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ABSTRACT. Let Pn,r(x) be the generalized weighted power means. We consider bounds for
the differences of means in the following form:

max

{
Cu,v,β

x2β−α
1

,
Cu,v,β

x2β−α
n

}
σn,w′,β ≥

Pα
n,u − Pα

n,v

α
≥ min

{
Cu,v,β

x2β−α
1

,
Cu,v,β

x2β−α
n

}
σn,w,β .

Hereβ 6= 0, σn,t,β( x) =
∑n

i=1 ωi[x
β
i −P β

n,t(x)]2 andCu,v,β = u−v
2β2 . Some similar inequalities

are also considered. The results are applied to inequalities of Ky Fan’s type.
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1. I NTRODUCTION

Let Pn,r(x) be the generalized weighted power means:Pn,r(x) = (
∑n

i=1 ωix
r
i )

1
r , where

ωi > 0, 1 ≤ i ≤ n with
∑n

i=1 ωi = 1 andx = (x1, x2, . . . , xn). HerePn,0(x) denotes the limit
of Pn,r(x) asr → 0+. In this paper, we always assume that0 < x1 ≤ x2 ≤ · · · ≤ xn. We write

σn,t,β(x) =
n∑

i=1

ωi

[
xβ

i − P β
n,t(x)

]2
and denoteσn,t asσn,t,1.

We let

An(x) = Pn,1(x), Gn(x) = Pn,0(x), Hn(x) = Pn,−1(x)

and we shall writePn,r for Pn,r(x), An for An(x) and similarly for other means when there is
no risk of confusion.
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2 PENG GAO

We consider upper and lower bounds for the differences of the generalized weighted means
in the following forms (β 6= 0):

(1.1) max

{
Cu,v,β

x2β−α
1

,
Cu,v,β

x2β−α
n

}
σn,w′,β ≥

Pα
n,u − Pα

n,v

α
≥ min

{
Cu,v,β

x2β−α
1

,
Cu,v,β

x2β−α
n

}
σn,w,β,

whereCu,v,β = u−v
2β2 . If we setx1 = · · · = xn−1 6= xn, then we conclude from

Lim
x1→xn

Pα
n,u − Pα

n,v

ασn,w,β

=
u− v

2β2x2β−α
n

that Cu,v,β is best possible. Here we define(P 0
n,u − P 0

n,v)/0 = ln(Pn,u/Pn,v), the limit of
(Pα

n,u − Pα
n,v)/α asα → 0.

In what follows we will refer to (1.1) as(u, v, α, β, w, w′). D.I. Cartwright and M.J. Field [8]
first proved the case(1, 0, 1, 1, 1, 1). H. Alzer [4] proved(1, 0, 1, 1, 1, 0) and [5](1, 0, α, 1, 1, 1)
with α ≤ 1. A.McD. Mercer [13] proved the right-hand side inequality with smaller constants
for α = β = u = 1, v = −1, w = ±1.

There is a close relationship between (1.1) and the following Ky Fan inequality, first pub-
lished in the monographInequalitiesby Beckenbach and Bellman [7].(In this section, we set
A′n = 1− An, G

′
n =

∏n
i=1(1− xi)

ωi. For general definitions, see the beginning of Section 3.)

Theorem 1.1.For xi ∈
[
0, 1

2

]
,

(1.2)
A′n
G′

n

≤ An

Gn

with equality holding if and only ifx1 = · · · = xn.

P. Mercer [15] observed that the validity of(1, 0, 1, 1, 1, 1) leads to the following refinement
of the additive Ky Fan inequality:

Theorem 1.2.Let0 < a ≤ xi ≤ b < 1 (1 ≤ i ≤ n, n ≥ 2). For a 6= b we have

(1.3)
a

1− a
<

A′n −G′
n

An −Gn

<
b

1− b
.

Thus, by a result of P. Gao [9], it yields the following refinement of Ky Fan’s inequality, first
proved by Alzer [6]: (

An

Gn

)( a
1−a)

2

≤ A′n
G′

n

≤
(

An

Gn

)( b
1−b)

2

.

For an account of Ky Fan’s inequality, we refer the reader to the survey article [2] and the
references therein.

The additive Ky Fan’s inequality for generalized weighted means is a consequence of (1.1).
Since it does not always hold (see [9]), it follows that (1.1) does not hold for arbitrary
(u, v, α, β, w, w′).

Our main result is a theorem that shows the validity of (1.1) for someα, β, u, v, w, w′. We
apply it in Section 3 to obtain further refinements and generalizations of inequalities of Ky Fan’s
type.

One can obtain further refinements of (1.1). Recently, A.McD. Mercer proved the following
theorem [14]:

Theorem 1.3. If x1 6= xn, n ≥ 2, then

(1.4)
Gn − x1

2x1(An − x1)
σn,1 > An −Gn >

xn −Gn

2xn(xn − An)
σn,1.

We generalize this in Section 2.
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2. THE M AIN THEOREM

Theorem 2.1.
(
1, s

r
, 1, γ

r
, t

r
, t′

r

)
, r 6= s, r 6= 0, γ 6= 0 holds for the following three cases:

(1) s
γ
≤ r

γ
≤ 2, 1 ≥ t

γ
, t′

γ
≥ s

γ
≥ r

γ
− 1;

(2) r
γ
≥ 2, r

γ
− 1 ≥ s

γ
≥ t

γ
, t′

γ
≥ 1;

(3) r
γ
≤ s

γ
≤ t

γ
, t′

γ
≤ 1,

with equality holding if and only ifx1 = · · · = xn for all the cases.

Proof. Let γ = 1 andr 6= s. We will show that (1.1) holds for the following three cases:
(1) s ≤ r ≤ 2, 1 ≥ t, t′ ≥ s ≥ r − 1;
(2) r ≥ 2, r − 1 ≥ s ≥ t, t′ ≥ 1;
(3) r ≤ s ≤ t, t′ ≤ 1.

For case (1), consider the right-hand side inequality of (1.1) and let

(2.1) Dn(x) = An − Pn, s
r
− r(r − s)

2x
2
r
−1

n

n∑
i=1

ωi

(
x

1
r
i − P

1
r

n, t
r

)2

.

We want to show thatDn ≥ 0 here. We can assume thatx1 < x2 < · · · < xn and use
induction. The casen = 1 is clear, so assume that the inequality holds forn−1 variables. Then

(2.2)
1

ωn

· ∂Dn

∂xn

= 1−

[(
Pn, s

r

xn

) 1
r

]r−s

− (r − s)

(
1−

(
Pn, t

r

xn

) 1
r

)
+ S,

where

S =
(2− r)(r − s)

2ωnx
2
r
−2

n

n∑
i=1

ωi

(
x

1
r
i − P

1
r

n, t
r

)2

+ (r − s)
P

1−t
r

n, t
r

x
2−t

r
n

(
P

1
r

n, 1
r

− P
1
r

n, t
r

)
.

Thus, whens ≤ r ≤ 2, t ≤ 1, S ≥ 0.
Now by the mean value theorem

1−

[(
Pn, s

r

xn

) 1
r

]r−s

= (r − s)ηr−s−1

(
1−

(
Pn, s

r

xn

) 1
r

)
≥ (r − s)

(
1−

(
Pn, s

r

xn

) 1
r

)
for r ≥ s ≥ r − 1 with

min

{
1,

(
Pn, s

r

xn

) 1
r

}
≤ η ≤ max

{
1,

(
Pn, s

r

xn

) 1
r

}
.

This implies

1−

[(
Pn, s

r

xn

) 1
r

]r−s

− (r − s)

(
1−

(
Pn, t

r

xn

) 1
r

)
≥ (r − s)

[(
Pn, t

r

xn

) 1
r

−
(

Pn, s
r

xn

) 1
r

]
,

which is positive ifs ≤ t.
Thus fors ≤ r ≤ 2, 1 ≥ t ≥ s ≥ r − 1, we have∂Dn

∂xn
≥ 0. By lettingxn tend toxn−1, we

haveDn ≥ Dn−1(with weightsω1, . . . , ωn−2, ωn−1 +ωn) and thus the right-hand side inequality
of (1.1) holds by induction. It is also easy to see that equality holds if and only ifx1 = · · · = xn.

Now consider the left-hand side inequality of (1.1) and write

(2.3) En(x) = An − Pn, s
r
− r(r − s)

2x
2
r
−1

1

n∑
i=1

ωi

(
x

1
r
i − P

1
r

n, t′
r

)2

.
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4 PENG GAO

Now 1
ω1

∂En

∂x1
has an expression similar to (2.2) withxn ↔ x1, ωn ↔ ω1, t ↔ t′. It is then easy

to see under the same condition,∂En

∂x1
≥ 0. Thus the left-hand side inequality of (1.1) holds by

a similar induction process with the equality holding if and only ifx1 = · · · = xn.
Similarly, we can showDn(x) ≤ 0, En(x) ≥ 0 for cases (2) and (3) with equality holding if

and only ifx1 = · · · = xn for all the cases.
Now for an arbitraryγ, a change of variablesy → y/γ for y = r, s, t, t′ in the above cases

leads to the desired conclusion. �

In what follows our results often include the casesr = 0 or s = 0 and we will leave the
proofs of these special cases to the reader since they are similar to what we give in the paper.

Corollary 2.2. For r > s, min{1, r − 1} ≤ s ≤ max{1, r − 1} and min{1, s} ≤ t, t′ ≤
max{1, s}, (r, s, r, 1, t, t′) holds. Fors ≤ r ≤ t, t′ ≤ 1, (r, s, s, 1, t, t′) holds, with equality
holding if and only ifx1 = · · · = xn for all the cases.

Proof. This follows from takingγ = 1 in Theorem 2.1 and another change of variables:x1 →
min{xr

1, x
r
n}, xn → max{xr

1, x
r
n} andxi = xr

i for 2 ≤ i ≤ n − 1 if n ≥ 3 and exchangingr
ands for the cases > r. �

We remark here sinceσn,t′ = σn,t +(2An−Pn,t−Pn,t′)(Pn,t−Pn,t′), we haveσn,1 ≤ σn,t for
t 6= 1 andσn,t ≤ σn,t′ for t′ ≤ t ≤ 1, σn,t ≥ σn,t′ for t ≥ t′ ≥ 1. Thus the optimal choices for
the set{t, t′} will be {1, s} for the case(r, s, r, 1, t, t′) and{1, r} for the case(r, s, s, 1, t, t′).

Our next two propositions give relations between differences of means with different powers:

Proposition 2.3. For l − r ≥ t− s ≥ 0, l 6= t, xi ∈ [a, b], a > 0,

(2.4)

∣∣∣∣(r − s)

(l − t)

∣∣∣∣ 1

al−r
≥

∣∣∣∣∣(P r
n,r − P r

n,s)/r

(P l
n,l − P l

n,t)/l

∣∣∣∣∣ ≥
∣∣∣∣(r − s)

(l − t)

∣∣∣∣ 1

bl−r
.

Except for the trivial casesr = s or (l, t) = (r, s), the equality holds if and only ifx1 = · · · =
xn, where we define0/0 = xr−l

i for anyi.

Proof. This is a generalization of a result A.McD. Mercer [12]. We may assume thatx1 =
a, xn = b and consider

D(x) = P r
n,r − P r

n,s −
r(r − s)

l(l − t)xl−r
n

(P l
n,l − P l

n,t),

E(x) = P r
n,r − P r

n,s −
r(r − s)

l(l − t)xl−r
1

(P l
n,l − P l

n,t).

We will show thatDn ·En ≤ 0. Supposer− s ≥ 0 here; the caser− s ≤ 0 is similar. We have

x1−r
n

rωn

· ∂Dn

∂xn

= 1−
(

Pn,s

xn

)r−s

− r − s

l − t

1−

[(
Pn,t

xn

)r−s
] l−t

r−s

+ S,

where

S =
(r − s)(l − r)

l(l − t)xl−2
n ωn

(P l
n,l − P l

n,t) ≥ 0.

Now by the mean value theorem

1−

[(
Pn,t

xn

)r−s
] l−t

r−s

=
l − t

r − s
ηl−t−r+s

(
1−

(
Pn,t

xn

)r−s
)

,
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wherePn,t

xn
< η < 1 and

x1−r
n

rωn

∂Dn

∂xn

≥ 1−
(

Pn,s

xn

)r−s

−

(
1−

(
Pn,t

xn

)r−s
)
≥ 0

sincet ≥ s.
Similarly, we havex1−r

1

rω1

∂En

∂x1
≥ 0 and by a similar induction process as the one in the proof of

Theorem 2.1, we haveDn · En ≤ 0. This completes the proof. �

By takingl = 2, t = 0, r = 1, s = −1 in the proposition, we get the following inequality:

(2.5)
1

2x1

(P 2
n,2 −G2

n) ≥ An −Hn ≥
1

2xn

(P 2
n,2 −G2

n)

and the right-hand side inequality above gives a refinement of a result of A.McD. Mercer [13].

Proposition 2.4. For r > s, α > β,

(2.6) xβ−α
1 ≥ P β−α

n,s ≥
(P β

n,r − P β
n,s)/β

(Pα
n,r − Pα

n,s)/α
≥ P β−α

n,r ≥ xβ−α
n

with equality holding if and only ifx1 = · · · = xn, where we define0/0 = xβ−α
i for anyi.

Proof. By the mean value theorem,

P β
n,r − P β

n,s = (Pα
n,r)

β/α − (Pα
n,s)

β/α =
β

α
ηβ−α(Pα

n,r − Pα
n,s),

wherePn,s < η < Pn,r and (2.6) follows. �

We apply (2.6) to the case(1, 0, 1, 1, 1, 1) to see that(1, 0, α, 1, 1, 1) holds withα ≤ 1, a
result of Alzer [5]. We end this section with a generalization of (1.4) and leave the formulation
of similar refinements to the reader.

Theorem 2.5. If x1 6= xn, n ≥ 2, then for1 > s ≥ 0

(2.7)
P 1−s

n,s − x1−s
1

2x1−s
1 (An − x1)

σn,1 > An − Pn,s >
x1−s

n − P 1−s
n,s

2x1−s
n (xn − An)

σn,1.

Proof. We prove the right-hand inequality; the left-hand side inequality is similar. Let

Dn(x) = (xn − An)(An − Pn,s)−
x1−s

n − P 1−s
n,s

2x1−s
n

σn,1.

We show by induction thatDn ≥ 0. We have

∂Dn

∂xn

= (1− ωn)(An − Pn,s)−
1− s

2xn

(
Pn,s

xn

)1−s(
1−

(
xn

Pn,s

)s

ωn

)
σn,1

≥ (1− ωn)

(
An − Pn,s −

1− s

2xn

σn,1

)
≥ 0,

where the last inequality holds by Theorem 2.1. By an induction process similar to the one in
the proof of Theorem 2.1, we haveDn ≥ 0. Since not all thexi’s are equal, we get the desired
result. �

Corollary 2.6. For 1 > s ≥ 0,

(2.8)
1− s

2x1

· Pn,s

An

σn,1 ≥ An − Pn,s ≥
1− s

2xn

σn,s,

with equality holding if and only ifx1 = · · · = xn.
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Proof. By Theorem 2.5, we only need to showP
1−s
n,s −x1−s

1

2x1−s
1 (An−x1)

≤ 1−s
2x1

Pn,s

An
and this is easily verified

by using the mean value theorem. �

3. APPLICATIONS TO I NEQUALITIES OF K Y FAN ’ S TYPE

Let f(x, y) be a real function. We regardy as an implicit function defined byf(x, y) = 0 and
for y = (y1, . . . , yn), let f(xi, yi) = 0, 1 ≤ i ≤ n. We writeP ′

n,r = Pn,r(y) with A
′
n = P ′

n,1,

G
′
n = P ′

n,0, H
′
n = P ′

n,−1. Furthermore, we writex1 = a > 0 andxn = b so thatxi ∈ [a, b] with
yi ∈ [a′, b′], a′ > 0 and require thatf ′x, f

′
y exist forxi ∈ [a, b], yi ∈ [a′, b′].

To simplify expressions, we define:

(3.1) ∆r,s,α =
Pα

n,r(y)− Pα
n,s(y)

Pα
n,r(x)− Pα

n,s(x)

with ∆r,s,0 =
(
ln Pn,r(y)

Pn,s(y)

)/(
ln Pn,r(x)

Pn,s(x)

)
and, in order to include the case of equality for various

inequalities in our discussion, we define0/0 = 1 from now on.
In this section, we apply our results above to inequalities of Ky Fan’s type. Letf(x, y) be

any function satisfying the conditions in the first paragraph of this section. We now show how
to get inequalities of Ky Fan’s type in general.

Suppose (1.1) holds for someα > 0, r > s, β = 1 andt = t′ = 1 , write σn,1(y) = σ′n,1,
apply (1.1) to sequencesx,y and then take their quotients to get

aσ′n,1

b′σn,1

≤ ∆r,s,α ≤
bσ′n,1

a′σn,1

.

Sinceσ′n,1 =
∑n

i=1 wi(
∑n

k=1 wk(yi − yk))
2, the mean value theorem yields

yi − yk = −f ′x
f ′y

(ξ, y(ξ))(xi − xk)

for someξ ∈ (a, b). Thus

min
a≤x≤b

∣∣∣∣f ′xf ′y
∣∣∣∣2 σn,1 ≤ σ′n,1 ≤ max

a≤x≤b

∣∣∣∣f ′xf ′y
∣∣∣∣2 σn,1,

which implies

a

b′
min

a≤x≤b

∣∣∣∣f ′xf ′y
∣∣∣∣2 ≤ ∆r,s,α ≤

b

a′
max
a≤x≤b

∣∣∣∣f ′xf ′y
∣∣∣∣2 .

We next apply the above argument to a special case.

Corollary 3.1. Let f(x, y) = cxp + dyp − 1, 0 < c ≤ d, p ≥ 1, xi ∈ [0, (c + d)−
1
p ]. For

s ∈ [0, 2] andα = max{s, 1} we have

(3.2) ∆1,s,α ≤ 1

with equality holding if and only ifx1 = · · · = xn.

Proof. This follows from Corollary 2.2 by the appropriate choice ofr ands. �

From now on we will concentrate on the casef(x, y) = x + y − 1. Extensions to the case of
general functionsf(x, y) are left to the reader.

J. Inequal. Pure and Appl. Math., 4(4) Art. 76, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


CERTAIN BOUNDS FOR THEDIFFERENCES OFMEANS 7

Corollary 3.2. Let f(x, y) = x + y − 1, 0 < a < b < 1 andxi ∈ [a, b] (i = 1, . . . , n), n ≥ 2.
Then forr > s, min{1, r − 1} ≤ s ≤ max{1, r − 1}

(3.3) max

{(
b

1− b

)2−r

,

(
a

1− a

)2−r
}

> ∆r,s,r > min

{(
b

1− b

)2−r

,

(
a

1− a

)2−r
}

.

For s < r ≤ 1,

(3.4) max

{(
b

1− b

)2−s

,

(
a

1− a

)2−s
}

> ∆r,s,s > min

{(
b

1− b

)2−s

,

(
a

1− a

)2−s
}

.

Proof. Apply Corollary 2.2 to sequencesx,y with t = t′ = 1 and take their quotients, by
noticingσn,1(x) = σn,1(y). �

As a special case of the above corollary, by takingr = 0, s = −1, we get the following
refinement of the Wang-Wang inequality [17]:

(3.5)

(
Gn

Hn

)( a
1−a)

2

≤ G′
n

H ′
n

≤
(

Gn

Hn

)( b
1−b)

2

.

We can use Corollary 2.6 to get further refinements of inequalities of Ky Fan’s type. Since
σn,s = σn,1 + (An − Pn,s)

2, we can rewrite the right-hand side inequality in (2.8) as

(3.6) (Pn,1(x)− Pn,s(x))

(
1− 1− s

2b
(Pn,1(x)− Pn,s(x))

)
≥ 1− s

2b
σn,1.

Apply (2.8) toy and taking the quotient with (3.6), we get

Pn,1(y)− Pn,s(y)

(Pn,1(x)− Pn,s(x))
(
1− 1−s

2b
(Pn,1(x)− Pn,s(x))

) ≤ bσ′n,1

a′σn,1

P ′
n,s

A′n
=

b

a′
P ′

n,s

A′n
.

Similarly,
(Pn,1(y)− Pn,s(y))

(
1− 1−s

2a′
(Pn,1(y)− Pn,s(y))

)
Pn,1(x)− Pn,s(x)

≥ a

b′
An

Pn,s

.

Combining these with a result in [9], we obtain the following refinement of Ky Fan’s inequality:

Corollary 3.3. Let 0 < a < b < 1 andxi ∈ [a, b] (i = 1, . . . , n), n ≥ 2. Then forα ≤ 1,
0 ≤ s < 1

(3.7)

(
b

1− b

)2−α P ′
n,s

A′n
B > ∆1,s,α >

(
a

1− a

)2−α
An

Pn,s

A,

where

A =

(
1− 1− s

2a′
(Pn,1(y)− Pn,s(y))

)−1

,

B = 1− 1− s

2b
(Pn,1(x)− Pn,s(x)).

We note here whenα = 1, s = 0, b ≤ 1
2
, the left-hand side inequality of (3.7) yields

(3.8)
A′n −G′

n

An −Gn

<
b

1− b

G′
n

A′n
(A′n + Gn)

a refinement of the following two results of H. Alzer [1]:A′n/G
′
n ≤ (1−Gn)/(1−An), which

is equivalent to(A′n −G′
n)/(An −Gn) < G′

n/A
′
n and [3]:A′n −G′

n ≤ (An −Gn)(A′n + Gn).
Next, we give a result related to Levinson’s generalization of Ky Fan’s inequality. We first

generalize a lemma of A.McD. Mercer [12].
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Lemma 3.4. Let J(x) be the smallest closed interval that contains all ofxi and lety ∈ J(x)
andf(x), g(x) ∈ C2(J(x)) be two twice continuously differentiable functions. Then

(3.9)

∑n
i=1 ωif(xi)− f(y)− (

∑n
i=1 ωixi − y)f ′(y)∑n

i=1 ωig(xi)− g(y)− (
∑n

i=1 ωixi − y)g′(y)
=

f ′′(ξ)

g′′(ξ)

for someξ ∈ J(x), provided that the denominator of the left-hand side is nonzero.

Proof. The proof is very similar to the one given in [12]. Write

(Qf)(t) =
n∑

i=1

wif(txi + (1− t)y)− f(y)− t(A− y)f ′(y)

and considerW (t) = (Qf)(t) −K(Qg)(t), whereK is the left-hand side expression in (3.9).
The lemma then follows by the same argument as in [12]. �

By takingg(x) = x2, y = Pn,t in the lemma, we get:

Corollary 3.5. Letf(x) ∈ C2[a, b] with m = min
a≤x≤b

f ′′(x), M = max
a≤x≤b

f ′′(x). Then

(3.10)
M

2
σn,t ≥

n∑
i=1

ωif(xi)− f

(
n∑

i=1

ωixi

)
− (An − Pn,t)f

′(Pn,t) ≥
m

2
σn,t.

Moreover, iff ′′′(x) exists forx ∈ [a, b] with f ′′′(x) > 0 or f ′′′(x) < 0 for x ∈ [a, b] then the
equality holds if and only ifx1 = · · · = xn.

The caset = 1 in the above corollary was treated by A.McD. Mercer [11]. Note for an
arbitrary f(x), equality can hold even if the conditionx1 = · · · = xn is not satisfied, for
example, forf(x) = x2, we have the following identity:

n∑
i=1

ωix
2
i −

(
n∑

i=1

ωixi

)2

=
n∑

i=1

ωi

(
xi −

n∑
k=1

ωkxk

)2

.

Corollary 3.5 can be regarded as a refinement of Jensen’s inequality and it leads to the fol-
lowing well-known Levinson’s inequality for 3-convex functions [10]:

Corollary 3.6. Letxi ∈ (0, a]. If f ′′′(x) ≥ 0 in (0, 2a), then

(3.11)
n∑

i=1

ωif(xi)− f

(
n∑

i=1

ωixi

)
≤

n∑
i=1

ωif(2a− xi)− f

(
n∑

i=1

ωi(2a− xi)

)
.

If f ′′′(x) > 0 on (0, 2a) then equality holds if and only ifx1 = · · · = xn.

Proof. Taket = 1 in (3.10) and apply Corollary 3.5 to(x1, . . . , xn) and(2a−x1, . . . , 2a−xn).
Sincef ′′′(x) ≥ 0 in (0, 2a), it follows that max

0≤x≤a
f ′′(x) ≤ min

a≤x≤2a
f ′′(x) and the corollary is

proved. �

Now we establish an inequality relating different∆r,s,α’s:

Corollary 3.7. For l− r ≥ t− s ≥ 0, l 6= t, r 6= s, (l, t) 6= (r, s), xi ∈ [a, b], yi ∈ [a, b], n ≥ 2,

(3.12)

(
b

a′

)l−r

>

∣∣∣∣∆r,s,r

∆l,t,l

∣∣∣∣ > ( a

b′

)l−r

.

Proof. Apply (2.4) to bothx andy and take their quotients. �

For another proof of inequality (3.5), use this corollary withl = 1, t = 0, s = −1 andr = 0.
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4. A FEW COMMENTS

A variant of (1.1) is the following conjecture by A.McD. Mercer [13] (r > s, t, t′ = r, s):

(4.1) max

{
r − s

2x2−r
1

,
r − s

2x2−r
n

}
σn,t′ ≥

Pn,r − Pn,s

P 1−r
n,r

≥ min

{
r − s

2x2−r
1

,
r − s

2x2−r
n

}
σn,t.

The conjecture presented here has been reformulated (one can compare it with the original
one in [13]), since here(r − s)/2 is the best possible constant by the same argument as above.

Note whenr = 1, (4.1) coincides with (1.1) and thus the conjecture in general is false.
There are many other kinds of expressions for the bounds of the difference between the

arithmetic and geometric means. See Chapter II of the bookClassical and New Inequalities in
Analysis[16].

In [12], A.McD. Mercer showed

(4.2)
P 2

n,2 −G2
n

4x1

≥ An −Gn ≥
P 2

n,2 −G2
n

4xn

.

He also pointed out that the above inequality is not comparable to either of the inequalities in
(1.1) withα = β = u = 1, v = 0, t = t′ = 0, 1. We note that (4.2) can be obtained from (1.1)
by averaging the caseα = β = u = t = t′ = 1, v = 0 with the following trivial bound:

A2
n −G2

n

2x1

≥ An −Gn ≥
A2

n −G2
n

2xn

.

Thus the incomparability of (4.2) and (4.1) withr = 1, s = 0, t = 1 reflects the fact that
P 2

n,2 − A2
n andA2

n −G2
n are in general not comparable.

We also note when replacingCu,v,β by a smaller constant, that we sometimes get a trivial
bound. For example, fors ≤ 1

2
, the following inequality holds:

An − Pn,s ≥
1

2

n∑
k=1

ωk

(
x

1/2
k − A1/2

n

)2

≥ 1

8xn

n∑
k=1

ωk(xk − An)2.

The first inequality is equivalent toP 1/2
n,1/2A

1/2
n ≥ Pn,s. For the second, simply apply the mean

value theorem to(
x

1/2
k − A1/2

n

)2

=

(
1

2
ξ
−1/2
k (xk − An)

)2

≥ 1

4xn

(xk − An)2,

with ξk in betweenxk andAn.
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