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Abstract

In this paper, we define a class of semiorders (or unit interval orders) that arose
in the context of polyhedral combinatorics. In the first section of the paper, we will
present a pure counting argument equating the number of these interesting (connected
and irredundant) semiorders on n + 1 elements with the nth Riordan number. In the
second section, we will make explicit the relationship between the interesting semiorders
and a special class of Motzkin paths, namely, those Motzkin paths without horizontal
steps of height 0, which are known to be counted by the Riordan numbers.

1 Counting Interesting Semiorders

We begin with some basic definitions.

Definition 1. A partially ordered set (X,≺) is a semiorder if it satisfies the following two
properties for any a, b, c, d ∈ X.

• If a ≺ b and c ≺ d, a ≺ d or c ≺ b.

• If a ≺ b ≺ c, then d ≺ c or a ≺ d.

Semiorders are also known as unit interval orders in the literature. This name comes
from the fact that each element x ∈ X can be identified with an interval on the real line. All
intervals are the same length, and two intervals intersect if and only if their corresponding
elements are incomparable. If the intervals for a and b do not intersect, and the interval
for a lies to the left of the interval for b, then a ≺ b. We may assume without loss of
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generality that the intervals in our representation have different endpoints. We define the
predecessor (pred) and successor (succ) sets intuitively: pred(x) = {a ∈ X |a ≺ x} and
succ(x) = {a ∈ X |x ≺ a}. For a semiorder, the predecessor and successor sets are weakly
ordered (for different elements x and y, either pred(x) ⊆ pred(y), pred(y) ⊆ pred(x), or
both, with the same criterion for successor sets). These impose two weak orderings on the
set X, and their intersection is a weak order known as the trace.

A semiorder is interesting if it satisfies the following two properties.

• (Connectedness) Each element is incomparable with its immediate predecessors in the
trace.

• (Irredundancy) No two elements have both the same predecessor sets and the same
successor sets.

We use In to denote the set of all interesting semiorders on n elements.
The criterion of connectedness guarantees that the semiorder is represented by a topo-

logically connected set of distinct intervals on the real line. The criterion of irredundancy
guarantees that the semiorder has a linear order as its trace (i.e., no two elements are in-
comparable in the trace). These criteria came about from the study of the polyhedral set of
all representations of a semiorder. This polyhedron has one dimension for each element of
the semiorder, save for the smallest element in the trace, and one dimension for the length
of the intervals (which we denote the r-value). The connectedness criterion guarantees that
the polyhedron is bounded along each hyperplane corresponding to a fixed r value (that is,
if the interval length is bounded, then so is any numeric representation of the semiorder).
The irredundancy criterion guarantees that each dimension will take on a different set of
values for the polyhedron (that is, no two elements may be represented by the same interval
in any representation of the semiorder). Though the motivation comes from the study of
this polyhedron, the remainder of the paper will focus on the properties of the semiorders
and an exploration of the following theorem.

Theorem 1. The number of interesting semiorders on n + 1 elements is the nth Riordan
number, rn. That is, |In| = rn.

The Riordan numbers (1,0,1,1,3,6,15,36,91,...) are found at [5] (A005043) and explored
in depth by Bernhart in [2]. This theorem is an order-theoretic analog of a graph-theoretic
result of Hanlon [3].

We prove the result by showing that the number of interesting semiorders on n + 1
elements, which we will denote ρn, satisfies the same recurrence relation as do the Riordan
numbers, namely that

cn =
n

∑

k=0

(

n

k

)

ρk with ρ0 = 1

where cn = 1
n+1

(

2n

n

)

is the nth Catalan number (sequence [A000108]). The above recurrence
for the Riordan numbers was proven in detail by Chen et. al. in [4].

Proof. We first check that the base case holds, namely that there is 1 interesting semiorder
on 1 element (ρ0 = 1), which is the only semiorder on one element.
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A semiorder on n + 1 elements can be represented by an n + 1 by n + 1 0-1 matrix, A,
with the rows and columns labeled by the semiorder elements. The entry Ai,j is 1 if element
i is above element j in the semiorder, and 0 otherwise. If the labels on the rows and columns
are in accordance with the trace, then the matrix will be in echelon form with each row
beginning with a string of zeroes and ending with a (possibly empty) string of ones. The
set of leading ones in each row will form a ‘staircase’ pattern, as in Figure 2. We can move
along the steps to obtain a path from the upper right to the lower left corner of the matrix.
Since this path never goes below the diagonal, we have as many semiorders on n elements
as we do lattice paths from (0, 0) to (n + 1, n + 1) that don’t go below the line y = x, the
number of which is well known to be the n + 1st Catalan number, cn+1.

If we restrict our attention to connected semiorders, the matrix has no non-zero entries
in the sup-diagonal (ai,i+1) or below. Hence, the lattice paths in question can be viewed as
going from (1, 0) to (n, n + 1) without crossing the line y = x + 1, which are just counted by
the nth Catalan number, cn.

Suppose that there are ρk interesting semiorders on k+1 elements, and take an arbitrary
connected semiorder on n+1 elements. Either it is irredundant, or for some pairs of elements
xi and xi+1 which are adjacent in the trace, xi and xi+1 have the same predecessor sets and
successor sets. There are n such adjacent pairs which might be ‘the same’ in this way. For
each pair that is the same, iteratively replace them with a single element. If there are n− k
such pairs the same, then what results is an interesting semiorder on n + 1 − (n − k) =
k + 1 elements. There are ρk interesting semiorders on k + 1 elements, and hence there
are

(

n

n−k

)

ρk =
(

n

k

)

ρk orders on n + 1 elements which reduce to an interesting semiorder on
k + 1 elements. Summing over all possible values of k gives the desired recursion. Therefore
ρn = rn, the nth Riordan number.

2 Semiorder/Motzkin Path Bijection

It is known that the Riordan numbers count the number of Motzkin paths without hor-
izontal steps of height zero. In the remainder of the paper, we make explicit a bijection
between semiorders and these Motzkin paths. We begin with some more terminology about
semiorders, and we follow definitions similar to those of Pirlot [6] for two other relations on
the elements of a semiorder, nose relations and hollow relations.

2.1 Definitions and Terminology

In terms of the matrix A, we have that aNb if Aab = 1, and changing that 1 to a 0 leaves a
staircase matrix pattern. We have that cHd if Acd = 0, and changing that 0 to a 1 leaves a
staircase matrix pattern. We make another definition in terms of predecessor and successor
sets.

Definition 2. The relations N and H are defined as follows, with xj ≺T xi

• xiNxj if xj ∈ pred(xi), xj+1 6∈ pred(xi), and xj 6∈ pred(xi−1)
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• xiHxj if xj 6∈ pred(xi), xj−1 ∈ pred(xi), and xj ∈ pred(xi+1)
1

As shown in [6], and in explicit detail in [7], the semiorder can be reconstructed in its
entirety by its nose and hollow relations. We also say that xi noses xj if xiNxj, and similarly,
xi hollows xj if xiHxj.

Definition 3. A Motzkin path of order n > 0 is a walk from the point (0, 0) to the point
(n, 0) along integer lattice points, none of which lie below the x-axis, consisting of three types
of steps.

• Up-steps from a point (i, j) to (i + 1, j + 1)

• Horizontal steps from a point (i, j) to a point (i + 1, j)

• Down-steps from a point (i, j) to a point (i + 1, j − 1).

We denote by Pi the point on the path with x-coordinate i (0 ≤ i ≤ n) .

Motzkin paths are a generalization of the classic Catalan paths. The Catalan paths are
often viewed as going from (0,0) to (k, k), and consisting of k horizontal and k vertical steps
(that stay above the ‘baseline’ y = x). By rotating 45◦ and using the described up-steps
and down-steps, a Catalan path can be viewed as going from (0, 0) to (2k, 0) (and staying
above the ‘baseline’ y = 0). The primary difference between Catalan and Motzkin paths is
that Motzkin paths allow for horizontal steps. As such, we can construct such paths from
(0, 0) to (n, 0) for n even or odd. We further narrow our focus to the set of paths that will
correspond to our set of semiorders.

Definition 4. A Riordan path of order n is a Motzkin path of order n in which no
horizontal steps occur on the horizontal axis of the plane. We will denote the set of Riordan
paths of order n by Rn.

We will make an explicit bijection between these Riordan paths and the set of interesting
semiorders. We begin by closely examining the Riordan paths.

Definition 5. Let Pi represent the ith point in a Riordan path of order n, where 1 < i < n.
There are nine possibilities for any given point Pi.

(i) Pi is a hard peak if Pi lies vertically above both of the points Pi−1, Pi+1.

(ii-iii) Pi is a positive (negative) soft peak if Pi lies vertically above the point Pi−1 (Pi+1),
and level with the point Pi+1 (Pi−1).

(iv) Pi is a hard dip if Pi lies vertically below both of the points Pi−1, Pi+1.

(v-vi) Pi is a positive (negative) soft dip if Pi lies vertically below the point Pi+1 (Pi−1),
and level with the point Pi−1 (Pi+1).

1The definition given here is the inverse of the relation defined in [6], but we use this for the ease in
discussing the bijection in the remainder
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(vii-viii) Pi is a positive (negative) slope if it lies vertically above (below) Pi−1 and vertically
below (above) Pi+1.

(ix) Pi is a level point if it lies vertically level with Pi−1, Pi+1

The nine types of points are shown graphically in Figure 1. Thus, each Riordan path is
uniquely defined by its list of point types. We now define several operations on the Riordan
paths and some useful terminology associated with those operations.

Definition 6. The sum of two Riordan paths Mm,Mn of order m,n, respectively, is the
Riordan path M in which points Pi for (1 ≤ i < m) are identical to those of Mm, and points
P(m−1)+i in M are identical to points Pi in Mn for 1 ≤ i ≤ n. This sum is denoted Mm +Mn.

Definition 7. A Riordan path M is splittable if it can be expressed as the sum of two
Riordan paths of lesser order.

Definition 8. Let P1, P2, . . . , Pn be the ordered set of points of M , where M ∈ In, and Pi

lies adjacently to the right of Pi−1 for i > 1. The reverse of M , denoted M r, is the ordered
set of points Qn, Qn−1, . . . , Q1 with the following property: the steps of M r are defined by
(Qk−1, Qk) = (Pn−k+2, Pn−k+1) and (Qk, Qk+1) = (Pn−k, Pn−k+1). Equivalently, if Pn−k+1 is a
positive (negative) soft peak or dip, then Qk is a negative (positive) soft peak or dip. Similarly,
if Pn−k+1 is positive (negative) slope, then Qk is a negative (positive) slope. Finally, if Pn−k+1

is either a hard peak, a hard dip, or a level point, Qk is the same type of point. Note that
this results in M r appearing graphically as the mirror image of M .

We will furthermore let Ir denote the reverse of a semiorder I, which we will define as
being equivalent to its dual; that is, Ir = I∂ for any I ∈ In, as defined in [1].

2.2 Construction of the Bijection

We will now define a mapping Fn : In → Rn. Our bijection uses the nose and hollow relations
on the elements of the semiorder to explicitly construct a Riordan path. We prove the
bijectiveness of the mapping inductively, using our operations to construct larger semiorders
from smaller ones.

Let I ∈ In, and let xi denote the ith element of I where 1 < i < n. We will now define
the nine possible cases for xi, and, for each, the type of point that xi will correspond to in
the Riordan path.

• 2 Hollows - There exist elements a, b such that aHxi, xiHb, and there exists no element
c such that cNxi or xiNc. In this case, we set the ith point in the path to a hard peak.

• 2 Noses - There exist elements a, b such that aNxi, xiNb, and there exists no element
c such that cHxi or xiHc. In this case, we set the ith point in the path to a hard dip.

• 2 Hollows, 1 Nose - There exist elements a, b such that aHxi, xiHb, and there exists
an element c such that xiNc (cNxi). In this case, we set the ith point in the path to
a positive (negative) soft peak.
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Figure 1: The nine possible types of points in a Riordan path.
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• 2 Noses, 1 Hollow - There exist elements a, b such that aNxi, xiNb, and there exists
an element c such that xiHc (cHxi). In this case, we set the ith point in the path to
a positive (negative) soft dip.

• 1 Nose, 1 Hollow - There exist elements a, b such that xiNa and xiHb (aNxi and bHxi),
and there exists no elements c such that cNxi or cHxi (xiNc or xiHc). In this case,
we set the ith point in the path to a positive (negative) slope.

• 2 Noses, 2 Hollows - There exist elements a, b, c, d such that aNxi,bHxi,xiNc,xiHd. In
this case, we set the ith point in the path to be a level point.

Since any two semiorders with different nose and hollow relations are different (as shown
by Pirlot in [6]), as are any two paths with a different list of point types, this gives a well-
defined map from In to Rn. Since we showed in part (i) that In and Rn have the same
size, we need only show that the map is onto for each value of n to prove each map Fn is a
bijection. We formalize this here.

Theorem 2. Let n > 2. If Fn : In → Rn is onto, then Fn is a bijection.

Definition 9. Let xi be the ith element in the trace of an interesting semiorder I ∈ In.

• We say that xi initiates a nose (hollow) if there exists an element b ∈ I such that
xiNb (xiHb) and no element a ∈ I such that aNxi (aHxi).

• We say that xi terminates a nose (hollow) if there exists an element a ∈ I such that
aNxi (aHxi) and no element b ∈ I such that xiNb (xiHb).

• We say that xi continues a nose (hollow) if there exist elements a, b ∈ I such that
aNxi (aHxi) and xiNb (xiHb).

Given that I is an interesting semiorder, we see that there are a priori 16 types of elements
in our semiorder (Each point may be the starting and/or ending point of a nose and/or a
hollow, or not), yet we’ve claimed there are only nine types of elements. We now show that
there are no other possible cases for the element xi given that I is an interesting semiorder.
The following theorem provides a set of restrictions on xi that follow from the properties of
I.

Theorem 3. Let I be a semiorder of order n and let xi be the ith element of I. If I is
interesting, then xi has the following properties:

(i) If xi initiates a hollow, then xi does not terminate a nose.

(ii) If xi terminates a hollow, then xi does not initiate a nose.

(iii) xi shares a nose/hollow relationship with at least two distinct elements a, b ∈ I.

Proof. Let I ∈ In and let xi be the ith element of I.
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Figure 2: An example of an interesting semiorder I, given in matrix and interval represen-
tations, and its corresponding path.
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Case i: Suppose xi initiates a hollow. Thus we have that no element hollows xi, which implies
that succ(xi) = succ(xi+1). Now suppose xi terminates a nose, implying that xi does
not nose any element of I. Thus we have that pred(xi) = pred(xi+1). We have therefore
shown that xi and xi+1 are redundant elements, a contradiction. We conclude that xi

does not terminate a nose.

Case ii: Suppose xi terminates a hollow. Thus we have that xi hollows no element of I, which
implies that pred(xi) = pred(xi−1). Now suppose xi initiates a nose, implying that no
element of I noses xi. Thus we have that succ(xi) = succ(xi−1). Again, this shows
redundancy between elements xi and xi−1, contradicting the fact that I is interesting.
We conclude that xi does not initiate a nose.

Case iii: This case follows directly from the arguments in the previous cases.

The following theorems will provide the necessary procedures for building interesting
semiorders from those of smaller order based on the differences between their corresponding
Riordan paths. Given two Riordan paths of orders m and n, respectively, we may use the
machinery provided in Theorem 4 to “glue” these two Riordan paths together at the ends, as
well as construct the semiorder associated with our result. Theorem 5 will allow us to take
the mirror image of a Riordan path and find its associated semiorder, based on the semiorder
of the original. Using Theorem 5 in conjunction with the different cases of Theorem 6 we
will be able to take any Riordan path and add a horizontal step anywhere above the axis,
and find the semiorder associated with our result. Finally, Theorem 7 will allow us to add
an up-step and a down-step to the beginning and end of a Riordan path (respectively) and,
again, generate the corresponding semiorder

By generating semiorders from paths of smaller order, we will be able to prove inductively
that Fn is onto for all n > 2.

Theorem 4. If two Riordan paths Mm ∈ Rm,Mn ∈ Rn have preimages under Fm and Fn,
respectively, the Riordan path Mm + Mn has a preimage under Fm+n−1.

Proof. Let Mm and Mn be the images of two interesting semiorders Im, In under Fm, Fn,
respectively. We will now construct a semiorder I ∈ Im+n−1 and show that its image under
Fm+n−1 is Mm + Mn by constructing its incidence matrix, which we will denote A. We will
denote the incidence matrices of Im and In as B,C, respectively.

Let xm denote the last element in the trace of Im and let y1 denote the first element in
the trace of In. In adding our two Riordan paths together we are essentially combining the
points xm and y1 into one, with their corresponding element in I being denoted x. Since Im

and In are interesting semiorders, let αHxm and xmNβ, where α is the pth element in the
trace of Im and β is the qth element in the trace of In. We have the entries of A as follows:
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Im 1

0 In

→

1 2 · · · α · · · x · · · β q · · ·
1
2
...
p 0 0 · · · 0 1 1 · · · 1 1 · · ·
α 0 0 · · · 0 0 0 · · · 0 1 · · ·
... 0 0 · · · 0 0 0 · · · 0 1 · · ·
x 0 0 · · · 0 0 0 · · · 0 1 · · ·
... 0 · · · 0 0 · · ·
β

Figure 3: Constructing the Preimage of Mm + Mn

Ai,j =































B(i,j), if i < p, j ≤ m;
C(i−m+1,j−m+1) if i > m, j ≥ m;
0, if i > m, j < m;
0, if p < i ≤ m, j < m + q − 1;
1, if i < p, j > m;
1, if p < i ≤ m, j ≥ m + q − 1

This procedure simply adds all elements of In to the predecessor sets of the first p − 1
elements in Im, and adds the last n− q + 1 elements of In to the predecessor sets of the last
m − p + 1 elements of Im. This is demonstrated in Figure 3. Since we are simply adding
elements to the predecessor sets of elements from Im, we have that the irredundancy and
connectedness of I follow necessarily from those of Im and In. Thus our resultant semiorder
I is interesting.

Since I ∈ Im+n−1, we will now show that Fm+n−1 maps I to Mm + Mn. Note that
when we restrict A to rows and columns 1, . . . ,m, we obtain the matrix A, and thus the
only relationship difference between the elements of Im and their corresponding elements of
I is that αHxm in Im and αHβ in I. Similarly, when restricting A to rows and columns
m, . . . ,m + n − 1, we obtain the matrix B, and our only difference is that xnHβ in In and
αHβ in I. Note that α and β are therefore mapped to the same type of point (with reference
to Definition 5) as they were in Fm and Fn, respectively, since α still hollows another element
and an element still hollows β. Applying our function Fm+n−1 to I, we therefore find that the
shape of the first m points of our path is equivalent to that of Mm. Since noses are preserved
by our procedure, x is a hard dip. This implies that x is followed by an up-step, just as is
xn in Mn. Finally, we find that the shape of the last n points of the path is equivalent to
that of Mn. We have therefore shown that Fm+n−1(I) = Mm + Mn.

Theorem 5. If M is a Riordan path of order n and has a preimage I under Fn, then M r

has a preimage under Fn, namely Ir.

Proof. Let M ∈ Rn, let {Pk}
n
k=1 be the ordered set of points of M , and suppose Fn(I) = M ,

where I ∈ In. Let x ∈ I. If aHx for some element a ∈ I, then xHa in Ir, since pred(x) in I
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Reassigning Noses and Hollows: Specific Cases
Hard Peak if {pi}

k
i=1, {qi}

k
i=1 6= ∅ → Shift Summary Table

if {pi}
k
i=1 = {qi}

k
i=1 = ∅ → Set x0Hx1.

Positive Soft Peak if {pi}
k
i=1, {qi}

k
i=1 6= ∅ → Shift Summary Table

if {pi}
k
i=1 = {qi}

k
i=1 = ∅ → Set x0Hx1.

Positive Soft Dip {pi}
k
i=1, {qi}

k
i=1 6= ∅ → Shift Summary Table

Positive Slope {pi}
k
i=1, {qi}

k
i=1 6= ∅ → Shift Summary Table

Hard Dip Either Case → Shift Summary Table

is equal to succ(x) in Ir. This applies analogously to the cases of aNx, xNa, and xHa in I.
Thus if x ∈ I is mapped to a positive (negative) soft peak or dip, then x ∈ Ir is mapped to
a negative (positive) soft peak or dip. Similarly, if x ∈ I is mapped to a positive (negative)
slope, then x ∈ Ir is mapped to a negative (positive) slope. If x ∈ I is mapped to either a
hard peak, a hard dip, or a level point, x ∈ Ir is mapped to the same type of point. Let
Fn(Ir) = M ′ and let {Qk}

n
k=1 represent the ordered set of points of M ′.

Since the ordering of elements in the trace of Ir is reversed with respect to their ordering
in the trace of I, we now have that each point Qk of M ′ corresponds to that of Pn−k+1 with
respect to the element they represent in Ir and I, respectively. Thus we have shown that
M ′ = M r, and that the preimage of M r under Fn is Ir.

Theorem 6. Let Pj denote the jth point in a Riordan path M ∈ Rn where 1 < j < n.
Furthermore, let Mh

j denote the path P1, . . . , Pj−1, Pa, Pb, Pj+1, . . . , Pn where (Pj−1, Pa) and
(Pb, Pj+1) are the same types of steps as (Pj−1, Pj) and (Pj, Pj+1) in M , respectively, and
(Pa, Pb) is a horizontal step. We describe this process as adding a horizontal step to point
Pj, which is shown graphically in Figures 5 and 6. If M has a preimage under Fn, and Mh

j

is a Riordan path, then Mh
j has a preimage under Fn+1.

Shift Summary Table
I Ih

j

aHb (a < b < x or x < a < b) aHb
aNb (a < b < x or x < a < b) aNb

p1Hx0

piHqi (pi < x < qi) piHqi−1

x1Hqk

r1Nx0

riNsi (ri < x < si) riNsi−1

x1Nsl
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Proof. Let M ∈ Rn, Pj, and Mh
j be as defined above, and suppose M has a preimage I

under Fn. The following notation will be used when applicable in each case: Let x denote
the element of I corresponding to Pj. Let {pi}

k
i=1 be the possibly empty set of elements

preceding x in the trace of I such that piHqi, where {qi}
k
i=1 is a set of elements succeeding

x in the trace of I. Let {ri}
l
i=1 be the set of elements preceding x in the trace of I such that

riNsi, where {si}
l
i=1 is a set of elements succeeding x in the trace of I. Note that in our first

four cases, this set is trivially nonempty. Let αHx, xHβ, γNx, xNδ, if such elements exist.
Now, let Ih

j denote the semiorder in which the first j − 1 elements and the last n − j
elements are obtained from their corresponding elements in I. These elements will inherit
all nose/hollow relationships from I with the exception of those involving α, β, γ, δ, and x,
those of the form piHqi, and those of the form riNsi. Between these elements we will place
two elements x0, x1, in that order.

In each following case we set piHqi−1, riNsi−1 for i > 1, essentially “shifting” our noses
and hollows to make room for those of the newly-added point. We will then construct the
remaining nose/hollow relationships of Ih

j , and show that Ih
j ∈ In and Fn(Ih

j ) = Mh
j .

Case 1: Pj is a hard peak. Let Ih
j have the following properties: p1Hx1, x1Hβ, αHx0,

x0Hqk, r1Nx1, and x0Nsl. If our sets {pi}
k
i=1 is empty, we set x0Hx1. By this construction

every element in Ih
j , x0 and x1, has the same number and type of nose/hollow relationships

as their corresponding elements of I. Furthermore, with the definition of the nose/hollow
relationships of x0 and x1, (x0, x1) is now a horizontal step, with x0 mapping to a positive
soft peak and x1 mapping to a negative soft peak. Thus we have shown that if I ∈ In, then
Fn+1(I

h
j ) = Mh

j .
Let A denote the incidence matrix of I. We will investigate the incidence matrix of I,

which we will denote Ah
j , with the purpose of showing that I ∈ In. Ah

j is constructed as
follows: We start with the matrix A, and duplicate the row and column corresponding to
x, placing the copy next to the original. These two duplicate rows and columns are x0 and
x1. The resulting matrix implies that αHx1, so we add a “1” in the row corresponding to
α so that we have αHx0. Now let ri correspond to the zith row in the matrix for all i. We
add enough 1’s in rows zi through zi+1 − 1 so that the nose riNsi has now become riNsi−1

and r1Nx1. Note that this furthermore shifts each hollow such that we now have piHqi−1.
Finally, we add enough 1’s in the row corresponding to x0 so that we have x0Nsk. This
procedure is exemplified in Figures 4, 5, and 6.

Let a, b ∈ Ih
j where a immediately precedes b in the trace of Ih

j . Since p1Hx1, x0Hqk,
and the pair x0, x1 have different predecessor sets, neither a nor b are the elements x0 or x1.
Suppose pred(a) = pred(b) and succ(a) = succ(b). Then a does not nose any element, and
no element hollows a in Ia. These statements are also true in I by our construction of Ih

j .
This implies that pred(a) = pred(b) and succ(a) = succ(b) in I, a contradiction. Thus, Ih

j

is irredundant. We must now verify the connectedness of Ih
j . By our construction of Ih

j , no
element noses an element adjacent to it in the trace; the noses r1Nx1, x0Nsl, and riNsi−1

are all between non-adjacent elements. Since all other nose relationships were inherited from
I, this shows that Ih

j is connected. We conclude that Ih
j ∈ In+1.

Case 2: Pj is a positive soft peak. Let Ih
j have the following properties: p1Hx1, x1Hβ,

αHx0, x0Hqk, r1Nx1, x1Nδ, and x0Nsk. If {pi}
k
i=1 is empty, then set x0Hx1. Analogously
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1 α/r1 p1 r2 p2/r3 x q1/s1 q2/s2 β/s3 10
1 0 0 0 1 1 1 1 1 1 1

α/r1 0 0 0 0 0 0 1 1 1 1
p1 0 0 0 0 0 0 0 1 1 1
r2 0 0 0 0 0 0 0 1 1 1

p2/r3 0 0 0 0 0 0 0 0 1 1
x 0 0 0 0 0 0 0 0 0 1

q1/s1 0 0 0 0 0 0 0 0 0 1
q2/s2 0 0 0 0 0 0 0 0 0 1
β/s3 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0

The incidence matrix of a semiorder in I10. The associated Riordan path is shown in
Figure 5.

1 α/r1 p1 r2 p2/r3 x0 x1 q1/s1 q2/s2 β/s3 10
1 0 0 0 1 1 1 1 1 1 1 1

α/r1 0 0 0 0 0 0 0 1 1 1 1
p1 0 0 0 0 0 0 0 0 1 1 1
r2 0 0 0 0 0 0 0 0 1 1 1

p2/r3 0 0 0 0 0 0 0 0 0 1 1
x0 0 0 0 0 0 0 0 0 0 0 1
x1 0 0 0 0 0 0 0 0 0 0 1

q1/s1 0 0 0 0 0 0 0 0 0 0 1
q2/s2 0 0 0 0 0 0 0 0 0 0 1
β/s3 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0

The incidence matrix after duplication.
1 α/r1 p1 r2 p2/r3 x0 x1 q1/s1 q2/s2 β/s3 10

1 0 0 0 1 1 1 1 1 1 1 1
α/r1 0 0 0 0 0 0 1 1 1 1 1
p1 0 0 0 0 0 0 0 1 1 1 1
r2 0 0 0 0 0 0 0 1 1 1 1

p2/r3 0 0 0 0 0 0 0 0 1 1 1
x0 0 0 0 0 0 0 0 0 0 1 1
x1 0 0 0 0 0 0 0 0 0 0 1

q1/s1 0 0 0 0 0 0 0 0 0 0 1
q2/s2 0 0 0 0 0 0 0 0 0 0 1
β/s3 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0

The incidence matrix after shifting rows α through x0. The associated Riordan path is
shown in in Figure 6.

Figure 4: Constructing the Incidence Matrix Ah
j from A with j = 6
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to our previous case, this construction implies that if Ih
j ∈ In, then Fn+1(I

h
j ) = Mh

j .
Furthermore, the construction of the incidence matrix of Ih

j is identical to that of the
case of a hard peak. In duplicating the row corresponding to Pj, the element x1 is given the
property x1Nδ, as required by our construction of Ih

j . Since the procedure for constructing
the incidence matrix of Ih

j is the same for both the case of the hard peak and the soft peak,
we conclude that Ih

j is an interesting semiorder in the case of a soft peak as well.

Case 3: Pj is a positive soft dip. Let Ih
j have the following properties: p1Hx0, x0Hqk,

x1Hβ, r1Nx1, x1Nδ, γNx0, and x0Nsk. Similar to the previous cases, we have that f Ih
j ∈ In,

then Fn+1(I
h
j ) = Mh

j .
In constructing our matrix, we proceed identically to the case of the hard peak with one

exception: rather than begin adding 1’s with the row corresponding to α (this element does
not exist in this case), we add a ”1” to the row corresponding to γ after duplication so that
γNx0. We then proceed exactly as in the case of a hard peak. Analogously, our resulting
matrix represents an interesting semiorder, and thus we have Fn+1(I

h
j ) = Mh

j .

Case 4: Pj is a positive slope. Let Ih
j have the following properties: p1Hx0, x0Hqk,

x0Nsk, r1Nx1, x1Nδ, and x1Hβ. Similar to the previous cases, we have that f Ih
j ∈ In, then

Fn+1(I
h
j ) = Mh

j .
Again, we construct our matrix in a manner identical to that of the case of the hard

peak, with the following exception: Since α does not exist in this case, we simply ignore this
element and begin adding 1’s wherever necessary. This results in a matrix representing an
interesting semiorder, proving that Fn+1(I

h
j ) = Mh

j for this case as well.

Case 5: Pj is a hard dip.

Lemma. Let P be a hard dip of a Riordan path M with preimage I under Fn, let ni be the
number of noses initiated prior to P , and let nt be the number of noses terminated prior to
P . The height of P is equal to ni − nt − 1.

Proof. Let Pi denote the ith point in M ∈ Rn, let 1 < k < n, let u denote the number
of up-steps prior to Pk, let d denote the number of down-steps prior to Pk, let h denote
the number of hard peaks prior to Pk, and finally let ni and nt denote the number of noses
initiated and terminated prior to Pk, respecitvely.

For i > 1, each point Pi that initiates a nose is preceded by an up-step, and each point
that terminates a nose precedes a downstep, which follows directly from our definition of Fn.
Thus we can associate exactly one up-step to each nose initiated after P1, and exactly one
down-step to each nose terminated.

Each up-step that is not part of a hard peak immediately precedes a point that initiates a
nose, and each down-step that is not part of a hard peak is immediately preceded by a point
that terminates a nose. A hard peak neither initiates nor terminates a nose, and contains
both an up-step and a down-step. We now note that P1 initiates a nose but is not preceded
by an up-step.

Thus we arrive at the following two equations: ni = u− h + 1 (our “+1” comes from the
fact that we do not associate P1 with an up-step) and nt = d − h. Combining these, we get
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that ni − nt = 1 + u − d, or equivalently, ni − nt − 1 = u − d. We conclude that the height
of Pk is equal to ni − nt − 1.

In all previous cases, the fact that Mh
j ∈ Rn+1 has been trivial. This case, however,

provides the possibility of a horizontal step being added on the horizontal axis, which would
result in Mh

j not being a Riordan path. We will thus require that Pj is of height greater
than 0. Equivalently, this means that there are at least two unterminated noses initiated
prior to the point Pj, by the previous lemma. One of these noses is initiated by the point
corresponding to γ, and the rest ensure that our set {ri}

l
i=1 is non-empty.

For this case, we let Ih
j have the following properties: γNx0, x0Nsk, r1Nx1, and x1Nδ.

We add 1’s to our incidence matrix just as in previous cases, starting with the row corre-
sponding to γ and ending with that corresponding to x0. Since there are no noses between
adjacent points, connectedness is guaranteed, and irredundancy is guaranteed by an argu-
ment analogous to that of each previous case.

Finally, we consider the cases of a level point, a negative soft peak, and negative soft dip,
and a negative slope. If Pj is a negative soft peak, negative soft dip, or negative slope, we
have that Mh

j has a preimage under Fn+1 by Theorem 5. If Pj is a level point, then adding
a horizontal step to the point Pj is equivalent to adding a horizontal step to the point Pj−1.
Continuing as necessary, we find that adding a horizontal step to Pj is equivalent to adding
a horizontal step to Pj−i for some 1 < i < j − 2, where Pj−i is not a level point. Since we
have proven that Fn+1(I

h
j ) = Mh

j for every other case, we have therefore proven it for this
case as well.

Theorem 7. Let M ∈ Rn, and let P1, P2, . . . , Pn denote the ordered set of points in M ,
where P1 is the left-most point. Now let Ma denote the path consisting of the ordered points
x, P1, P2, . . . , Pn, y, where Pi in M and (x, P1), (Pn, y) represent an up-step and a down-step,
respectively. If M has a preimage in Fn, then Ma has a preimage under Fn+2.

Proof. Let I be a semiorder such that Fn(I) = M , and let ij denote the jth element in the
trace of I for 1 ≤ j ≤ n. Furthermore, let {pi}

k
i=1, {qi}

k
i=1 denote the set of elements of I such

that piHqi, and let {ri}
l
i=1,{si}

l
i=1 denote the set of elements of I such that riNsi. We will

now define a semiorder Ia as the set ix, i1, . . . , in, iy with noses riNsi+1, ixNs1, rlNiy, and
hollows piHqi+1, ixHq1, and pkHiy. Note that each element i1, . . . , in has the same number
and type of nose/hollow relationships in Ia as in I.

We will first show that Ia is an interesting semiorder. The connectedness of Ia follows
trivially from the connectedness of I, so we will focus on proving irredundancy.

Let a, b ∈ Ia where a immediately precedes b in the trace of Ia. Suppose pred(a) = pred(b)
and succ(a) = succ(b). Then a does not nose any element, and no element hollows a
in Ia. These statements are also true in I by our construction of Ia. This implies that
pred(a) = pred(b) and succ(a) = succ(b) in I, a contradiction. We conclude that Ia ∈ In+2.

We will now show that Fn+2(I
a) = Ma. By our construction of Ia, the elements

i2, . . . , in−1 map to points P2, . . . , Pn−2 under Fn+2, respectively. The points i1 and in now
map to positive and negative slopes, respectively, since i1 necessarily hollows and noses two
elements in Ia, and in is necessarily nosed and hollowed by two elements in Ia. This further-
more shows that (x, P1) is an up-step and (Pn, y) is a downstep. Finally, due to the noses
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Figure 5: An example of a Motzkin path M .

Figure 6: The Motzkin path Mh
5
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and hollows constructed for elements ix, iy, we have that they properly correspond to the
first and last elements of a Riordan path, namely Ma.

Theorem 8. The function Fn is a bijection for all n > 2.

Proof. We will prove by induction on n that Fn is onto, with the case n = 3 shown in Figure
7, and case n = 4 given by Theorem 6 and the case n = 3. By Theorem 2, this will show
that Fn is a bijection for all n > 2.

Let n ≥ 5 and assume that Fk is a bijection for all 2 < k < n. Suppose M has a
horizontal step and let M ′ denote the Riordan path of length n− 1 with this horizontal step
deleted. By our inductive hypothesis, this shows that M ′ has a preimage under Fn−1. By
Theorem 6, M has a preimage under Fn.

Now suppose that M has no horizontal steps, and suppose that there exists a point Pi in
M such that Pi is on the horizontal axis and 1 < i < n. Let M1,M2 denote the Riordan paths
consisting of points P1, . . . , Pi and Pi, . . . , Pn, respectively. We have that M1 +M2 = M . By
our inductive hypothesis and Theorem 4, we have that M has a preimage under Fn.

Finally, suppose that M has no horizontal steps and that there are no points other than
P1 and Pn on the horizontal axis. Now let M ′′ denote the path with the first and last steps
deleted. Since there are no horizontal steps and no points on the horizontal axis in M , this
implies that M ′′ has no points below the axis and no horizontal steps on the axis, i.e., it is
a Riordan path. By our inductive hypothesis and Theorem 7, M has a preimage under Fn.

Since these cover every possible case for M , we have shown that Fn is onto. By Theorem
2, Fn is a bijection for all n > 2.

Figure 7: The Riordan path of base case n = 3, as well as its interval representation.
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