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Abstract

In this note, we review score functions properties and discuss inequalities on
the Fisher Information Matrix of a random vector subjected to linear non-invertible
transformations. We give alternate derivations of results previously published
in [6] and provide new interpretations of the cases of equality.
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The Fisher information matrix¥y of a random vectorX appears as a useful
theoretic tool to describe the propagation of information through systems. For
instance, itis directly involved in the derivation of the Entropy Power Inequality
(EPI), that describes the evolution of the entropy of random vectors submitted
to linear transformations. The first results about information transformation
were given in the 60’s by Blachmari][and Stam {]. Later, Papathanasiou

[4] derived an important series of Fisher Information Inequalities (FIl) with
applications to characterization of normality. Id],[ Zamir extended the FlI

to the case of non-invertible linear systems. However, the proofs given in his
paper, completed in the technical repot, [involve complicated derivations,
especially for the characterization of the cases of equality.

The main contributions of this note are threefold. First, we review some
properties of score functions and characterize the estimation of a score function
under linear constraint. Second, we give two alternate derivations of Zamir’s FlI
inequalities and show how they can be related to Papathanasiou’s results. Third,
we examine the cases of equality and give an interpretation that highlights the
concept of extractable component of the input vector of a linear system, and its
relationship with the concepts of pseudoinverse and gaussianity.
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In this note, we consider a linear system wittax 1) random vector inpuk’
and a {n x 1) random vector output’, represented by a x n matrix A, with
m < nas

Y = AX.

Matrix A is assumed to have full row rank (ragk= m).
Let fx and fy denote the probability densities &f andY". The probability
density fx is supposed to satisfy the three regularity conditions (dJ. [ On Fisher Information

Inequalities and Score
Functions in Non-invertible

1. fx(x)is continuous and has continuous first and second order partial deriva- Linear Systems
tives, _
C. Vignat and J.-F. Bercher
2. fx(z) is defined orR™ andlim) |y fx(x) = 0,
3. the Fisher information matriXy (with respect to a translation parameter) Title Page
is defined as Contents
Oln fx(x)dln fx(x
n T X < >
and is supposed nonsingular. Go Back
We also define the score functions (1) : R — R™ associated withy Close
according to: Quit
8111 fx(llf)
¢x(r) = T or Page 4 of 20
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The statistical expectation operatoy is

By [h(X)] = / () (o).

Exy andExy will denote the mutual and conditional expectations, computed

with the mutual and conditional probability density functiofisy and fx/y
respectively.
The covariance matrix of a random vectgrX ) is defined by

cov[g(X)] = Ex [(9(X) = Ex [g(X)])(9(X) — Ex [9(X)])"] .
The gradient operatdv y is defined by

_ [9n(X)

oxy 7 Oz,

Ve h(X) onX)]"

Finally, in what follows, a matrix inequality such a6 > B means that
matrix (A — B) is nonnegative definite.
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We derive here a first theorem that extends Lemma XJofThe problem ad-

dressed is to find an estimatok (X) of the score functiopy (X) in terms
of the observation¥” = AX. Obviously, this estimator depends¥f but this
dependence is omitted here for notational convenience.

Theorem 3.1. Under the hypotheses expressed in Se@jdhe solution to the
minimum mean square estimation problem

On Fisher Information

— . 9 . Inequalities and Score
(3.1) ¢X (X) = arg min EX,Y “ ’gﬁx (X) — w(Y)H ] SUbJECt toY = AX, Functions in Non-invertible
w Linear Systems
is C. Vignat and J.-F. Bercher
(3.2) ox (X) = Aoy (V). .
Title Page
The proof we propose here relies on elementary algebraic manipulations ac- Contents
cording to the rules expressed in the following lemma. « "
Lemma 3.2. If X andY are two random vectors such that = AX, where < >
A is a full row-rank matrix then for any smooth functiogis: R™ — R, g5 :
R*" - R, h; : R®" - R", hy : R™ — R™, Go Back
Rule O Ex [91 (AX)] = Ey [91 (Y)] Close
Quit
Rule 1 Ex [0x (X) g2 (X)] = —=Ex [Vxg2 (X)] Page 6 of 20
Rule 2 Ex [ox (X) b (X)] = ~Ex [Vxh] (X)) e — T
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Rule 3 Vxhl (AX) = ATVyhL (V)

Rule 4 Ex [Vxoy (V)] = —-A"Jy.
Proof. Rule Ois proved in P, vol. 2, p.133]. Rule 1andRule 2 are easily

C

proved using integration by parts. Faule 3 denote byh,, the k" component
of vectorh = h,, and remark that

m

hi (AX) =) S fu
=1
= Ay [Vyhe (V)
=1
= [ATVy R (V)]

Now h™ (V) = [h{ (Y),...,hI (V)] so that
Vxh" (Y) = [Vxhi (AX),...,Vxh! (AX)] = ATVyR" (Y).
Rule 4can be deduced as follows:
Ex [Vxoy (V)]
RS ATE [Vy ol (V)]
REOATEy [Vy ol (V)]
"EE_ATEy gy (V) oy (V)]
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For the proof of Theorerf.1, we will also need the following orthogonality
result.

Lemma 3.3. For all multivariate functions: : R — R”", qﬁ?(?) = AT¢y (V)
satisfies

(3.3) Bxy (6x (X) — dx (X)) h(V) =0

Proof. Expand into two terms and compute first term using the trace operator

tr(-)
Exy [¢X (X)) h (Y)} — trExy [ox (X) 1T (V)]
Rule 2:Rule 0 i EY [Vth (Y)]
—tr A"Ey [Vyh" (Y)].

Rule 3

Second term writes

— T

Exy [qu (X) h(Y)} — trEyy [qu ]

=trEy [AT¢y (V)BT (Y)
= tr ATEy [¢y (Y)R" (V)]

Rule 2

= —ir ATEY [Vyh (Y)]
thus the terms are equal. ]

Using Lemma3.2and Lemma3.3we are now in a position to prove Theorem
3.1
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Proof of Theoren3.1. From Lemma3.3, we have

Exy [(¢x(X) = 0x(X)) h(V)] = Exy [(6x(X) — AToy (¥)) h(Y)]

= Ey [Exy [(6x(X) — AT¢y (Y)) A(Y)]]
= 0.

Since this is true for alk, it means the inner expectation is null, so that

Expy [0x(X)] = AT¢y (V).
Hence, we deduce that the estima@(?) = AT¢y (V) is nothing else but
the conditional expectation afy (X ) givenY'. Since it is well known (see’]
for instance) that the conditional expectation is the solution of the Minimum
Mean Square Error (MMSE) estimation problem addressed in Thedrkitine
result follows. ]

Theorem3.1not only restates Zamir’s result in terms of an estimation prob-
lem, but also extends its conditions of application since our proof does not re-
quire, as in[], the independence of the componentsyof
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As was shown by Zamird], the result of Theoren3.1 may be used to derive
the pair of Fisher Information Inequalities stated in the following theorem:

Theorem 4.1. Under the assumptions of Theoré&ni,

(4.1) Jx > AT Jy A
and
(4.2) Jy < (AJ)ElAT)il ) On Fisher Information

Inequalities and Score
We exhibit here an extension and two alternate proofs of these results, that Functions in Non-invertible

do not even rely on Theorefl The first proof relies on a classical matrix in- Hnearsysiems
equality combined with the algebraic properties of score functions as expressed - Vignatand J-F Bercher
by Rule 1to Rule 4 The second (partial) proof is deduced as a particular case
of results expressed by Papathanasigu [

Title Page
The first proof we propose is based on the well-known result expressed in
the following lemma. Contents
Lemma 4.2.1f U = [£ 2] is a block symmetric non-negative matrix such that b dd
D~ exists, then < S
A—BD™'C >0,
. o . Go Back
with equality if and only if-ank(U) = dim(D). °=ae
Close
Proof. Consider the blocl A M factorization {] of matrix U : —
uit
I BD™! A—BD'C 0 1 0
U= 0 I 0 D Dl T | Page 10 of 20
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We remark that the symmetry 6f implies thatL = M and thus
A=L'uL™"

so thatA is a symmetric nonnegative definite matrix. Hence, all its principal
minors are non-negative, and

A—BD7'C > 0.
O

Using this matrix inequality, we can complete the proof of Theo#eirby
considering the two followingm + n) x (m + n) matrices

_p| ¢x(X) T T
n=p | 20 | Lok o),

_pl| o) 7 T
=p| 0 o) k).

For matrixU;, we have, from Lemma&.2
(4.3) Ex [¢x (X) ¢k (X)] = Exy [¢x (X) éy (V)]

x (By [oy (V)67 (V)]) " Exy [ov (V) 6% (X)] .

Then, using the rules of Lemn®a2, we can recognize that

Ex [ox (X) 6% (X)] = Jx,

Ey [¢y (Y) ¢y (
Exy [¢x (X)o7 (
Exy [y (V)¢ (X

On Fisher Information
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Replacing these expressions in inequality3), we deduce the first inequality
4.7).
Applying the result of Lemma.2to matrixUs yields similarly

Jy > JEATGAT Iy

Multiplying both on left and right by/,,' = (J;l)T yields inequality 4.2).
Another proof of inequality4.2) is now exhibited, as a consequence of a
general result derived by Papathanasigu This result states as follows.

Theorem 4.3. (Papathanasiou4]) If ¢(X) is a functionR™ — R™ such that,
Vi € [1,m], g;(x) is differentiable andar(g;(X)] < oo, the covariance matrix
cov[g(X)] of g(X) verifies:

covlg(X)] > Ex [V g(X)] Jx'Ex [Vg(X)].

Now, inequality &.2) simply results from the choicg X)) = ¢y (AX), since
inthis caseov(g(X)] = Jy andEx [V7g(X)] = —Jy A. Note that Papathana-
siou’s theorem does not allow us to retrieve inequahtyL)
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We now explicit the cases of equality in both inequalitiés)and @.2). Case
of equality in inequality 4.2) was already characterized in][and introduces
the notion of ‘extractable components’ of vectdt Our alternate proof also

makes use of this notion and establishes a link with the pseudoinverse of matrix

A.

4.1

The case of equality in inequalityt (1) is characterized by the following theo-
rem.

Theorem 5.1. Suppose that component§ of X are mutually independent.
Then equality holds in4(1) if and only if matrix A possesse§: — m) null
columns or, equivalently, ift writes, up to a permutation of its column vectors

A= [AO ’ Omx(n—m)]v
whereA, is am x m non-singular matrix.

Proof. According to the first proof of Theorerd 1 and the case of equality in
Lemma4.2, equality holds in4.1) if there exists a non-random matri and a
non-random vectar such that

ox (X)=Boy (V) +c.

However, as random variableés (X) andgy (Y') have zero-meark; x [¢(X)] =
0,
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Ey [¢(Y)] = 0, then necessarily = 0. Moreover, applyingRule 2andRule 4
yields

Exy [ox (X) oy (V)] = ATy
on one side, and
Exy [ox (X) oy (V)'] = By

on the other side, so that finally = A” and

ox (X) = ATy (V).

Now, sinceA has rankn, it can be written, up to a permutation of its columns,
under the form
A=[Ay|AM],

where A, is an invertiblem x m matrix, andM is anm x (n — m) matrix.
SupposeV/ # 0 and express equivalently as

x|,

so that
Y =AX

- A()X() + AQMXl
= A0X7
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with X = X, + M X;. SinceA, is square and invertible, it follows that

oy (V) = 4505 (X)

so that
ox = ATy (V)
= ATAST g (X)
0 ng On Fisher Information
B Ag“ r - Ine_quali‘ties anq SCOfe
- | ity | Amex (%)
[ I < C. Vignat and J.-F. Bercher
= - (X .
MT :| ¢X ( )
B D% <)~(> Title Page
MT¢4 (X) ‘ Contents
As X has independent components; can be decomposed as « dd
< >
_ | #x (Xo)
Ox = [ dx, (X1) Go Back
Close
so that finally Quit
~ ul
X (%)
[ zio EX?; ] = MT); ( ~> , Page 15 of 20
! X
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from which we deduce that

dx, (X1) = M"¢x, (Xo) .

As X, and X; are independent, this is not possible unl&ts= 0, which is the
equality condition expressed in Theorém.

Reciprocally, if these conditions are met, then obviously, equality is reached
in inequality @.1). O]

4.2

Assuming that components af are mutually independent, the case of equality
in inequality @.2) is characterized as follows:

Theorem 5.2. Equality holds in inequality4.2) if and only if each component
X; of X verifies at least one of the following conditions

a) X; is Gaussian,

b) X; can be recovered from the observationYof= AX, i.e. X, is ‘ex-
tractable’,

c) X, corresponds to a null column of.

Proof. According to the (first) proof of inequality}(2), equality holds, as pre-
viously, if and only if there exists a matrix such that

(5.1) ¢y (V) = Cox(X),

On Fisher Information
Inequalities and Score
Functions in Non-invertible
Linear Systems

C. Vignat and J.-F. Bercher

Title Page
Contents
44 44
| | 2
Go Back
Close
Quit
Page 16 of 20

J. Ineq. Pure and Appl. Math. 4(4) Art. 71, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:vignat@univ-mlv.fr
mailto:
mailto:jf.bercher@esiee.fr
http://jipam.vu.edu.au/

which implies that/y = CJxC". Then, as by assumptiof,' = AJy' AL,
C = JyAJx' is such a matrix. Denotingx (X) = Jx'¢x(X) andgy (Y) =
Jy oy (Y), equality 6.1) writes

(5.2) <Z~5Y(Y) = A&X(X)'
The rest of the proof relies on the following two well-known results:
e if X is Gaussian then equality holds in inequalityd),

e if A is a non singular square matrix, equality holds in inequakty)(
irrespectively ofX.

We thus need to isolate the ‘invertible part’ of matrix In this aim, we
consider the pseudoinversg” of A and form the producti# A. This matrix
writes, up to a permutation of rows and columns

I 0 0
ATA=|0 M
0 0

o o

where! is then; x n; identity, M is an,; x n,; matrix and0 is an, x n,
matrix withn, = n — n; — n,; (2 stands for invertiblep; for not invertible and
z for zero). Remark that, is exactly the number of null columns af. Fol-

lowing [6, 7], n; is the number of ‘extractable’ components, that is the number

of components ofX that can be deduced from the observation= AX. We

provide here an alternate characterizatiompés follows: the set of solutions

of Y = AX is an affine set

X = A*Y + (I - A*A)Z = Xo + (I — A*A)Z,
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whereXj is the minimum norm solution of the linear systém= AX andZ is
any vector. Thusy; is exactly the number of components sharedsbgnd X,

The expression ofi” A allows us to expresR” as the direct sunR” =
R’ ® R™ @ R*, and to express accordingly asX = [X], XTI, XZT}T. Then
equality in inequality 4.2) can be studied separately in the three subspaces as
follows:

1. restricted to subspadg’, A is an invertible operator, and thus equality
holds without condition,

2. restricted to subspad®™, equality 6.2) writes M(X,;) = o(MX,:)
that means that necessarily all componentX gfare gaussian,

3. restricted to subspad®®, equality holds without condition.

]

As a final note, remark that, althoughis supposed full ranky; < rankA.
For instance, consider matrix

100
A:{011}

for whichn; = 1 andn,; = 2. This example shows that the notion of ‘ex-
tractability’ should not be confused with the invertibility restricted to a sub-
space A is clearly invertible in the subspaeg = 0. However, such a subspace
is irrelevant here since, as we deal with continuous random input vegidras

a null probability to belong to this subspace.
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