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Abstract

The paper studies the weighted weak type inequalities for the Hardy operator
as an operator from weighted Lp to weighted weak Lq in the case p = 1. It
considers two different versions of the Hardy operator and characterizes their
weighted weak type inequalities when p = 1. It proves that for the classical
Hardy operator, the weak type inequality is generally weaker when q < p = 1.
The best constant in the inequality is also estimated.
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1. Introduction
The classical Hardy operatorI is the integral operatorIf(x) =

∫ x

c
f(t)dt,

where the lower limitc in the integral is generally taken to be 0 or−∞, de-
pending on the underlying space considered. In [4], Hardy first studied this
operator fromLp to the weightedLp

x−p whenp > 1. The boundedness of this
operator fromLp

u to Lq
v for general weightsu, v and different pairs of indices

p andq was considered in [12], [2], [11] and [16]. The boundedness ofI is
expressed by the strong type inequality(∫

If(x)qv(x)dx

) 1
q

≤ C

(∫
f(y)pu(y)dy

) 1
p

, f ≥ 0,

which is also called the weighted norm inequality whenp, q ≥ 1. Whenp < 1,
the integral on the right hand side is no longer a norm, and the inequality is of
little interest. Like other integral operators, the weighted strong type inequality
for I always implies the weighted weak type inequality(∫

{x:If(x)>λ}
v(x)dx

) 1
q

≤ C

λ

(∫
f(y)pu(y)dy

) 1
p

, f ≥ 0, λ > 0.

It is known that when1 ≤ p ≤ q < ∞, both the weighted strong type and
weak type inequalities for the classical Hardy operator impose the same condi-
tion on the weightsu andv. That is, for givenu andv, either both inequalities
hold or both fail. We say that the weighted strong type and weak type inequali-
ties are equivalent. However, whenq < p and1 < p < ∞, the equivalence does
not hold in general. Characteristics of weighted weak type inequalities for the

http://jipam.vu.edu.au/
mailto:tielingc@usca.edu
http://jipam.vu.edu.au/


Weighted Weak Type
Inequalities For The Hardy

Operator When p = 1

Tieling Chen

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 16

J. Ineq. Pure and Appl. Math. 4(4) Art. 81, 2003

http://jipam.vu.edu.au

Hardy operator and modified Hardy operators were studied in [1], [3], [5], [7],
[9], [10], [13], and [14]. This paper looks at the Hardy Operator and considers
the weighted weak type inequalities in the special casep = 1.

The casep = 1 is subtle, because in this case we need to consider two
different operators. Ifp 6= 1, considering inequalities forI from Lp

u to Lq
v is

readily reduced to considering them for the operator

Iwf(x) =

∫ x

c

f(t)w(t)dt

from Lp
w to Lq

v, wherew = u1−p′ with 1
p

+ 1
p′

= 1.
However, whenp = 1, the inequalities forI do not reduce to those for the

operatorIw, so we need to deal with them separately. In Section2, a more
general operator thanIw is considered. Instead of consideringIw, we consider
the operatorIµ,

(1.1) Iµf(x) =

∫ x

c

f(t)dµ(t),

whereµ is theσ-finite measure of the underlying space.
In Theorem2.2, we show that the weighted weak type and strong type in-

equalities forIµ are still equivalent. In Theorem2.4, the weak type inequality
for I, whenp = 1 and0 < q < ∞, is considered. We will see that when
0 < q < 1 = p, the weighted weak type inequality is weaker in general.

Throughout the paper,λ is an arbitrary positive number, acting in the weak
type inequalities. The conventions of0 · ∞ = 0, 0/0 = 0, and∞/∞ = 0 are
used.
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2. The Casep = 1 for the Hardy Operator
First let us consider the operatorIµ defined in (1.1), with c = −∞ for conve-
nience. The strong type inequalities forIµ whenp = 1 was studied in [15], and
we state the result in the following proposition.

Proposition 2.1. Suppose0 < q < ∞, andµ, ν are σ-finite measures onR.
The strong type inequality

(2.1)

(∫ ∞

−∞
Iµf(x)qdν

) 1
q

≤ C

∫ ∞

−∞
f(y)dµ, f ≥ 0,

holds if and only if

(2.2)
∫

E

dν < ∞, whereE =

{
x ∈ R :

∫ x

−∞
dµ > 0

}
.

In the next theorem, we show that condition (2.2) is also necessary and suf-
ficient for the weak type inequality, in other words, the strong type and weak
type inequalities forIµ are equivalent whenp = 1.

Theorem 2.2.Suppose0 < q < ∞, andµ, ν areσ-finite measures onR. Then
the weak type inequality

(2.3) (ν{x : Iµf(x) > λ})
1
q ≤ C

λ
||f ||L1

dµ
, f ≥ 0,

and the strong type inequality (2.1) are equivalent.
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Proof. Because the strong type inequality of an operator always implies the
weak type inequality, we only need to prove (2.2) is also necessary for the weak
type inequality (2.3).

Since
∫ x

−∞ dµ is a non-decreasing function, the setE is an interval of the
form E = (z,∞) or E = [z,∞). SupposeE 6= ∅, otherwise the proof is trivial.

If z 6= −∞, then we firstly suppose thatz is an atom forµ. Setf(t) =
(1/µ{z})χ{z}(t). Sincez ∈ (−∞, x] for everyx ∈ E we haveIµf(x) = 1.
Thus (∫

E

dν

) 1
q

≤
({

x : Iµf(x) >
1

2

}) 1
q

≤ 2C||f ||L1
dµ

= 2C < ∞.

Secondly, supposez is not an atom forµ. If we let ε > 0, and f(t) =
[1/µ(z, z + ε)]χ(z,z+ε)(t), then for everyx ∈ [z + ε,∞), we haveIµf(x) = 1
and hence (∫ ∞

z+ε

dν

) 1
q

≤
({

x : Iµf(x) >
1

2

}) 1
q

≤ 2C||f ||L1
dµ

= 2C < ∞.

As ε → 0+, we have
(∫

E
dν

) 1
q < ∞, and (2.2) holds.

If E = (−∞,∞), then we do the same discussion as above on the interval
[z,∞) and then letz → −∞, and this completes the proof of Theorem2.2.

Now let us consider the weighted weak type inequality for the classical
Hardy operatorI (with c = 0 for convenience). We make use of some of the
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techniques in [17]. Notice that in Theorem2.2, the conclusion forIµ is inde-
pendent of the relation between the indicesq andp = 1. The operatorI is a
little bit more subtle. It does matter whetherq < 1 or q ≥ 1.

Definition 2.1. For a non-negative functionu, defineu by

u(x) = essinf
0<t<x

u(t).

It is easy to see thatu is non-increasing andu ≤ u almost everywhere.

Lemma 2.3. Suppose that0 < q < ∞ and thatk(x, t) is a non-negative kernel
which is non-increasing int for eachx. Supposeu and v are non-negative
functions. The best constant in the weighted weak type inequality(

v

{
x :

∫ ∞

0

k(x, t)f(t)dt > λ

}) 1
q

≤ C

λ

∫ ∞

0

fu for f ≥ 0,

is unchanged whenu is replaced byu.

Proof. Let C be the best constant in the above inequality and letC be the best
constant in the above inequality withu replaced byu. Sinceu ≤ u almost
everywhere,C ≤ C. To prove the reverse inequality it is enough to show that

(2.4)

(
v

{
x :

∫ ∞

x

k(x, t)f(t)dt > λ

}) 1
q

≤ C

λ

∫ ∞

x

fu

for all non-negativef ∈ L1(x,∞), wherex = inf{x ≥ 0 : u(x) < ∞}. The
proof of Theorem 3.2 in [17] shows that for every non-negativef ∈ L1(x,∞)
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and anyε > 0, there exists anfε such that∫ ∞

x

fεu ≤
∫ ∞

x

fu + 2ε

∫ ∞

x

f,

and ∫ ∞

x

k(x, t)f(t)dt ≤ lim infε→0+

∫ ∞

x

k(x, t)fε(t)dt.

If lim infε→0+

∫∞
x

k(x, t)fε(t)dt > λ, then
∫∞

x
k(x, t)fε(t)dt > λ for all suffi-

ciently smallε > 0. Thus, for allx ≥ x and allλ > 0,

χ{x:lim infε→0+

∫∞
x k(x,t)fε(t)dt>λ}(x) ≤ lim infε→0+χ{x:

∫∞
x k(x,t)fε(t)dt>λ}(x).

We use these estimates to obtain

v

{
x :

∫ ∞

x

k(x, t)f(t)dt > λ

}
≤ v

{
x : lim infε→0+

∫ ∞

x

k(x, t)fε(t)dt > λ

}
=

∫ ∞

0

χ{x:lim infε→0+

∫∞
x k(x,t)fε(t)dt>λ}(x)v(x)dx

≤
∫ ∞

0

lim infε→0+χ{x:
∫∞

x k(x,t)fε(t)dt>λ}(x)v(x)dx

≤ lim infε→0+

∫ ∞

0

χ{x:
∫∞

x k(x,t)fε(t)dt>λ}(x)v(x)dx
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= lim infε→0+v

{
x :

∫ ∞

x

k(x, t)fε(t)dt > λ

}
≤ lim infε→0+Cqλ−q

(∫ ∞

x

fεu

)q

≤ Cqλ−qlim infε→0+

(∫ ∞

x

fu + 2ε

∫ ∞

x

f

)q

= Cqλ−q

(∫ ∞

x

fu

)q

,

which gives (2.4) and completes the proof.

Theorem 2.4. Suppose0 < q < ∞, andu, v are non-negative functions on
R. Then the weak type inequality for the classical Hardy operatorIf(x) =∫ x

0
f(t)dt,

(2.5) (v{x : If(x) > λ})
1
q ≤ C

λ

∫ ∞

0

f(t)u(t)dt,

holds forf ≥ 0 if and only if

(2.6) sup
y>0

v(y,∞)
1
q (u(y))−1 = A < ∞.

Moreover,C = A is the best constant in (2.5).

Proof. SinceIf(x) =
∫∞

0
χ(0,x)(t)f(t)dt, the kernelχ(0,x)(t) satisfies the hy-

potheses of Lemma2.3. By Lemma2.3, we only need to show thatA is the best
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constant in

(2.7) (v{x : If(x) > λ})
1
q ≤ C

λ

∫ ∞

0

fu.

We first consider the caseu =
∫∞

x
b for someb satisfying

(2.8)
∫ ∞

x

b < ∞ for all x > 0, and
∫ ∞

0

b = ∞.

Then the right hand side of (2.7) becomes

C

λ

∫ ∞

0

f(t)u(t)dt =
C

λ

∫ ∞

0

f(t)

(∫ ∞

t

b(x)dx

)
dt

=
C

λ

∫ ∞

0

(∫ x

0

f

)
b(x)dx.

Since any non-negative, non-decreasing functionF is the limit of an increasing
sequence of functions of the form

∫ x

0
f with f ≥ 0, it is sufficient to show that

C = A is also the best constant in the following inequality

(2.9) v{x : F (x) > λ}
1
q ≤ C

λ

∫ ∞

0

Fb, for F ≥ 0, andF non-decreasing.

Suppose thatA < ∞ andF is non-decreasing, then{x : F (x) > λ} is an
interval of the form(y,∞) or [y,∞). Since the left end pointy does not change
the integral, we have

v{x : F (x) > λ}
1
q = v(y,∞)

1
q

≤ Au(y) = A

∫ ∞

y

b ≤ A

∫ ∞

y

F (x)

λ
b =

A

λ

∫ ∞

y

Fb,
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which gives (2.9) with the constantA.
Now suppose (2.9) holds. Fixy > 0. For a givenε > 0, let λ = 1 − ε, and

F (x) = χ(y,∞)(x), then

v(y,∞)
1
q = v{x : F (x) > λ}

1
q ≤ C

λ

∫ ∞

0

Fb =
C

1− ε

∫ ∞

y

b =
C

1− ε
u(y).

Letting ε → 0+, we get
v(y,∞)

1
q u(y)−1 ≤ C.

In the caseu(y) = 0, we use the convention0 ·∞ = 0. Then we obtainA ≤ C,
and also get thatA is the best constant in (2.9).

Next we consider the case of generalu. We can assume thatu(x) < ∞ for
all x, since ifu = ∞ on some interval(0, x) then we translateu to the left to
get a smalleru and reduce the problem to one in which this does not happen.
Then for eachn > 0, the functionuχ(0,n) is finite, non-increasing and tends to
0 at∞. We can approximate it from above by functions of the form

∫∞
x

b with b
satisfying (2.8). Let {um} be a non-increasing sequence of such functions that
converges touχ(0,n) pointwise almost everywhere. Letvn = vχ(0,n), then the
first part of the proof gives

vn

{
x :

∫ x

0

f(t)dt > λ

} 1
q

≤ 1

λ
sup
y>0

vn(y,∞)
1
q um(y)−1

∫ ∞

0

f(t)um(t)dt, f ≥ 0,
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which implies

vn

{
x :

∫ x

0

gu−1
m > λ

} 1
q

≤ 1

λ
sup
y>0

vn(y,∞)
1
q um(y)−1

∫ ∞

0

g, g ≥ 0.

The Monotone Convergence Theorem, and the factum(y)−1 < u(y)−1 when
y ∈ (0, n) give

vn

{
x :

∫ x

0

gu−1 > λ

} 1
q

≤ 1

λ
sup
y>0

vn(y,∞)
1
q u(y)−1

∫ ∞

0

g, g ≥ 0.

Let f = gu−1 to get

vn

{
x :

∫ x

0

f > λ

} 1
q

≤ 1

λ
sup
y>0

vn(y,∞)
1
q u(y)−1

∫ ∞

0

fu

≤ A

λ

∫ ∞

0

fu, f ≥ 0.

Let n →∞, we get (2.7) with the constantC = A.
Conversely, suppose (2.7) holds for some constantC. Sincevn ≤ v, then(

vn{x : I(fχ(0,n))(x) > λ}
) 1

q ≤ C

λ

∫ ∞

0

fχ(0,n)u.

Note thatuχ(0,n) ≤ um, then we have

(vn{x : If(x) > λ})
1
q ≤ C

λ

∫ ∞

0

fum.
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The first part of the proof gives

sup
y>0

vn(y,∞)
1
q um(y)−1 ≤ C.

Then for everyy > 0,
vn(y,∞)

1
q um(y)−1 ≤ C,

which gives
vn(y,∞)

1
q u(y)−1 ≤ C,

whenm →∞. Thus
sup
y>0

v(y,∞)
1
q u(y)−1 ≤ C,

which isA ≤ C. SinceA itself is a constant such that (2.7) holds,A is the best
constant in (2.7). Theorem2.4 is proved.

Remark 2.1. Theorem2.4characterizes the weighted weak type inequality for
the classical Hardy operator in the casep = 1. The theorem imposes no restric-
tion onq, except thatq is a positive number. In fact, differentq reveals different
information on the equivalence of the weak and strong type inequalities. Re-
call that when0 < q < p = 1, the weight characterization of the strong type
inequality forI is (see [17])∫ ∞

0

u(x)q/(q−1)

(∫ ∞

x

v

) q
1−q

v(x)dx < ∞.

This condition is stronger than the condition (2.6) in general. For example, if
we setu(x) = x(α+1)/q and v(x) = xα for someα < −1, then the condition
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(2.6) is satisfied but the above condition for the strong type inequality does not
hold.

For the case1 = p ≤ q < ∞, it is known that the weak and strong type
inequalities for the operatorI are equivalent. This conclusion can also be
confirmed by2.4. Recall that when1 = p ≤ q < ∞, the necessary and
sufficient condition of the strong type inequality forI is (see [2])

sup
r>0

(∫ ∞

r

v

) 1
q

||u−1χ(0,r)||L∞ < ∞.

It is easy to see that||u−1χ(0,r)||L∞ coincides withu(r)−1 and hence we get
(2.6).
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