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Abstract

We introduce a family of number triangles defined by exponential Riordan arrays,

which generalize Pascal’s triangle. We characterize the row sums and central coeffi-

cients of these triangles, and define and study a set of generalized Catalan numbers.

We establish links to the Hermite, Laguerre and Bessel polynomials, as well as links to

the Narayana and Lah numbers.

1 Introduction

In [1], we studied a family of generalized Pascal triangles whose elements were defined by
Riordan arrays, in the sense of [10, 13]. In this note, we use so-called “exponential Riordan
arrays” to define another family of generalized Pascal triangles. These number triangles are
easy to describe, and important number sequences derived from them are linked to both
the Hermite and Laguerre polynomials, as well as being related to the Narayana and Lah
numbers.

We begin by looking at Pascal’s triangle, the binomial transform, exponential Riordan
arrays, the Narayana numbers, and briefly summarize those features of the Hermite and
Laguerre polynomials that we will require. We then introduce the family of generalized
Pascal triangles based on exponential Riordan arrays, and look at a simple case in depth.
We finish by enunciating a set of general results concerning row sums, central coefficients
and generalized Catalan numbers for these triangles.
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2 Preliminaries

Pascal’s triangle, with general term C(n, k) =
(

n
k

)

, n, k ≥ 0, has fascinated mathematicians
by its wealth of properties since its discovery [6]. Viewed as an infinite lower-triangular ma-
trix, it is invertible, with an inverse whose general term is given by (−1)n−k

(

n
k

)

. Invertibility
follows from the fact that

(

n
n

)

= 1. It is centrally symmetric, since by definition,
(

n
k

)

=
(

n
n−k

)

.
All the terms of this matrix are integers.

By a generalized Pascal triangle we shall understand a lower-triangular infinite integer
matrix T = T (n, k) with T (n, 0) = T (n, n) = 1 and T (n, k) = T (n, n − k). We index all
matrices in this paper beginning at the (0, 0)-th element.

We shall encounter transformations that operate on integer sequences during the course
of this note. An example of such a transformation that is widely used in the study of integer
sequences is the so-called Binomial transform [17], which associates to the sequence with
general term an the sequence with general term bn where

bn =
n

∑

k=0

(

n

k

)

ak. (1)

If we consider the sequence with general term an to be the vector a = (a0, a1, . . .) then we
obtain the binomial transform of the sequence by multiplying this (infinite) vector by the
lower-triangle matrix B whose (n, k)-th element is equal to

(

n
k

)

:

B =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .























This transformation is invertible, with

an =
n

∑

k=0

(

n

k

)

(−1)n−kbk. (2)

We note that B corresponds to Pascal’s triangle. Its row sums are 2n, while its diagonal
sums are the Fibonacci numbers F (n + 1). If Bm denotes the m−th power of B, then the
n−th term of Bma where a = {an} is given by

∑n
k=0m

n−k
(

n
k

)

ak.
If A(x) is the ordinary generating function of the sequence an, then the ordinary generat-

ing function of the transformed sequence bn is 1
1−x

A( x
1−x

). Similarly, if G(x) is the exponential
generating function (e.g.f.) of the sequence an, then the exponential generating function of
the binomial transform of an is exp(x)G(x).

The binomial transform is an element of the exponential Riordan group, which can be
defined as follows.
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The exponential Riordan group [5], is a set of infinite lower-triangular integer matrices,
where each matrix is defined by a pair of generating functions g(x) = 1 + g1x + g2x

2 + . . .
and f(x) = f1x + f2x

2 + . . . where f1 6= 0. The associated matrix is the matrix whose k-th
column has exponential generating function g(x)f(x)k/k! (the first column being indexed by
0). The matrix corresponding to the pair f, g is denoted by (g, f) or R(g, f). The group law
is then given by

(g, f) ∗ (h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .

If M is the matrix (g, f), and a = {an} is an integer sequence with exponential generating
function A (x), then the sequence Ma has exponential generating function g(x)A(f(x)).

We note at this juncture that the exponential Riordan group, as well as the group of
‘standard’ Riordan arrays [10] can be cast in the more general context of matrices of type
Rq(αn, βk;φ, f, ψ) as found in [7, 8, 9]. Specifically, a matrix C = (cnk)n,k=0,1,2,... is of type
Rq(αn, βk;φ, f, ψ) if its general term is defined by the formula

cnk =
βk

αn

resx(φ(x)fk(x)ψn(x)x−n+qk−1)

where resxA(x) = a−1 for a given formal power series A(x) =
∑

j ajx
j is the formal residue

of the series.
For the exponential Riordan arrays in this note, we have αn = 1

n!
, βk = 1

k!
, and q = 1.

Example 1. The Binomial matrix B is the element (ex, x) of the exponential Riordan group.
More generally, Bm is the element (emx, x) of the Riordan group. It is easy to show that the
inverse B−m of Bm is given by (e−mx, x).

Example 2. The exponential generating function of the row sums of the matrix (g, f) is
obtained by applying (g, f) to ex, the e.g.f. of the sequence 1, 1, 1, . . .. Hence the row sums
of (g, f) have e.g.f. g(x)ef(x).

We shall frequently refer to sequences by their sequence number in the On-Line Ency-
lopedia of Integer Sequences [11, 12]. For instance, Pascal’s triangle is A007318 while the
Catalan numbers [18] C(n) =

(

2n
n

)

/(n+ 1) are A000108.

Example 3. An example of a well-known centrally symmetric invertible triangle is the
Narayana triangle Ñ, [14, 15], defined by

Ñ(n, k) =
1

k + 1

(

n

k

)(

n+ 1

k

)

=
1

n+ 1

(

n+ 1

k + 1

)(

n+ 1

k

)

for n, k ≥ 0. Other expressions for Ñ(n, k) are given by

Ñ(n, k) =

(

n

k

)2

−
(

n

k + 1

)(

n

k − 1

)

=

(

n+ 1

k + 1

)(

n

k

)

−
(

n+ 1

k

)(

n

k + 1

)

.
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This triangle begins

Ñ =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .























Note that in the literature, it is often the triangle Ñ(n−1, k−1) = 1
n

(

n
k

)(

n
k−1

)

that is referred

to as the Narayana triangle. Alternatively, the triangle Ñ(n−1, k) = 1
k+1

(

n−1
k

)(

n
k

)

is referred
to as the Narayana triangle. We shall denote this latter triangle by N(n, k). We then have

N =























1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
...

...
...

...
...

...
. . .























with row sums equal to the Catalan numbers C(n).
Note that for n, k ≥ 1, N(n, k) = 1

n

(

n
k

)(

n
k+1

)

. We have, for instance,

Ñ(n−1, k−1) =
1

n

(

n

k

)(

n

k − 1

)

=

(

n

k

)2

−
(

n− 1

k

)(

n+ 1

k

)

=

(

n

k

)(

n− 1

k − 1

)

−
(

n

k − 1

)(

n− 1

k

)

.

The last expression represents a 2× 2 determinant of adjacent elements in Pascal’s triangle.
The Narayana triangle is A001263.

The Hermite polynomials Hn(x) [19] are defined by

Hn(x) = (−1)nex2 dn

dxn
e−x2

.

They obey Hn(−x) = (−1)nHn(x) and can be defined by the recurrence

Hn+1(x) = 2xHn(x) − 2nHn−1(x). (3)

They have a generating function given by

e2tx−x2

=
∞

∑

n=0

Hn(t)

n!
xn.

A property that is related to the binomial transform is the following:
n

∑

k=0

(

n

k

)

Hk(x)(2z)
n−k = Hn(x+ z).

From this, we can deduce the following proposition.
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Proposition 4. For fixed x and y 6= 0, the binomial transform of the sequence n→ Hn(x)yn

is the sequence n→ ynHn(x+ 1
2y

).

Proof. Let z = 1
2y

. Then 2z = 1
y

and hence

n
∑

k=0

(

n

k

)

Hk(x)(y)
k−n = Hn(x+

1

2y
).

That is,
n

∑

k=0

(

n

k

)

Hk(x)y
k = ynHn(x+

1

2y
)

as required.

The Laguerre polynomials Ln(x) [20] are defined by

Ln(x) =
ex

n!

dn

dxn
xne−x.

They have generating function

exp(− tx
1−x

)

1 − x
=

∞
∑

n=0

Ln(t)

n!
xn.

They are governed by the following recurrence relationship:

(n+ 1)Ln+1(t) = (2n+ 1 − t)Ln(t) − nLn−1(t) (4)

3 Introducing the family of centrally symmetric invert-

ible triangles

We recall that the Binomial matrix B, or Pascal’s triangle, is the element (ex, x) of the
Riordan group. For a given integer r, we shall denote by Br the element (ex, x(1 + rx)) of
the Riordan group. We note that B = B0. We can characterize the general element of Br

as follows.

Proposition 5. The general term Br(n, k) of the matrix Br is given by

Br(n, k) =
n!

k!

k
∑

j=0

(

k

j

)

rj

(n− k − j)!
.
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Proof. We have

Br(n, k) =
n!

k!
[xn](ex(x(1 + rx)k)

=
n!

k!
[xn]

∞
∑

i=0

xi

i!
xk

k
∑

j=0

(

k

j

)

rjxj

=
n!

k!
[xn−k]

∞
∑

i=0

k
∑

j=0

(

k

j

)

rj

i!
xi+j

=
n!

k!

k
∑

j=0

(

k

j

)

rj

(n− k − j)!
.

From the above expression we can easily establish that Br(n, k) = Br(n, n − k) and
Br(n, 0) = Br(n, n) = 1.

An alternative derivation of these results can be obtained be observing that the matrix
Br may be defined as the array R1( 1

n!
, 1

k!
; ex, (1 + rx), 1). Then we have

Br(n, k) =
1/k!

1/n!
resx(e

x(1 + rx)kx−n+k−1)

=
n!

k!
resx(

∞
∑

i

xi

i!

k
∑

j

(

k

j

)

rjxjx−n+k−1)

=
n!

k!
resx(

∞
∑

i

k
∑

j

(

k

j

)

rj

i!
xi+j−n+k−1)

=
n!

k!

k
∑

j

(

k

j

)

rj

(n− k − j)!
.

Thus Br is a centrally symmetric lower-triangular matrix with Br(n, 0) = Br(n, n) = 1. In
this sense Br can be regarded as a generalized Pascal matrix. Note that by the last property,
this matrix is invertible.

Proposition 6. The inverse of Br is the element (e−u, u) of the Riordan group, where

u =

√
1 + 4rx− 1

2r
.

Proof. Let (g∗, f̄) be the inverse of (ex, x(1 + rx)). Then

(g∗, f̄)(ex, x(1 + rx)) = (1, x) ⇒ f̄(1 + rf̄) = x.

Solving for f̄ we get

f̄ =

√
1 + 4rx− 1

2r
.

But g∗ = 1
g◦f̄ = e−f̄ .
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This result allows us to easily characterize the row sums of the inverse B−1
r .

Corollary 7. The row sums of the inverse triangle B−1
r are given by 0n = 1, 0, 0, 0, . . ..

Proof. We have B−1
r = (e−u, u) as above. Hence the e.g.f. of the row sums of B−1

r is
e−ueu = 1. The result follows from this.

Example 8. B1 = (ex, x(1 + x)) is given by

B1 =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 9 9 1 0 0 . . .
1 16 42 16 1 0 . . .
1 25 130 130 25 1 . . .
...

...
...

...
...

...
. . .























The row sums of B1 are

1, 2, 6, 20, 76, 312, 1384, 6512, 32400, . . .

or A000898.
From the above, the terms of this sequence are given by

s1(n) =
n

∑

k=0

n!

k!

k
∑

j=0

(

k

j

)

1

(n− k − j)!
.

with e.g.f. g(x)ef(x) = exex(1+x) = e2x+x2

. What is less evident is that

s1(n) = Hn(−i)in

where i =
√
−1. This follows since

e2x+x2

= e2(−i)(ix)−(ix)2

=
∑

n=0

Hn(−i)
n!

(ix)n

=
∑

n=0

Hn(−i)in
n!

xn

and hence e2x+x2

is the e.g.f. of Hn(−i)in. We therefore obtain the identity

Hn(−i)in =
n

∑

k=0

n!

k!

k
∑

j=0

(

k

j

)

1

(n− k − j)!
.

We can characterize the row sums of B1 in terms of the diagonal sums of another related
special matrix. For this, we recall [16] that

Bessel(n, k) =
(n+ k)!

2k(n− k)!k!
=

(

n+ k

2

)

(2k − 1)!!

7
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defines the triangle A001498 of coefficients of Bessel polynomials that begins

Bessel =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 3 0 0 0 . . .
1 6 15 15 0 0 . . .
1 10 45 105 105 0 . . .
1 15 105 420 945 945 . . .
...

...
...

...
...

...
. . .























We then have

Proposition 9. The row sums of the matrix B1 are equal to the diagonal sums of the matrix

with general term Bessel(n, k)2n. That is

Hn(−i)in =
n

∑

k=0

n!

k!

k
∑

j=0

(

k

j

)

1

(n− k − j)!
=

⌊n

2
⌋

∑

k=0

Bessel(n− k, k)2n−k.

Proof. We shall prove this in two steps. First, we shall show that

⌊n

2
⌋

∑

k=0

Bessel(n− k, k)2n−k =

⌊n

2
⌋

∑

k=0

(2k)!

k!

(

n

2k

)

2n−2k =

⌊n

2
⌋

∑

k=0

(2k − 1)!!

(

n

2k

)

2n−k.

We shall then show that this is equal to Hn(−i)in. Now

⌊n

2
⌋

∑

k=0

Bessel(n− k, k)2n−k =
n

∑

k=0

Bessel(n− k

2
,
k

2
)2n− k

2 (1 + (−1)k)/2

=
n

∑

k=0

(n− k
2

+ k
2
)!2n− k

2

2
k

2 (n− k
2
− k

2
)!(k

2
)!

(1 + (−1)k)/2

=
n

∑

k=0

n!

(n− k)!

2n−k

(k
2
)!

(1 + (−1)k)/2

=
n

∑

k=0

k!

(k
2
)!

(

n

k

)

2n−k(1 + (−1)k)/2

=

⌊n

2
⌋

∑

k=0

(2k)!

k!

(

n

2k

)

2n−2k

=

⌊n

2
⌋

∑

k=0

(2k)!

2kk!

(

n

2k

)

2n−k

=

⌊n

2
⌋

∑

k=0

(2k − 1)!!

(

n

2k

)

2n−k.

establishes the first part of the proof. The second part of the proof is a consequence of the
following more general result, when we set a = 2 and b = 1.

8
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Proposition 10. The sequence with e.g.f. eax+bx2

has general term un given by

un =

⌊n

2
⌋

∑

k=0

(

n

2k

)

(2k)!

k!
an−2kbk =

⌊n

2
⌋

∑

k=0

(

n

2k

)

C(k)(k + 1)!an−2kbk.

Proof. We have

n![xn]eax+bx2

= n![xn]eaxebx2

= n![xn]
∞

∑

i=0

aixi

i!

∞
∑

k=0

bkx2k

k!

= n![xn]
∞

∑

i=0

∞
∑

k=0

aibk

i!k!
xi+2k

= n!
∞

∑

k=0

an−2kbk

(n− 2k)!k!

=
∞

∑

k=0

n!

(n− 2k)!(2k)!

(2k)!

k!
an−2kbk

=

⌊n

2
⌋

∑

k=0

(

n

2k

)

(2k)!

k!
an−2kbk.

Corollary 11.

Hn(− a

2
√
b
i)(

√
bi)n =

⌊n

2
⌋

∑

k=0

(

n

2k

)

(2k)!

k!
an−2kbk.

Corollary 12. Let un be the sequence with e.g.f. eax+bx2

. Then un satisfies the recurrence

un = aun−1 + 2(n− 1)bun−2

with u0 = 1, u1 = a.

Proof. Equation 3 implies that

Hn(x) = 2xHn−1(x) − 2(n− 1)Hn−2(x).

Thus
Hn(− a

2
√
b
i) = −2

a

2
√
b
iHn−1(−

a

2
√
b
i) − 2(n− 1)Hn−2(−

a

2
√
b
i).

Now multiply both sides by (
√
bi)n to obtain

un = aun−1 + 2(n− 1)bun−2.

Since

un =

⌊n

2
⌋

∑

k=0

(

n

2k

)

(2k)!

k!
an−2kbk

we obtain the initial values u0 = 1, u1 = a.
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Corollary 13. The binomial transform of
∑⌊n

2
⌋

k=0

(

n
2k

)

(2k)!
k!
an−2kbk is given by

⌊n

2
⌋

∑

k=0

(

n

2k

)

(2k)!

k!
(a+ 1)n−2kbk.

Proof. The e.g.f. of the binomial transform of the sequence with e.g.f. eax+cx2

is exeax+bx2

=
e(a+1)x+bx2

.

Equivalently, the binomial transform of
∑⌊n

2
⌋

k=0

(

n
2k

)

C(k)(k + 1)!an−2kbk is given by

⌊n

2
⌋

∑

k=0

(

n

2k

)

C(k)(k + 1)!(a+ 1)n−2kbk.

We note that in [1], it was shown that the binomial transform of
∑⌊n

2
⌋

k=0

(

n
2k

)

C(k)an−2kbk is
given by

⌊n

2
⌋

∑

k=0

(

n

2k

)

C(k)(a+ 1)n−2kbk.

Corollary 14. The row sums of B1 satisfy the recurrence equation

un = 2un−1 + 2(n− 1)un−2

with u0 = 1, u1 = 2.

We can use Proposition 4 to study the inverse binomial transform of s1(n). By
that proposition, the inverse binomial transform of Hn(−i)in is given by inHn(−i + 1

2i
) =

Hn(− i
2
)in. This is the sequence

1, 1, 3, 7, 25, 81, 331, 1303, 5937, . . .

with e.g.f. ex+x2

. This is A047974 which satisfies the recurrence an = an−1 +2(n−1)an−2. It

is in fact equal to
∑⌊n

2
⌋

k=0 Bessel(n− k, k)2k. The second inverse binomial transform of s1(n)
is the sequence

1, 0, 2, 0, 12, 0, 120, 0, 1680, 0, 30240, . . .

with e.g.f. ex2

. This is an “aerated” version of the quadruple factorial numbers C(n)(n+1)! =
(2n)!

n!
, or A001813.
We now look at the central coefficients B1(2n, n) of B1. We have

B1(2n, n) =
(2n)!

n!

n
∑

j=0

(

n

j

)

1

(n− j)!

= C(n)(n+ 1)!
n

∑

j=0

(

n

j

)

1

(n− j)!

= C(n)(n+ 1)
n

∑

j=0

(

n

j

)2

j!

= C(n)(n+ 1)!Ln(−1).
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Hence
B1(2n, n)

C(n)(n+ 1)!
= Ln(−1).

We note that this is the rational sequence 1, 2, 7
2
, 17

3
, 209

24
, . . .. Two other ratios are of interest.

1. B1(2n,n)
C(2n,n)

= n!Ln(−1) is A002720. It has e.g.f. 1
1−x

exp( x
1−x

). It is equal to the number
of partial permutations of an n-set, as well as the number of matchings in the bipartite
graph K(n, n). Using Equation (4) we can show that these numbers obey the following
recurrence:

un = 2nun−1 − (n− 1)2un−2

with u0 = 1, u1 = 2.

2. B1(2n,n)
C(n)

= (n+ 1)!Ln(−1) is A052852(n+ 1). It has e.g.f. given by

d

dx

x

1 − x
exp(

x

1 − x
) =

1

(1 − x)3
exp(

x

1 − x
).

Again using Equation (4) we can show that these numbers obey the following recur-
rence:

vn = 2(n+ 1)vn−1 − (n2 − 1)vn−2

with v0 = 1, v1 = 4.

This sequence counts the number of (121, 212)-avoiding n-ary words of length n. Specif-
ically,

B1(2n, n)

C(n)
= f121,212(n+ 1, n+ 1)

where

f121,212(n, k) =
k

∑

j=0

(

k

j

)(

n− 1

j − 1

)

j!

is defined in [4].

From this last point, we find the following expression

B1(2n, n) = C(n)
n+1
∑

j=0

(

n+ 1

j

)(

n

j − 1

)

j! (5)

Based on the fact that C(n) =
(

2n
n

)

−
(

2n
n−1

)

we define

C1(n) = B1(2n, n) −B1(2n, n− 1) = B1(2n, n) −B1(2n, n+ 1)

11
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to be the generalized Catalan numbers associated with the triangle B1. We calculateB1(2n, n−
1) as follows:

B1(2n, n− 1) =
(2n)!

(n− 1)!

n−1
∑

j=0

(

n− 1

j

)

1

(n− j + 1)!

=
(2n)!

(n− 1)!

n−1
∑

j=0

(

n

j

)

n− j

n

1

(n− j + 1)!

=
(2n)!

n!

n
∑

j=0

(

n

j

)

1

(n− j)!

n− j

n− j + 1
.

Hence

B1(2n, n) −B1(2n, n− 1) =
(2n)!

n!

n
∑

j=0

(

n

j

)

1

(n− j)!
(1 − n− j

n− j + 1
)

=
(2n)!

n!

n
∑

j=0

(

n

j

)

1

(n− j)!

1

n− j + 1

=
(2n)!

n!

n
∑

j=0

(

n

j

)

1

(n− j + 1)!
.

Starting from the above, we can find many expressions for C1(n). For example,

C1(n) =
(2n)!

n!

n
∑

j=0

(

n

j

)

1

(n− j + 1)!

= C(n)
n

∑

j=0

(

n

j

)

(n+ 1)!

(n+ 1 − j)!

= C(n)
n

∑

j=0

(

n

j

)(

n+ 1

j

)

j!

= C(n)
n

∑

j=0

(

n

j

)2
n+ 1

n− j + 1
j!

= C(n)
n

∑

j=0

(

n

j

)(

n+ 1

j + 1

)

(j + 1)!

n− j + 1
.

where we have used the fact that (2n)!
n!

= C(n)(n + 1)!. This is the sequence A001813 of
quadruple factorial numbers with e.g.f. 1√

1−4x
.

12
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Recognizing that the terms after C(n) represent convolutions, we can also write

C1(n) = C(n)
n

∑

j=0

(

n

j

)

(n+ 1)!

(j + 1)!

= C(n)
n

∑

j=0

(

n

j

)(

n+ 1

j + 1

)

(n− j)!

= C(n)
n

∑

j=0

(

n

j

)2
n+ 1

j + 1
(n− j)!

We note that the first expression immediately above links C1(n) to the Lah numbers A008297.

The ratio C1(n)
C(n)

, or
∑n

j=0

(

n
j

)

(n+1)!
(k+1)!

, is the sequence

1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, . . .

or A000262(n + 1). This is related to the number of partitions of [n] = {1, 2, 3, . . . , n}
into any number of lists, where a list means an ordered subset. It also has applications in
quantum physics [2]. The sequence has e.g.f.

d

dx
e

x

1−x =
e

x

1−x

(1 − x)2
.

We can in fact describe this ratio in terms of the Narayana numbers Ñ(n, k) as follows:

C1(n)

C(n)
=

n
∑

j=0

(

n

j

)(

n+ 1

j + 1

)

(n− j)!

=
n

∑

j=0

n− j + 1

n+ 1

(

n+ 1

j

)(

n+ 1

j + 1

)

(n− j)!

=
n

∑

j=0

1

n+ 1

(

n+ 1

j

)(

n+ 1

j + 1

)

(n− j + 1)!

=
n

∑

j=0

Ñ(n, j)(n− j + 1)!

=
n

∑

j=0

Ñ(n, n− j)(j + 1)!

=
n

∑

j=0

Ñ(n, j)(j + 1)!

Hence we have

C1(n)

C(n)
=

n
∑

j=0

Ñ(n, j)(n− j + 1)! =
n

∑

j=0

Ñ(n, j)(j + 1)! =
n

∑

j=0

(

n

j

)

(n+ 1)!

(j + 1)!

13
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4 The General Case

We shall now look at the row sums, central coefficients and generalized Catalan numbers
associated with the general matrix Br. In what follows, proofs follow the methods developed
in the last section.

Proposition 15. The row sums sr(n) of Br are given by Hn(− i√
r
)(
√
ri)n.

Proof. The row sums of Br are given by the sequence

n
∑

k=0

n!

k!

k
∑

j=0

(

k

j

)

rj

(n− k − j)!

with e.g.f. g(x)ef(x) = exex(1+rx) = e2x+rx2

. Now

e2x+rx2

= e
2( −i

√

r
)(i

√
rx)−(i

√
rx)2

=
∞

∑

n=0

Hn(− i√
r
)

n!
(i
√
rx)n

=
∞

∑

n=0

Hn(− i√
r
)(i

√
r)n

n!
xn

Corollary 16. We have the identity

n
∑

k=0

n!

k!

k
∑

j=0

(

k

j

)

rj

(n− k − j)!
= Hn(− i√

r
)(
√
ri)n =

⌊n

2
⌋

∑

k=0

(

n

2k

)

(2k)!

k!
2n−2krk.

As before, we can rewrite this using the fact that (2k)!
k!

= C(k)(k + 1)! = 2k(2k − 1)!!.

We note that the second inverse binomial transform of sr(n) has e.g.f. erx2

.

Proposition 17. The row sums of Br are equal to the diagonal sums of the matrix with

general term Bessel(n, k)2nrk. That is,

n
∑

k=0

n!

k!

k
∑

j=0

(

k

j

)

rj

(n− k − j)!
= Hn(− i√

r
)(
√
ri)n =

⌊n

2
⌋

∑

k=0

Bessel(n− k, k)2n−krk.

Proposition 18. The row sums of Br obey the recurrence

un = 2un−1 + 2r(n− 1)un−2

with u0 = 1, u1 = 2.

We now turn our attention to the central coefficients of Br.

14



Proposition 19. Br(2n, n) = C(n)(n+ 1)!
∑n

j=0

(

k
j

)2
j!rj

Proof. The proof is the same as the calculation for B1(2n, n) in Example 8, with the extra
factor of rj to be taken into account.

Corollary 20.
Br(2n, n)

C(n)(n+ 1)!
= rnLn(−1

r
) =

n
∑

j=0

(

n

j

)

rj

(n− j)!

for r 6= 0.

We note that the above expressions are not integers in general.
For instance, B2(2n,n)

C(2n,n)
= n!2nLn(−1

2
) is A025167, and B3(2n,n)

C(2n,n)
= n!3nLn(−1

3
) is A102757.

In general, we have

Proposition 21. Br(2n,n)
C(2n,n)

= n!rnLn(−1/r) has e.g.f. 1
1−rx

exp( x
1−rx

), and satisfies the recur-

rence relation

un = ((2n− 1)r + 1)un−1 − r2(n− 1)2un−2

with u0 = 1, u1 = r + 1.

Proof. We have

n![xn]
e

x

1−rx

(1 − rx)
= n![xn]

∞
∑

i=0

1

i!

xi

(1 − rx)i
(1 − rx)−1

= n![xn]
∞

∑

i=0

1

i!
xi(1 − rx)−i(1 − rx)−1

= n![xn]
∞

∑

i=0

1

i!
xi(1 − rx)−(i+1)

= n![xn]
∞

∑

i=0

1

i!
xi

∑

j=0

(−(i+ 1)

j

)

(−1)jrjxj

= n![xn]
∞

∑

i=0

1

i!

∑

j=0

(

i+ j

j

)

rjxi+j

= n!
n

∑

j=0

(

n

j

)

rj

(n− j)!
.

To prove the second assertion, we use Equation (4) with t = −1
r
. Multiplying by n!rn+1, we

obtain

(n+ 1)!rn+1Ln+1(−
1

r
) = (2n+ 1 +

1

r
)rn+1n!Ln(−1

r
) − rn+1n2(n− 1)!Ln−1(−

1

r
).

Simplifying, and letting n→ n− 1, gives the result.
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Corollary 22. Br(2n,n)
C(n)

= (n + 1)!rnLn(−1/r) has e.g.f. d
dx

x
1−rx

exp( x
1−rx

), and satisfies the

recurrence

wn = ((2n− 1) + r)
n+ 1

n
wn−1 − r2(n2 − 1)wn−2

for n > 1, with w0 = 1 and w1 = 2r + 2.

We can generalize Equation (5) to get

Br(2n, n) = C(n)
n+1
∑

j=0

(

n+ 1

j

)(

n

j − 1

)

j!rj−1.

We define the generalized Catalan numbers associated with the triangles Br to be the numbers

Cr(n) = Br(2n, n) −Br(2n, n− 1).

Using the methods of Example 8, we have

Proposition 23. We have the following equivalent expressions for Cr(n):

Cr(n) =
(2n)!

n!

n
∑

j=0

(

n

j

)

rj

(n− j + 1)!

= C(n)
n

∑

j=0

(

n

j

)

(n+ 1)!

(j + 1)!
rn−j

= C(n)
n

∑

j=0

(

n

j

)(

n+ 1

j + 1

)

(n− j)!rn−j

= C(n)
n

∑

j=0

n+ 1

j + 1

(

n

j

)2

(n− j)!rn−j

= C(n)
n

∑

j=0

Ñ(n, j)(j + 1)!rj.

For instance, C2(n)/C(n) is A025168.

Proposition 24. Cr(n)
C(n)

has e.g.f.

d

dx
e

x

1−rx =
e

x

1−rx

(1 − rx)2
.
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Proof. We have

n![xn]
e

x

1−rx

(1 − rx)2
= n![xn]

∞
∑

i=0

1

i!

xi

(1 − rx)i
(1 − rx)−2

= n![xn]
∞

∑

i=0

1

i!
xi(1 − rx)−i(1 − rx)−2

= n![xn]
∞

∑

i=0

1

i!
xi(1 − rx)−(i+2)

= n![xn]
∞

∑

i=0

1

i!
xi

∞
∑

j=0

(−(i+ 2)

j

)

(−1)jrjxj

= n![xn]
∞

∑

i=0

1

i!

∞
∑

j=0

(

i+ j + 1

j

)

rjxi+j

= n!
∞

∑

j=0

(

n+ 1

j

)

rj

(n− j)!

= (n+ 1)!
n

∑

j=0

(

n

j

)

rj

(n− j + 1)!
.

5 The case r =
1
2

The assumption so far has been that r is an integer. In this section, we indicate that r = 1
2

also produces a generalized Pascal triangle. We have B 1

2

= (ex, x(1 + x/2)). This begins

B 1

2

=























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 21 10 1 0 . . .
1 15 55 55 15 1 . . .
...

...
...

...
...

...
. . .























This is triangle A100862. Quoting from A100862, B 1

2

(n, k) “is the number of k-matchings of

the corona K ′(n) of the complete graph K(n) and the complete graph K(1); in other words,
K ′(n) is the graph constructed from K(n) by adding for each vertex v a new vertex v′ and
the edge vv′”. The row sums of this triangle, A005425, are given by

1, 2, 5, 14, 43, 142, 499, 1850, 7193, . . .
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These have e.g.f. e2x+x2/2 and general term

Hn(−
√

2i)(i/
√

2)n =

⌊n

2
⌋

∑

k=0

(

n

2k

)

(2k)!

k!
2n−3k.

They obey the recurrence
un = 2un−1 + (n− 1)un−2

with u0 = 1, u1 = 2.
[3] provides an example of their use in quantum physics. Using Proposition 4 or otherwise,

we see that the inverse binomial transform of this sequence, with e.g.f. ex+x2/2, is given by

Hn(−
√

2i+
i√
2
)(i/

√
2)n = Hn(− i√

2
)(i/

√
2)n.

This is the sequence
1, 1, 2, 4, 10, 26, 76, 232, 765, . . .

or A000085. It has many combinatorial interpretations, including for instance the number of
matchings in the complete graph K(n). These numbers are the diagonal sums of the Bessel
triangle Bessel:

Hn(− i√
2
)(i/

√
2)n =

⌊n

2
⌋

∑

k=0

Bessel(n− k, k).

The row sums of B 1

2

are the second binomial transform of the sequence

1, 0, 1, 0, 3, 0, 15, 0, 105, 0, . . .

with e.g.f. ex2/2. This is an “aerated” version of the double factorial numbers (2n − 1)!!,
or A001147. These count the number of perfect matchings in the complete graph K(2n).
The row sums count the number of 12 − 3 and 214 − 3-avoiding permutations, as well as
the number of matchings of the corona K ′(n) of the complete graph K(n) and the complete
graph K(1).

This example prompts us to define a new family B̃r where B̃r is the element (ex, x(1+ rx
2
))

of the exponential Riordan group. Then we have B̃0 = B, B̃1 = B 1

2

, B̃2 = B1 etc. We can

then show that B̃r is the product of the binomial matrix B and the matrix with general
term Bessel(k, n− k)rn−k. We have

B̃r(n, k) =
n!

k!

k
∑

j=0

1

2j

(

n

k

)

rj

(n− k − j)!
=

n
∑

j=0

(

n

j

)

j!rj−k

(2k − j)!2j−k(j − k)!
.

Thus

B̃r(n, k) =

(

n

k

) n
∑

j=0

(

n− k

n− j

)

k!

(2k − j)!

rj−k

2j−k
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and in particular

B̃r(2n, n) =

(

2n

n

) 2n
∑

j=0

(

n

j − n

)

n!

(2n− j)!

rj−n

2j−n
.

Finally,

B̃r(n, k) = B̃r(n− 1, k − 1) + B̃r(n− 1, k) + r(n− 1)B̃r(n− 2, k − 1).

6 Conclusion

The foregoing has shown that the triangles Br, and more generally B̃r, defined in terms
of exponential Riordan arrays, are worthy of further study. Many of the sequences linked
to them have significant combinatorial interpretations. B 1

2

as documented in A100862 by
Deutsch has a clear combinatorial meaning. This leaves us with the challenge of finding
combinatorial interpretations for the general arrays B̃r, r ∈ Z.
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