Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 4, Issue 4, Article 70, 2003

SOME INEQUALITIES ASSOCIATED WITH A LINEAR OPERATOR DEFINED FOR A CLASS OF MULTIVALENT FUNCTIONS

V. RAVICHANDRAN, N. SEENIVASAGAN, AND H.M. SRIVASTAVA
Department of Computer Applications
Sri Venkateswara College of Engineering
Sriperumbudur 602105, Tamil Nadu, India
vravi@svce.ac.in
Department of Mathematics
Sindhi College
123 P.H. Road, Numbal
Chennai 600077, TAmil Nadu, India
vasagan2000@yahoo.co.in
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4
CANADA
harimsri@math.uvic.ca

Received 15 September, 2003; accepted 17 September, 2003
Communicated by Th. M. Rassias

Abstract

The authors derive several inequalities associated with differential subordinations between analytic functions and a linear operator defined for a certain family of p-valent functions, which is introduced here by means of this linear operator. Some special cases and consequences of the main results are also considered.

[^0]2000 Mathematics Subject Classification Primary 30C45.

1. Introduction, Definitions and Preliminaries

Let $\mathcal{A}(p, n)$ denote the class of functions f normalized by

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+n}^{\infty} a_{k} z^{k} \quad(p, n \in \mathbb{N}:=\{1,2,3, \ldots\}), \tag{1.1}
\end{equation*}
$$

[^1]which are analytic in the open unit disk
$$
\mathbb{U}:=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

In particular, we set

$$
\mathcal{A}(p, 1)=: \mathcal{A}_{p} \quad \text { and } \quad \mathcal{A}(1,1)=: \mathcal{A}=\mathcal{A}_{1} .
$$

A function $f \in \mathcal{A}(p, n)$ is said to be in the class $\mathcal{A}(p, n ; \alpha)$ if it satisfies the following inequality:

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\alpha \quad(z \in \mathbb{U} ; \alpha>p) \tag{1.2}
\end{equation*}
$$

We also denote by $\mathcal{K}(\alpha)$ and $\mathcal{S}^{*}(\alpha)$, respectively, the usual subclasses of \mathcal{A} consisting of functions which are convex of order α in \mathbb{U} and starlike of order α in \mathbb{U}. Thus we have (see, for details, [3] and [9])

$$
\begin{equation*}
\mathcal{K}(\alpha):=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1)\right\} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{S}^{*}(\alpha):=\left\{f: f \in \mathcal{A} \quad \text { and } \quad \mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1)\right\} \tag{1.4}
\end{equation*}
$$

In particular, we write

$$
\mathcal{K}(0)=: \mathcal{K} \quad \text { and } \quad \mathcal{S}^{*}(0)=: \mathcal{S}^{*}
$$

For the above-defined class $\mathcal{A}(p, n ; \alpha)$ of p-valent functions, Owa et al. [5] proved the following results.
Theorem A. (Owa et al. [5, p. 8, Theorem 1]). If

$$
f(z) \in \mathcal{A}(p, n ; \alpha) \quad\left(p<\alpha \leqq p+\frac{1}{2} n\right),
$$

then

$$
\begin{equation*}
\mathfrak{R}\left(\frac{f(z)}{z f^{\prime}(z)}\right)>\frac{2 p+n}{(2 \alpha+n) p} \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

Theorem B. (Owa et al. [5] p. 10, Theorem 2]). If

$$
f(z) \in \mathcal{A}(p, n ; \alpha) \quad\left(p<\alpha \leqq p+\frac{1}{2} n\right),
$$

then

$$
\begin{equation*}
0<\mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\frac{(2 \alpha+n) p}{2 p+n} \quad(z \in \mathbb{U}) . \tag{1.6}
\end{equation*}
$$

In fact, as already observed by Owa et al. [5] p. 10], various further special cases of (for example) Theorem B] when $p=n=1$ were considered earlier by Nunokawa [4], Saitoh et al. [7], and Singh and Singh [8].
The main object of this paper is to present an extension of each of the inequalities (1.5) and (1.6) asserted by Theorem A and Theorem B , respectively, to hold true for a linear operator associated with a certain general class $\mathcal{A}(p, n ; a, c, \alpha)$ of p-valent functions, which we introduce here.

For two functions $f(z)$ given by 1.1 and $g(z)$ given by

$$
g(z)=z^{p}+\sum_{k=p+n}^{\infty} b_{k} z^{k} \quad(p, n \in \mathbb{N})
$$

the Hadamard product (or convolution) $(f * g)(z)$ is defined, as usual, by

$$
\begin{equation*}
(f * g)(z):=z^{p}+\sum_{k=p+n}^{\infty} a_{k} b_{k} z^{k}=:(g * f)(z) \tag{1.7}
\end{equation*}
$$

In terms of the Pochhammer symbol $(\lambda)_{k}$ or the shifted factorial, since

$$
(1)_{k}=k!\quad\left(k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right),
$$

given by

$$
(\lambda)_{0}:=1 \quad \text { and } \quad(\lambda)_{k}:=\lambda(\lambda+1) \cdots(\lambda+k-1) \quad(k \in \mathbb{N}),
$$

we now define the function $\phi_{p}(a, c ; z)$ by

$$
\begin{gather*}
\phi_{p}(a, c ; z):=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k+p} \tag{1.8}\\
\left(z \in \mathbb{U} ; a \in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-} ; \mathbb{Z}_{0}^{-}:=\{0,-1,-2, \ldots\}\right) .
\end{gather*}
$$

Corresponding to the function $\phi_{p}(a, c ; z)$, Saitoh [6] introduced a linear operator $L_{p}(a, c)$ which is defined by means of the following Hadamard product (or convolution):

$$
\begin{equation*}
L_{p}(a, c) f(z):=\phi_{p}(a, c ; z) * f(z) \quad\left(f \in \mathcal{A}_{p}\right) \tag{1.9}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
L_{p}(a, c) f(z):=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} a_{k+p} z^{k+p} \quad(z \in \mathbb{U}) \tag{1.10}
\end{equation*}
$$

The definition 1.9 or 1.10 of the linear operator $L_{p}(a, c)$ is motivated essentially by the familiar Carlson-Shaffer operator

$$
L(a, c):=L_{1}(a, c),
$$

which has been used widely on such spaces of analytic and univalent functions in \mathbb{U} as $\mathcal{K}(\alpha)$ and $\mathcal{S}^{*}(\alpha)$ defined by (1.3) and 1.4), respectively (see, for example, [9]). A linear operator $\mathcal{L}_{p}(a, c)$, analogous to $L_{p}(a, c)$ considered here, was investigated recently by Liu and Srivastava [2] on the space of meromorphically p-valent functions in \mathbb{U}. We remark in passing that a much more general convolution operator than the operator $L_{p}(a, c)$ considered here, involving the generalized hypergeometric function in the defining Hadamard product (or convolution), was introduced earlier by Dziok and Srivastava [1].
Making use of the linear operator $L_{p}(a, c)$ defined by (1.9) or 1.10), we say that a function $f \in \mathcal{A}(p, n)$ is in the aforementioned general class $\mathcal{A}(p, n ; a, c, \alpha)$ if it satisfies the following inequality:

$$
\begin{gather*}
\mathfrak{R}\left(\frac{L_{p}(a+2, c) f(z)}{L_{p}(a+1, c) f(z)}\right)<\alpha \tag{1.11}\\
\left(z \in \mathbb{U} ; \alpha>1 ; a \in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}\right) .
\end{gather*}
$$

The Ruscheweyh derivative of $f(z)$ of order $\delta+p-1$ is defined by

$$
\begin{equation*}
D^{\delta+p-1} f(z):=\frac{z^{p}}{(1-z)^{\delta+p}} * f(z) \quad(f \in \mathcal{A}(p, n) ; \delta \in \mathbb{R} \backslash(-\infty,-p]) \tag{1.12}
\end{equation*}
$$

or, equivalently, by

$$
\begin{gather*}
D^{\delta+p-1} f(z):=z^{p}+\sum_{k=p+n}^{\infty}\binom{\delta+k-1}{k-p} a_{k} z^{k} \tag{1.13}\\
(f \in \mathcal{A}(p, n) ; \delta \in \mathbb{R} \backslash(-\infty,-p]) .
\end{gather*}
$$

In particular, if $\delta=l(l+p \in \mathbb{N})$, we find from the definition 1.12) or 1.13) that

$$
\begin{gather*}
D^{l+p-1} f(z)=\frac{z^{p}}{(l+p-1)!} \frac{d^{l+p-1}}{d z^{l+p-1}}\left\{z^{l-1} f(z)\right\} \tag{1.14}\\
(f \in \mathcal{A}(p, n) ; l+p \in \mathbb{N})
\end{gather*}
$$

Since

$$
\begin{align*}
& L_{p}(\delta+p, 1) f(z)=D^{\delta+p-1} f(z) \tag{1.15}\\
& (f \in \mathcal{A}(p, n) ; \delta \in \mathbb{R} \backslash(-\infty,-p])
\end{align*}
$$

which can easily be verified by comparing the definitions (1.10) and (1.13), we may set

$$
\begin{equation*}
\mathcal{A}(p, n ; \delta+p, 1, \alpha)=: \mathcal{A}(p, n ; \delta, \alpha) . \tag{1.16}
\end{equation*}
$$

Thus a function $f \in \mathcal{A}(p, n)$ is in the class $\mathcal{A}(p, n ; \delta, \alpha)$ if it satisfies the following inequality:

$$
\begin{gather*}
\mathfrak{R}\left(\frac{D^{\delta+p+1} f(z)}{D^{\delta+p} f(z)}\right)<\alpha, \tag{1.17}\\
(z \in \mathbb{U} ; \alpha>1 ; \delta \in \mathbb{R} \backslash(-\infty,-p])
\end{gather*}
$$

Finally, for two functions f and g analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, and write

$$
f \prec g \quad \text { or } \quad f(z) \prec g(z) \quad(z \in \mathbb{U}),
$$

if there exists a Schwarz function $w(z)$, analytic in \mathbb{U} with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
\begin{equation*}
f(z)=g(w(z)) \quad(z \in \mathbb{U}) . \tag{1.18}
\end{equation*}
$$

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to

$$
f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

In our present investigation of the above-defined general class $\mathcal{A}(p, n ; a, c, \alpha)$, we shall require each of the following lemmas.
Lemma 1. (cf. Miller and Мосапи [3, p. 35, Theorem 2.3i (i)]). Let Ω be a set in the complex plane \mathbb{C} and suppose that $\Phi(u, v ; z)$ is a complex-valued mapping:

$$
\Phi: \mathbb{C}^{2} \times \mathbb{U} \rightarrow \mathbb{C}
$$

where

$$
u=u_{1}+i u_{2} \quad \text { and } \quad v=v_{1}+i v_{2} .
$$

Also let $\Phi\left(i u_{2}, v_{1} ; z\right) \notin \Omega$ for all $z \in \mathbb{U}$ and for all real u_{2} and v_{1} such that

$$
\begin{equation*}
v_{1} \leqq-\frac{1}{2} n\left(1+u_{2}^{2}\right) . \tag{1.19}
\end{equation*}
$$

If

$$
q(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots
$$

is analytic in \mathbb{U} and

$$
\Phi\left(q(z), z q^{\prime}(z) ; z\right) \in \Omega \quad(z \in \mathbb{U}),
$$

then

$$
\mathfrak{R}\{q(z)\}>0 \quad(z \in \mathbb{U}) .
$$

Lemma 2. (cf. Miller and Mocanи [3, p. 132, Theorem 3.4h]). Let $\psi(z)$ be univalent in \mathbb{U} and suppose that the functions ϑ and φ are analytic in a domain $\mathbb{D} \supset \psi(\mathbb{U})$ with $\varphi(\zeta) \neq 0$ when $\zeta \in \psi(\mathbb{U})$. Define the functions $Q(z)$ and $h(z)$ by

$$
\begin{equation*}
Q(z):=z \psi^{\prime}(z) \varphi(\psi(z)) \text { and } h(z):=\vartheta(\psi(z))+Q(z), \tag{1.20}
\end{equation*}
$$

and assume that
(i) $Q(z)$ is starlike univalent in \mathbb{U}
and
(ii) $\mathfrak{R}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>0 \quad(z \in \mathbb{U})$.

If

$$
\begin{equation*}
\vartheta(q(z))+z q^{\prime}(z) \varphi(q(z)) \prec h(z) \quad(z \in \mathbb{U}), \tag{1.21}
\end{equation*}
$$

then

$$
q(z) \prec \psi(z) \quad(z \in \mathbb{U})
$$

and $\psi(z)$ is the best dominant.

2. Inequalities Involving the Linear Operator $L_{p}(a, c)$

By appealing to Lemma 1 of the preceding section, we first prove Theorem 1 below.
Theorem 1. Let the parameters a and α satisfy the following inequalities:

$$
\begin{equation*}
a>-1 \quad \text { and } \quad 1<\alpha \leqq 1+\frac{n}{2(a+1)} . \tag{2.1}
\end{equation*}
$$

If $f(z) \in \mathcal{A}(p, n ; a, c, \alpha)$, then

$$
\begin{equation*}
\mathfrak{R}\left(\frac{L_{p}(a, c) f(z)}{L_{p}(a+1, c) f(z)}\right)>\frac{2 a+n}{2 \alpha(a+1)-2+n} \quad(z \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{R}\left(\frac{L_{p}(a+1, c) f(z)}{L_{p}(a, c) f(z)}\right)<\frac{2 \alpha(a+1)-2+n}{2 a+n} \quad(z \in \mathbb{U}) . \tag{2.3}
\end{equation*}
$$

Proof. Define the function $q(z)$ by

$$
\begin{equation*}
(1-\beta) q(z)+\beta=\frac{L_{p}(a, c) f(z)}{L_{p}(a+1, c) f(z)} \quad(z \in \mathbb{U}), \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta:=\frac{2 a+n}{2 \alpha(a+1)-2+n} . \tag{2.5}
\end{equation*}
$$

Then, clearly, $q(z)$ is analytic in \mathbb{U} and

$$
q(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots \quad(z \in \mathbb{U}) .
$$

By a simple computation, we observe from (2.4) that

$$
\begin{equation*}
\frac{(1-\beta) z q^{\prime}(z)}{(1-\beta) q(z)+\beta}=\frac{z\left(L_{p}(a, c) f(z)\right)^{\prime}}{L_{p}(a, c) f(z)}-\frac{z\left(L_{p}(a+1, c) f(z)\right)^{\prime}}{L_{p}(a+1, c) f(z)} . \tag{2.6}
\end{equation*}
$$

Making use of the familiar identity:

$$
\begin{equation*}
z\left(L_{p}(a, c) f(z)\right)^{\prime}=a L_{p}(a+1, c) f(z)-(a-p) L_{p}(a, c) f(z) \tag{2.7}
\end{equation*}
$$

we find from (2.6) that

$$
\frac{(1-\beta) z q^{\prime}(z)}{(1-\beta) q(z)+\beta}=1+a \frac{L_{p}(a+1, c) f(z)}{L_{p}(a, c) f(z)}-(a+1) \frac{L_{p}(a+2, c) f(z)}{L_{p}(a+1, c) f(z)}
$$

which, in view of (2.4), yields

$$
\frac{L_{p}(a+2, c) f(z)}{L_{p}(a+1, c) f(z)}=\frac{1}{a+1}+\frac{1}{a+1}\left(\frac{a}{(1-\beta) q(z)+\beta}-\frac{(1-\beta) z q^{\prime}(z)}{(1-\beta) q(z)+\beta}\right)
$$

or, equivalently,

$$
\begin{equation*}
\frac{L_{p}(a+2, c) f(z)}{L_{p}(a+1, c) f(z)}=\frac{1}{a+1}\left(1+\frac{a-(1-\beta) z q^{\prime}(z)}{(1-\beta) q(z)+\beta}\right) . \tag{2.8}
\end{equation*}
$$

If we define $\Phi(u, v ; z)$ by

$$
\begin{equation*}
\Phi(u, v ; z):=\frac{1}{a+1}\left(1+\frac{a-(1-\beta) v}{(1-\beta) u+\beta}\right) \tag{2.9}
\end{equation*}
$$

then, by the hypothesis of Theorem 1 that $f \in \mathcal{A}(p, n ; a, c, \alpha)$, we have

$$
\mathfrak{R}\left\{\Phi\left(q(z), z q^{\prime}(z) ; z\right)\right\}=\mathfrak{R}\left(\frac{L_{p}(a+2, c) f(z)}{L_{p}(a+1, c) f(z)}\right)<\alpha \quad(z \in \mathbb{U} ; \alpha>1)
$$

We will now show that

$$
\mathfrak{R}\left\{\Phi\left(i u_{2}, v_{1} ; z\right)\right\} \geqq \alpha
$$

for all $z \in \mathbb{U}$ and for all real u_{2} and v_{1} constrained by the inequality (1.19). Indeed we find from (2.9) that

$$
\begin{aligned}
\mathfrak{R}\left\{\Phi\left(i u_{2}, v_{1} ; z\right)\right\} & =\frac{1}{a+1}\left[1+\mathfrak{R}\left(\frac{a-(1-\beta) v_{1}}{(1-\beta) i u_{2}+\beta}\right)\right] \\
& =\frac{1}{a+1}\left[1+\mathfrak{R}\left(\frac{\left[a-(1-\beta) v_{1}\right]\left[\beta-(1-\beta) i u_{2}\right]}{(1-\beta)^{2} u_{2}^{2}+\beta^{2}}\right)\right] \\
& =\frac{1}{a+1}\left(1+\frac{\left[a-(1-\beta) v_{1}\right] \beta}{(1-\beta)^{2} u_{2}^{2}+\beta^{2}}\right),
\end{aligned}
$$

so that, by using (1.19), we have

$$
\begin{equation*}
\mathfrak{R}\left\{\Phi\left(i u_{2}, v_{1} ; z\right)\right\} \geqq \frac{1}{a+1}\left(1+\frac{\beta\left[a+\frac{1}{2} n(1-\beta)\left(1+u_{2}^{2}\right)\right]}{(1-\beta)^{2} u_{2}^{2}+\beta^{2}}\right) \quad(z \in \mathbb{U}) \tag{2.10}
\end{equation*}
$$

From the inequalities in (2.1), we get

$$
\frac{n}{2} \beta^{2} \geqq\left(a+\frac{1}{2} n(1-\beta)\right)(1-\beta)
$$

and hence the function

$$
\frac{a+\frac{1}{2} n(1-\beta)\left(1+x^{2}\right)}{(1-\beta)^{2} x^{2}+\beta^{2}}
$$

is an increasing function for $x \geqq 0$. Thus we find from (2.10) that

$$
\mathfrak{R}\left\{\Phi\left(i u_{2}, v_{1} ; z\right)\right\} \geqq \frac{1}{a+1}\left(1+\frac{a+\frac{1}{2} n(1-\beta)}{\beta}\right)=\alpha \quad(z \in \mathbb{U}) .
$$

The first assertion (2.2) of Theorem 1 follows by applying Lemma 1 .
Next, we define the function $\psi(z)$ by

$$
\psi(z):=\frac{L_{p}(a, c) f(z)}{L_{p}(a+1, c) f(z)} \quad(z \in \mathbb{U}),
$$

where β is given by (2.5). Then, in view of the already proven assertion (2.2) of Theorem 1 , we have

$$
\begin{equation*}
\mathfrak{R}\{\psi(z)\}>\beta>0 \quad(z \in \mathbb{U}) \tag{2.11}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathfrak{R}\left(\frac{1}{\psi(z)}\right)>0 \quad(z \in \mathbb{U}) \tag{2.12}
\end{equation*}
$$

Since (2.12) holds true, we have

$$
\mathfrak{R}\{\psi(z)\} \mathfrak{R}\left(\frac{1}{\psi(z)}\right) \leqq|\psi(z)| \cdot \frac{1}{|\psi(z)|}=1,
$$

or

$$
\mathfrak{R}\left(\frac{1}{\psi(z)}\right) \leqq \frac{1}{\mathfrak{R}\{\psi(z)\}} \quad(z \in \mathbb{U})
$$

which, in view of (2.11), yields

$$
0<\mathfrak{R}\left(\frac{1}{\psi(z)}\right)<\frac{1}{\beta} \quad(z \in \mathbb{U})
$$

which is the second assertion (2.3) of Theorem 1 .
The following result is a special case of Theorem 1 obtained by taking

$$
a=\delta+p \quad \text { and } \quad c=1
$$

Corollary 1. If

$$
f(z) \in \mathcal{A}(p, n ; \delta, \alpha) \quad\left(\delta+p>1 ; 1 \leqq \alpha<1+\frac{n}{2(\delta+p+1)}\right)
$$

then

$$
\mathfrak{R}\left(\frac{D^{\delta+p-1} f(z)}{D^{\delta+p} f(z)}\right)>\frac{2 \delta+2 p+n}{2 \alpha(\delta+p+1)-2+n} \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(\frac{D^{\delta+p} f(z)}{D^{\delta+p-1} f(z)}\right)<\frac{2 \alpha(\delta+p+1)-2+n}{2 \delta+2 p+n} \quad(z \in \mathbb{U}) .
$$

3. Further Results involving Differential Subordination Between Analytic Functions

We begin by proving the following result.
Lemma 3. Let the functions $q(z)$ and $\psi(z)$ be analytic in \mathbb{U} and suppose that

$$
\psi(z) \neq 0 \quad(z \in \mathbb{U})
$$

is also univalent in \mathbb{U} and that $z \psi^{\prime}(z) / \psi(z)$ is starlike univalent in \mathbb{U}. If

$$
\begin{gather*}
\mathfrak{R}\left(\frac{\alpha}{\beta} \frac{1}{\psi(z)}+\left[1+\frac{z \psi^{\prime \prime}(z)}{\psi^{\prime}(z)}-\frac{z \psi^{\prime}(z)}{\psi(z)}\right]\right)>0 \tag{3.1}\\
(z \in \mathbb{U} ; \alpha, \beta \in \mathbb{C} ; \beta \neq 0)
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{\alpha}{q(z)}-\beta \frac{z q^{\prime}(z)}{q(z)} \prec \frac{\alpha}{\psi(z)}-\beta \frac{z \psi^{\prime}(z)}{\psi(z)} \tag{3.2}\\
(z \in \mathbb{U} ; \alpha, \beta \in \mathbb{C} ; \beta \neq 0)
\end{gather*}
$$

then

$$
q(z) \prec \psi(z) \quad(z \in \mathbb{U})
$$

and $q(z)$ is the best dominant.
Proof. By setting

$$
\vartheta(\zeta)=\frac{\alpha}{\zeta} \quad \text { and } \quad \varphi(\zeta)=-\frac{\beta}{\zeta}
$$

it is easily observed that both $\vartheta(\zeta)$ and $\varphi(\zeta)$ are analytic in $\mathbb{C} \backslash\{0\}$ and that

$$
\varphi(\zeta) \neq 0 \quad(\zeta \in \mathbb{C} \backslash\{0\})
$$

Also, by letting

$$
\begin{equation*}
Q(z)=z \psi^{\prime}(z) \varphi(\psi(z))=-\beta \frac{z \psi^{\prime}(z)}{\psi(z)} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z)=\vartheta(\psi(z))+Q(z)=\frac{\alpha}{\psi(z)}-\beta \frac{z \psi^{\prime}(z)}{\psi(z)} \tag{3.4}
\end{equation*}
$$

we find that $Q(z)$ is starlike univalent in \mathbb{U} and that

$$
\begin{gathered}
\mathfrak{R}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)=\mathfrak{R}\left(\frac{\alpha}{\beta} \frac{1}{\psi(z)}+\left[1+\frac{z \psi^{\prime \prime}(z)}{\psi^{\prime}(z)}-\frac{z \psi^{\prime}(z)}{\psi(z)}\right]\right)>0, \\
(z \in \mathbb{U} ; \alpha, \beta \in \mathbb{C} ; \beta \neq 0)
\end{gathered}
$$

by the hypothesis (3.1) of Lemma 3. Thus, by applying Lemma 2, our proof of Lemma 3 is completed.

We now prove the following result involving differential subordination between analytic functions.

Theorem 2. Let the function $\psi(z) \neq 0(z \in \mathbb{U})$ be analytic and univalent in \mathbb{U} and suppose that $z \psi^{\prime}(z) / \psi(z)$ is starlike univalent in \mathbb{U} and

$$
\begin{gather*}
\mathfrak{R}\left(\frac{a}{\psi(z)}+\left[1+\frac{z \psi^{\prime \prime}(z)}{\psi^{\prime}(z)}-\frac{z \psi^{\prime}(z)}{\psi(z)}\right]\right)>0 \tag{3.5}\\
(z \in \mathbb{U} ; a \in \mathbb{C} \backslash\{-1\})
\end{gather*}
$$

If $f \in \mathcal{A}_{p}$ satisfies the following subordination:

$$
\begin{equation*}
\frac{L_{p}(a+2, c) f(z)}{L_{p}(a+1, c) f(z)} \prec \frac{1}{a+1}\left(1+\frac{a-z \psi^{\prime}(z)}{\psi(z)}\right) \quad(z \in \mathbb{U}), \tag{3.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{L_{p}(a, c) f(z)}{L_{p}(a+1, c) f(z)} \prec \psi(z) \quad(z \in \mathbb{U}) \tag{3.7}
\end{equation*}
$$

and $\psi(z)$ is the best dominant.
Proof. Let the function $q(z)$ be defined by

$$
q(z):=\frac{L_{p}(a, c) f(z)}{L_{p}(a+1, c) f(z)} \quad\left(z \in \mathbb{U} ; f \in \mathcal{A}_{p}\right)
$$

so that, by a straightforward computation, we have

$$
\begin{equation*}
\frac{z q^{\prime}(z)}{q(z)}=\frac{z\left(L_{p}(a, c) f(z)\right)^{\prime}}{L_{p}(a, c) f(z)}-\frac{z\left(L_{p}(a+1, c) f(z)\right)^{\prime}}{L_{p}(a+1, c) f(z)} \tag{3.8}
\end{equation*}
$$

which follows also from (2.6) in the special case when $\beta=0$.
Making use of the familiar identity (2.7) once again (or directly from (2.8) with $\beta=0$), we find that

$$
\begin{aligned}
\frac{L_{p}(a+2, c) f(z)}{L_{p}(a+1, c) f(z)} & =a \frac{L_{p}(a+1, c) f(z)}{L_{p}(a, c) f(z)}-(a+1) \frac{L_{p}(a+2, c) f(z)}{L_{p}(a+1, c) f(z)}+1 \\
& =\frac{1}{a+1}\left(1+\frac{a}{q(z)}-\frac{z q^{\prime}(z)}{q(z)}\right)
\end{aligned}
$$

which, in light of the hypothesis (3.6) of Theorem 2, yields the following subordination:

$$
\frac{a}{q(z)}-\frac{z q^{\prime}(z)}{q(z)} \prec \frac{a}{\psi(z)}-\frac{z \psi^{\prime}(z)}{\psi(z)} \quad(z \in \mathbb{U}) .
$$

The assertion (3.7) of Theorem 2 now follows from Lemma 3 .
Remark 1. If the function $\psi(z)$ is such that

$$
\mathfrak{R}\{\psi(z)\}>0 \quad(z \in \mathbb{U})
$$

and if $z \psi^{\prime}(z) / \psi(z)$ is starlike in \mathbb{U}, then the condition (3.5) is satisfied for $a>0$.
In its special case when

$$
a=\delta+p \quad \text { and } \quad c=1
$$

Theorem 2 yields the following result.
Corollary 2. Let the function $\psi(z) \neq 0(z \in \mathbb{U})$ be analytic and univalent in \mathbb{U} and suppose that $z \psi^{\prime}(z) / \psi(z)$ is starlike univalent in \mathbb{U} and

$$
\mathfrak{R}\left(\frac{\delta+p}{\psi(z)}+\left[1+\frac{z \psi^{\prime \prime}(z)}{\psi^{\prime}(z)}-\frac{z \psi^{\prime}(z)}{\psi(z)}\right]\right)>0 \quad(z \in \mathbb{U} ; \delta \in \mathbb{R} \backslash(-\infty, p])
$$

If $f \in \mathcal{A}$ satisfies the following subordination:

$$
\frac{D^{\delta+p+1} f(z)}{D^{\delta+p} f(z)} \prec \frac{1}{\delta+p+1}\left(1+\frac{\delta+p-z \psi^{\prime}(z)}{\psi(z)}\right) \quad(z \in \mathbb{U}),
$$

then

$$
\frac{D^{\delta+p-1} f(z)}{D^{\delta+p} f(z)} \prec \psi(z) \quad(z \in \mathbb{U}) .
$$

Lastly, by using a similar technique as above, we can prove Theorem 3 below.
Theorem 3. If $f \in \mathcal{A}(p, n)$ and

$$
\begin{align*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} & \prec p \frac{1+B z^{n}}{1+A z^{n}}-\frac{n(A-B) z^{n}}{\left(1+A z^{n}\right)\left(1+B z^{n}\right)}, \tag{3.9}\\
& (z \in \mathbb{U} ;-1 \leqq B<A \leqq 1)
\end{align*}
$$

then

$$
\begin{equation*}
\frac{p f(z)}{z f^{\prime}(z)} \prec \frac{1+A z^{n}}{1+B z^{n}} \quad(z \in \mathbb{U}) . \tag{3.10}
\end{equation*}
$$

Proof. Let the function $q(z)$ be defined by

$$
\begin{equation*}
q(z):=\frac{p f(z)}{z f^{\prime}(z)} \quad(z \in \mathbb{U} ; f \in \mathcal{A}(p, n)) \tag{3.11}
\end{equation*}
$$

so that

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{p}{q(z)}-\frac{z q^{\prime}(z)}{q(z)} \tag{3.12}
\end{equation*}
$$

If the function $\psi(z)$ is defined by

$$
\psi(z):=\frac{1+A z^{n}}{1+B z^{n}} \quad(-1 \leqq B<A \leqq 1 ; z \in \mathbb{U})
$$

then, in view of (3.9) and (3.12), we get

$$
\frac{p}{q(z)}-\frac{z q^{\prime}(z)}{q(z)} \prec \frac{p}{\psi(z)}-\frac{z \psi^{\prime}(z)}{\psi(z)} \quad(z \in \mathbb{U})
$$

The result (Theorem 3) now follows from Lemma 3 (with $\alpha=p$ and $\beta=1$).
The following result is a simple consequence of Theorem 3.
Corollary 3. If $f \in \mathcal{A}$ satisfies the following subordination:

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1-4 z+z^{2}}{1-z^{2}} \quad(z \in \mathbb{U})
$$

then

$$
\begin{equation*}
\mathfrak{R}\left(\frac{f(z)}{z f^{\prime}(z)}\right)>0 \quad(z \in \mathbb{U}) \tag{3.13}
\end{equation*}
$$

or, equivalently, f is starlike in \mathbb{U} (that is, $f \in \mathcal{S}^{*}$).

Remark 2. The foregoing analysis can be applied mutatis mutandis in order to rederive Theorem A of Owa et al. [5]. Indeed, if

$$
\begin{equation*}
f(z) \in \mathcal{A}(p, n ; \alpha) \quad\left(p<\alpha \leqq p+\frac{1}{2} n\right) \tag{3.14}
\end{equation*}
$$

then we can first show that

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \psi(z) \quad(z \in \mathbb{U})
$$

where

$$
\begin{gathered}
\psi(z):=p \frac{1+B z^{n}}{1+A z^{n}}-\frac{n(A-B) z^{n}}{\left(1+A z^{n}\right)\left(1+B z^{n}\right)}=\frac{p\left(1+B z^{n}\right)^{2}-n(A+1) z^{n}}{\left(1+A z^{n}\right)\left(1-z^{n}\right)} \\
\left(A=1-2 \beta ; B=-1 ; \beta=\frac{2 p+n}{2 \alpha+n}\right)
\end{gathered}
$$

By letting

$$
u(\theta):=\Re\{\psi(z)\} \quad\left(z=e^{i \theta / n} \in \partial \mathbb{U} ; 0 \leqq \theta \leqq 2 n \pi\right),
$$

it is easily seen for

$$
u(\theta)=\frac{(1-A)[2 p+n(1+A)-2 p \cos \theta]}{2\left(1+A^{2}+2 A \cos \theta\right)} \quad(0 \leqq \theta \leqq 2 n \pi)
$$

that

$$
\begin{equation*}
u(\theta) \geqq u(\pi)=\frac{(1-A)[2 p+n(1+A)+2 p]}{2(1-A)^{2}}=\alpha \quad(0 \leqq \theta \leqq 2 n \pi) \tag{3.15}
\end{equation*}
$$

which shows that $q(\mathbb{U})$ contains the half-plane $\mathfrak{R}(w) \leqq \alpha$, where $q(z)$ is given, as before, by (3.11). Thus, under the hypothesis (3.14), we have the subordination (3.9) and hence (by Theorem 3) also the subordination (3.10), which leads us to the assertion (1.5) of Theorem A

References

[1] J. DZIOK AND H.M. SRIVASTAVA, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[2] J.-L. LIU AND H.M. SRIVASTAVA, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2001), 566-581.
[3] S.S. MILLER and P.T. MOCANU, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics (No. 225), Marcel Dekker, New York and Basel, 2000.
[4] M. NUNOKAWA, A sufficient condition for univalence and starlikeness, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 163-164.
[5] S. OWA, M. NUNOKAWA AND H.M. SRIVASTAVA, A certain class of multivalent functions, Appl. Math. Lett., 10 (2) (1997), 7-10.
[6] H. SAITOH, A linear operator and its applications of first order differential subordinations, Math. Japon., 44 (1996), 31-38.
[7] H. SAITOH, M. NUNOKAWA, S. FUKUI AND S. OWA, A remark on close-to-convex and starlike functions, Bull. Soc. Roy. Sci. Liège, 57 (1988), 137-141.
[8] R. SINGH and S. SINGH, Some sufficient conditions for univalence and starlikeness, Colloq. Math., 47 (1982), 309-314.
[9] H.M. SRIVASTAVA AND S. OWA (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.

[^0]: Key words and phrases: Analytic functions, Univalent and multivalent functions, Differential subordination, Schwarz function, Ruscheweyh derivatives, Hadamard product (or convolution), Linear operator, Convex functions, Starlike functions.

[^1]: ISSN (electronic): 1443-5756
 (c) 2003 Victoria University. All rights reserved

 The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353

 122-03

