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Abstract

We prove an asymptotic formula for the average order of the ged-sum function by
using a new convolution identity.

1 Introduction and main result

In 2001, Broughan [1] studied the ged-sum function g defined for any positive integer n by

n

g(n) =" (ko).

k=1

where (a,b) denotes the greatest common divisor of a and b. The author showed that g is
multiplicative, and satisfies the convolution identity

g=¢x* Id, (1)

where ¢ is the FEuler totient function, Id is the completely multiplicative function defined by
Id(n) = n and * is the usual Dirichlet convolution product.

The function g appears in a specific lattice point problem [1, 6], where it can be used
to estimate the number of integer coordinate points under the square-root curve. As a
multiplicative function, the question of its average order naturally arises. By using the
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Dirichlet hyperbola principle, Broughan [1, Theorem 4.7] proved the following result: for
any real number x > 1, the following estimate

x? logx C(Q)Q 2 3/2
g(n)= + x*+ 0 log = 2
Z o Tac” TO @ loga) (2)
holds.

The aim of this paper is to prove another convolution identity for g, and then get a fairly
more precise estimate than (2).

In what follows, 7 is the well-known divisor function, p is the Mobius function, 1 is the
completely multiplicative function defined by 1 (n) = 1, F' x G is the Dirichlet convolution
product of the arithmetical functions F' and GG, and we denote by 6 the smallest positive real
number such that

Z 7(n) =xzlogz +z (2y — 1) + O, (2"%°) (3)

n<e

holds for any real numbers x > 1 and ¢ > 0. The following inequality

0=

el B

is well-known [3]. On the other hand, Huxley [4] showed that

131
< —=0.3149...
0 116 0.3149

holds. Now we are able to prove the following result

Theorem 1.1. For any real numbers x > 1 and € > 0, we have

2

> gn) = x;(l(zgf + 25(2) (v - % + log (“;l—:)) + O, (a40+2)

n<r

where A ~ 1.282 427 129 ... is the Glaisher-Kinkelin constant.

For further details about the Glaisher-Kinkelin constant, see [2, 5]. The reader interested
in ged-sum integer sequences should refer to Sloane’s sequence A018804.

2 A convolution identity

The proof uses the following lemmas.

Lemma 2.1. For any real number z > 1 and any € > 0, we have

Zm- :—logz+z (7—&) + 0. (Zl+0+s).

n<z
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Proof. The result follows easily from (3) and Abel’s summation. [

Lemma 2.2. We have
g=px*(Id-T1).
Proof. Since ¢ = px1d, we have, using (1),
g=exld=p* (Id«Id) = p* (Id - 7)
which is the desired result. [

3 Proof of Theorem 1.1

By using Lemma 2.2, we get
D_g(n) =) u(d) Y kr(k)
n<z d<z k<z/d

and Lemma 2.1 applied to the inner sum gives
2
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n<r d<z
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1 1\ o= p(d) = pu(d)logd 1
— x2{<§logx+7—Z)ZMC§2)— —M(2)d20g +O(Oix)}+05(x”9+5).
d=1 d=1

which gives by differentiation

for Res > 1, and hence

> gn) = 2@

n<e

and we use

R (A

=~—log | — ).
ci2) %\ o
The proof of the theorem is now complete.
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