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Abstract

The paper studies the weighted weak type inequalities for the Hardy operator
as an operator from weighted L? to weighted weak L? in the case p = 1. It
considers two different versions of the Hardy operator and characterizes their
weighted weak type inequalities when p = 1. It proves that for the classical
Hardy operator, the weak type inequality is generally weaker when ¢ < p = 1.
The best constant in the inequality is also estimated. Weighted Weak Type

Inequalities For The Hardy
Operator When p =1
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The classical Hardy operatdr is the integral operatof f(x) = ff ft)dte,
where the lower limitc in the integral is generally taken to be 0 -ero, de-
pending on the underlying space considered. 4ln Hardy first studied this
operator fromZ? to the weighted.” _, whenp > 1. The boundedness of this
operator fromL? to L¢ for general weights:, v and different pairs of indices
p andg was considered inl[], [Z], [11] and [L6]. The boundedness dfis
expressed by the strong type inequality

Weighted Weak Type
1 1 Inequalities For The Hardy
q P Operator When p =1
([ o) <o ( [ o)’ 720
Tieling Chen
which is also called the weighted norm inequality when > 1. Whenp < 1,
the integral on the right hand side is no longer a norm, and the inequality is of Title Page
little interest. Like other integral operators, the weighted strong type inequality Contents
for I always implies the weighted weak type inequality
<44 >
i C >
([ ) <S([soruwan)” 12050 |
(eI f(x)>N} A ——
It is known that when < p < ¢ < oo, both the weighted strong type and Close
weak type inequalities for the classical Hardy operator impose the same condi- Quit

tion on the weights: andv. That is, for givernu andv, either both inequalities
hold or both fail. We say that the weighted strong type and weak type inequali- Page 3 of 16

ties are equivalent. However, wher< p andl < p < oo, the equivalence does

not hold in general. Characteristics of weighted weak type inequalities for the 3 ineq. Pure and Appl. Math. 4(4) Art. 81, 2003
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Hardy operator and modified Hardy operators were studied]jf ], [5], [ 7],
[9], [100, [15], and [L4]. This paper looks at the Hardy Operator and considers
the weighted weak type inequalities in the special gasel.

The casep = 1 is subtle, because in this case we need to consider two
different operators. Ip # 1, considering inequalities fof from L? to L¢ is
readily reduced to considering them for the operator

zumz/?mmwt

from L to LY, wherew = u'~* with 1 + L = 1.

However, wherp = 1, the inequalities for do not reduce to those for the
operator/,,, so we need to deal with them separately. In Secfipa more
general operator thah, is considered. Instead of considerifg we consider
the operator ,,

(L.1) Lie) = [ fodut),
wherey is theo-finite measure of the underlying space.

In Theorem2.2, we show that the weighted weak type and strong type in-
equalities for/,, are still equivalent. In Theore.4, the weak type inequality
for I, whenp = 1 and0 < ¢ < oo, is considered. We will see that when
0 < g < 1 = p, the weighted weak type inequality is weaker in general.

Throughout the pape# is an arbitrary positive number, acting in the weak
type inequalities. The conventions @f co = 0,0/0 = 0, andoo/oco = 0 are
used.
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First let us consider the operatfy defined in (.1), with ¢ = —oo for conve-
nience. The strong type inequalities forwhenp = 1 was studied in5], and
we state the result in the following proposition.

Proposition 2.1. Suppose) < ¢ < oo, andyu, v are o-finite measures ofR.
The strong type inequality

ev ([ nsera) <c [ i sz

holds if and only if

(2.2) /du<oo, WhereE:{xeR:/ du>0}.
E —00
In the next theorem, we show that conditighd) is also necessary and suf-
ficient for the weak type inequality, in other words, the strong type and weak
type inequalities fol,, are equivalent whep = 1.

Theorem 2.2. Supposé < ¢ < oo, andu, v are o-finite measures oR. Then
the weak type inequality

Q=

<

> Q

23) (s 1uf (@) > ) < Sl S 20,

and the strong type inequality (1) are equivalent.
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Proof. Because the strong type inequality of an operator always implies the
weak type inequality, we only need to prov&?) is also necessary for the weak
type inequality 2.3).

Sinceffc>o du is a non-decreasing function, the getis an interval of the
form E = (z,00) or E = [z, 00). Supposé’ # (), otherwise the proof is trivial.

If 2 # —oo, then we firstly suppose thatis an atom foru. Setf(t) =
(1/p{z})x1:3(t). Sincez € (—oo,z] for everyx € E we havel, f(z) = 1.
Thus

1 1 1 Weighted Weak Type
a a Inequalities For The Hardy
(/ dV) < ({{E : ]uf<x) > 5}) Operator When p =1
E
S 20||f||L}i =20 < 0. Tieling Chen
m
ndl is n n m foru. If we | n
Secondly, suppose is not an atom foru elete > 0, and f(¢) Title Page

[1/1(2, 2 + €)]X(2,24¢(t), then for everyr € [z + €, 00), we havel, f(z) = 1
and hence Contents

([ ({ror- 3})

Go Back
1
Ase — 0%, we have( [, dv)" < oo, and @.2) holds. Close
If £ = (—o00,00), then we do the same discussion as above on the interval Quit
[z,00) and then let — —oo, and this completes the proof of Theor@m. [ Page 6 of 16

Now let us consider the weighted weak type inequality for the classical
Hardy operator (with ¢ = 0 for convenience). We make use of some of the 3 ineq. Pure and Appl. Math. 4(4) Art. 81, 2003
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techniques in]7]. Notice that in Theoren?.2, the conclusion fot,, is inde-
pendent of the relation between the indigeandp = 1. The operator is a
little bit more subtle. It does matter whethgk 1 org > 1.

Definition 2.1. For a non-negative function, defineu by

ule) = geiaf )

It is easy to see that is non-increasing and < u almost everywhere.

Lemma 2.3. Suppose thal < ¢ < oo and thatk(x, t) is a non-negative kernel
which is non-increasing it for eachx. Suppose: and v are non-negative
functions. The best constant in the weighted weak type inequality

(v{x:/Ook(x,t)f(t)dt>)\})qgg/oofu for f >0,
0 0

is unchanged when is replaced byu.

Proof. Let C' be the best constant in the above inequality and’lee the best
constant in the above inequality withreplaced byu. Sinceu < wu almost
everywhere(”' < C. To prove the reverse inequality it is enough to show that

(2.4) (v {x : /:O k(z,t)f(t)dt > /\}); < %/m fu

for all non-negativef € L'(z, ), wherez = inf{z > 0 : u(z) < oo}. The
proof of Theorem 3.2 in17] shows that for every non-negatiyec L'(z, o)
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and anye > 0, there exists arf. such that

/;Ofeuﬁfxoofw%/;f,

and - -
/ k(x,t)f(t)dt < liminf, g+ / k(x,t)f.(t)dt.
If lim infe_o- I k(a, t) f(t)dt > A, then [ k(x,t) fo(t)dt > X for all suffi- Weighted Weak Type
ciently smalle > 0. Thus, for allz > x and all\ > 0, Inequalities For The Hardy
Operator When p =1
X{a::lim inf__  + [;O k(z,t)fe(t)dt>)\} (.CE) < lim infs—»OﬂL X{x[; k(z,t)fe(t)dt>)\} ($) Tieling Chen
We use these estimates to obtain :
Title Page
v {x : / k(x,t)f(t)dt > /\} Contents
: - «“« S8
<w {x s lim inf€_>0+/ k(x,t)f(t)dt > )\} < >
> Go Back
= X { z:lim inf 00 L (2,) fe(£)dE>A (@)v(z)dz
/000 { ot fa” He T } Close
< /O lim infe%*X{x:ff k(x,t)fé(t)dt>)\}(x)v('r>d'r Quit
Page 8 of 16
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0 Yz

J. Ineq. Pure and Appl. Math. 4(4) Art. 81, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:tielingc@usca.edu
http://jipam.vu.edu.au/

= liminf._y+v {x :

k() f.()dt > )\}

< liminf,_ o+ CI\"1? ( )

q
fu + 26 f)

< CIN Niminf,_ o+

— cny </:ofu> |

which gives £.4) and completes the proof. ]

Theorem 2.4. Supposd) < ¢ < oo, andu,v are non-negative functions on
R. Then the weak type inequality for the classical Hardy operdtbiz) =

(2.5) ole s 17(0) > N)F < § [ souod
holds for f > 0 if and only if
(2.6) iglgv(y, 00)i (u(y)) ™' = A < .

Moreover,C' = A is the best constant ir2(5).

Proof. Sincel f(z) = [~ X(0.x)(t)f(t)dt, the kernely ) (t) satisfies the hy-
potheses of Lemmaa By Lemma2 3, we only need to show that is the best
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constant in

2.7) (v{z: If(x) > \})7 <

sl
We first consider the cagse= fx b for someb satisfying

(2.8) /b<oo forall x > 0, and/ b= o0
T 0

Then the right hand side o2 (7) becomes
_/ (1) /Oof(t)(/oob( )dm)dt
(e

Since any non-negative, non-decreasing functias the limit of an increasing
sequence of functions of the forﬁ)z f with f > 0, it is sufficient to show that
C = Alis also the best constant in the following inequality

(2.9) v{z: F(x) > )\}5 < %/ Fb, for FF > 0, andF non-decreasing.
0

Suppose thatl < oo and F' is non-decreasing, thefx : F(x) > A} is an
interval of the form(y, co) or [y, o). Since the left end pointdoes not change
the integral, we have

vz F(z) > A}t = v(y, o0)
SAg(y):A/ bgA/ F(;)bzé/ Fo,

Q=
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which gives £.9) with the constant.
Now supposed.9) holds. Fixy > 0. For a givere > 0, let\ = 1 — ¢, and
F(x) = X(y,00) (%), then

U(y7oo)f11:v{a;:F(x)>)\}f11Sg/OOOFb: ¢ /yoob: ¢ u(y).

Lettinge — 0T, we get
1 -1
v(y,00)ruly)” < C.

In the case.(y) = 0, we use the conventidh- co = 0. Then we obtai < C,
and also get thatl is the best constant ir2 (9).

Next we consider the case of genexalWe can assume thafz) < oo for
all z, since ifu = oo on some interval0, z) then we translate to the left to
get a smaller. and reduce the problem to one in which this does not happen.
Then for eacln > 0, the functionuy ) is finite, non-increasing and tends to
0 atoo. We can approximate it from above by functions of the f(jﬁlb with b
satisfying €.9). Let{u,,} be a non-increasing sequence of such functions that
converges tauy o) pointwise almost everywhere. Let = vx (), then the
first part of the proof gives

Up, {:c : /I f(t)dt > )\}q
0
1 1

< 5 800, (3, 00) () / Fun(t)dt, >0,

y>0
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which implies
T . % 1 1 o 0
Un 9T [ Gy, > A s < < Sup (Y, 00) Uy (y) 9, 9=>0.
0 A y>0 0

The Monotone Convergence Theorem, and the fagty) ™' < w(y)~! when
y € (0,n) give

S

1
T a7 1
Un, {:c : / gu ' > A} < Xsupvn(y, o)
0

y>0

g(y)l/ g, g>0.
0
Let f = gu~'to get

x % 1 1 i o]

vpqw: [ f>Ap < —supv,(y,00)iu(y) fu
0 A y>0 0
<4 / fu, f>0.
A Jo

Letn — oo, we get £.7) with the constant” = A.
Conversely, supposé (/) holds for some constaiit. Sincev,, < v, then

C [
< — .

Q=

(vad2 = I(fx0m) (@) > A})

Note thatux o,n) < un, then we have

1 C [
(vn{x:]f(x)>)\})qu/0 fum.
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The first part of the proof gives

SUp 0 (Y, 00) 1y () ™' < C.
y>0

Then for everyy > 0,

1

U (y, 00) U (y) ' < C,

which gives

Q=

vy, 00)1u(y) ™t < C,

whenm — oo. Thus )
supv(y, 00)su(y) " < C,

y>0
which isA < C. SinceA itself is a constant such thdl.{?) holds, A is the best
constant in2.7). Theoren?.4is proved. O

Remark 2.1. Theoren?.4 characterizes the weighted weak type inequality for
the classical Hardy operator in the cage= 1. The theorem imposes no restric-
tion ong, except thay is a positive number. In fact, differeqtreveals different
information on the equivalence of the weak and strong type inequalities. Re-
call that when0 < ¢ < p = 1, the weight characterization of the strong type
inequality for! is (see [L7])

/Ooo ()@ (/Oo v) = v(z)dz < oo.

This condition is stronger than the conditio®.€) in general. For example, if
we setu(z) = z(@+*Y/7 andv(x) = 2 for somea < —1, then the condition
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(2.6) is satisfied but the above condition for the strong type inequality does not
hold.

For the casel = p < ¢ < oo, it is known that the weak and strong type
inequalities for the operatof are equivalent. This conclusion can also be
confirmed by2.4. Recall that whenl = p < ¢ < oo, the necessary and
sufficient condition of the strong type inequality fois (see [])

% \ g
sup (/ v) ||U_1X(077‘)||Loo < 00.
>0 r

It is easy to see thafu"x ||z~ coincides withu(r)~! and hence we get
(2.6).
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