as pre-
viously, if and only if there exists a matrixC such that

(5.1) φY (Y ) = CφX(X),
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which implies thatJY = CJXCt. Then, as by assumptionJ−1
Y = AJ−1

X At,
C = JY AJ−1

X is such a matrix. Denoting̃φX(X) = J−1
X φX(X) andφ̃Y (Y ) =

J−1
Y φY (Y ), equality (5.1) writes

(5.2) φ̃Y (Y ) = Aφ̃X(X).

The rest of the proof relies on the following two well-known results:

• if X is Gaussian then equality holds in inequality (4.2),

• if A is a non singular square matrix, equality holds in inequality (4.2)
irrespectively ofX.

We thus need to isolate the ‘invertible part’ of matrixA. In this aim, we
consider the pseudoinverseA# of A and form the productA#A. This matrix
writes, up to a permutation of rows and columns

A#A =

 I 0 0
0 M 0
0 0 0

 ,

whereI is theni × ni identity, M is a nni × nni matrix and0 is a nz × nz

matrix withnz = n− ni − nni (i stands for invertible,ni for not invertible and
z for zero). Remark thatnz is exactly the number of null columns ofA. Fol-
lowing [6, 7], ni is the number of ‘extractable’ components, that is the number
of components ofX that can be deduced from the observationY = AX. We
provide here an alternate characterization ofni as follows: the set of solutions
of Y = AX is an affine set

X = A#Y + (I − A#A)Z = X0 + (I − A#A)Z,
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whereX0 is the minimum norm solution of the linear systemY = AX andZ is
any vector. Thus,ni is exactly the number of components shared byX andX0.

The expression ofA#A allows us to expressRn as the direct sumRn =

Ri ⊕ Rni ⊕ Rz, and to express accordinglyX asX =
[
XT

i , XT
ni, X

T
z

]T
. Then

equality in inequality (4.2) can be studied separately in the three subspaces as
follows:

1. restricted to subspaceRi, A is an invertible operator, and thus equality
holds without condition,

2. restricted to subspaceRni, equality (5.2) writes Mφ̃(Xni) = φ̃(MXni)
that means that necessarily all components ofXni are gaussian,

3. restricted to subspaceRz, equality holds without condition.

As a final note, remark that, althoughA is supposed full rank,ni ≤ rankA.
For instance, consider matrix

A =

[
1 0 0
0 1 1

]
for which ni = 1 andnni = 2. This example shows that the notion of ‘ex-
tractability’ should not be confused with the invertibility restricted to a sub-
space.A is clearly invertible in the subspacex3 = 0. However, such a subspace
is irrelevant here since, as we deal with continuous random input vectors,X has
a null probability to belong to this subspace.
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