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Branko J. Malešević1 and Ivana V. Jovović2
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Abstract

This paper deals with the number of meaningful compositions of higher order of
differential operations and the Gateaux directional derivative.

1 The compositions of differential operations of the

space R
3

In the real three-dimensional space R
3 we consider the following sets:

A0 = {f :R3−→R | f ∈C∞(R3)} and A1 = {~f :R3−→R
3 | ~f ∈ ~C∞(R3)}. (1)

It is customary in vector analysis to consider m = 3 basic differential operations on A0 and
A1 [1], namely:

grad f = ∇1 f =

(

∂f

∂x1
,

∂f

∂x2
,

∂f

∂x3

)

: A0 −→ A1,

curl ~f = ∇2
~f =

(

∂f3

∂x2
−

∂f2

∂x3
,

∂f1

∂x3
−

∂f3

∂x1
,

∂f2

∂x1
−

∂f1

∂x2

)

: A1 −→ A1,

div ~f = ∇3
~f =

∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3
: A1 −→ A0 .

(2)
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Let us present the number of meaningful compositions of higher order over the set A3 =
{∇1,∇2,∇3}. It is familiar fact that there are m = 5 compositions of the second order [2,
p. 161]:

∆f = div grad f = ∇3 ◦ ∇1 f,

curl curl ~f = ∇2 ◦ ∇2
~f,

grad div ~f = ∇1 ◦ ∇3
~f,

curl grad f = ∇2 ◦ ∇1 f = ~0,

div curl ~f = ∇3 ◦ ∇2
~f = 0.

(3)

Malešević [3] proved that there are m = 8 compositions of the third order:

grad div grad f = ∇1 ◦ ∇3 ◦ ∇1 f,

curl curl curl ~f = ∇2 ◦ ∇2 ◦ ∇2
~f,

div grad div ~f = ∇3 ◦ ∇1 ◦ ∇3
~f,

curl curl grad f = ∇2 ◦ ∇2 ◦ ∇1 f = ~0,

div curl grad f = ∇3 ◦ ∇2 ◦ ∇1 f = 0,

div curl curl ~f = ∇3 ◦ ∇2 ◦ ∇2
~f = 0,

grad div curl ~f = ∇1 ◦ ∇3 ◦ ∇2
~f = ~0,

curl grad div ~f = ∇2 ◦ ∇1 ◦ ∇3
~f = ~0.

(4)

If f(k) is the number of compositions of the kth order, then Malešević [4] proved

f(k) = Fk+3, (5)

where Fk is kth Fibonacci number.

2 The compositions of the differential operations and

Gateaux directional derivative of the space R
3

Let f ∈ A0 be a scalar function and ~e = (e1, e2, e3) ∈ R
3 be a unit vector. The Gateaux

directional derivative in direction ~e is defined by [5, p. 71]:

dir~e f = ∇0f = ∇1f · ~e =
∂f

∂x1

e1 +
∂f

∂x2

e2 +
∂f

∂x3

e3 : A0 −→ A0. (6)
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Let us determine the number of meaningful compositions of higher order over the set B3 =
{∇0,∇1,∇2,∇3}. There exist m = 8 compositions of the second order:

dir~e dir~e f = ∇0 ◦ ∇0 f = ∇1

(

∇1f · ~e
)

· ~e,

grad dir~e f = ∇1 ◦ ∇0 f = ∇1

(

∇1f · ~e
)

,

∆f = div grad f = ∇3 ◦ ∇1 f,

curl curl ~f = ∇2 ◦ ∇2
~f,

dir~e div ~f = ∇0 ◦ ∇3
~f =

(

∇1 ◦ ∇3
~f
)

· ~e,

grad div ~f = ∇1 ◦ ∇3
~f,

curl grad f = ∇2 ◦ ∇1 f = ~0,

div curl ~f = ∇3 ◦ ∇2
~f = 0;

(7)

and there exist m = 16 compositions of the third order:

dir~e dir~e dir~e f = ∇0 ◦ ∇0 ◦ ∇0 f,

grad dir~e dir~e f = ∇1 ◦ ∇0 ◦ ∇0 f,

div grad dir~e f = ∇3 ◦ ∇1 ◦ ∇0 f,

dir~e div grad f = ∇0 ◦ ∇3 ◦ ∇1 f,

grad div grad f = ∇1 ◦ ∇3 ◦ ∇1 f,

curl curl curl ~f = ∇2 ◦ ∇2 ◦ ∇2
~f,

dir~e dir~e div ~f = ∇0 ◦ ∇0 ◦ ∇3
~f,

grad dir~e div ~f = ∇1 ◦ ∇0 ◦ ∇3
~f,

div grad div ~f = ∇3 ◦ ∇1 ◦ ∇3
~f,

curl grad dir~e f = ∇2 ◦ ∇1 ◦ ∇0
~f = ~0,

curl curl grad f = ∇2 ◦ ∇2 ◦ ∇1 f = ~0,

div curl grad f = ∇3 ◦ ∇2 ◦ ∇1 f = 0,

div curl curl ~f = ∇3 ◦ ∇2 ◦ ∇2
~f = 0,

dir~e div curl ~f = ∇0 ◦ ∇3 ◦ ∇2
~f = 0,

grad div curl ~f = ∇1 ◦ ∇3 ◦ ∇2
~f = ~0,

curl grad div ~f = ∇2 ◦ ∇1 ◦ ∇3
~f = ~0.

(8)
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Further on we shall use the method from the paper [4]. Let us define a binary relation σ “to
be in composition”: ∇i σ∇j iff the composition ∇j ◦∇i is meaningful. Then Cayley table of
the relation σ is determined by

σ ∇0 ∇1 ∇2 ∇3

∇0 ⊤ ⊤ ⊥ ⊥
∇1 ⊥ ⊥ ⊤ ⊤
∇2 ⊥ ⊥ ⊤ ⊤
∇3 ⊤ ⊤ ⊥ ⊥

(9)

Let us denote by ∇−1 nowhere-defined function, where domain and range are empty sets [3]
and let ∇−1 σ∇i hold for i = 0, 1, 2, 3. If G is graph which is determined by the relation σ,
then graph of paths of G is the tree with the root ∇−1 (Fig. 1).
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Fig. 1

Let g(k) be the number of meaningful compositions of the kth order of the functions from B3

and let g
i
(k) be the number of meaningful compositions of the kth order beginning from the

left by ∇i. Then g(k) = g0(k) + g1(k) + g2(k) + g3(k). Based on the partial self similarity
of the tree (Fig. 1) we obtain equalities

g0(k) = g0(k − 1) + g1(k − 1),

g1(k) = g2(k − 1) + g3(k − 1),

g2(k) = g2(k − 1) + g3(k − 1),

g3(k) = g0(k − 1) + g1(k − 1).

(10)

Hence, the recurrence for g(k) is

g(k)=2g(k − 1) (11)

and because g(1) = 4 we have
g(k) = 2k+1. (12)

3 The compositions of differential operations of the

space R
n

Let us present the number of meaningful compositions of differential operations in the vector
analysis of the space R

n, where differential operations ∇r (r = 1, . . . , n) are defined on
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corresponding non-empty sets As (s = 1, . . . ,m and m = ⌊n/2⌋, n ≥ 3) according to the
papers [4], [6]:

An (n=2m): ∇1 : A0→A1

∇2 : A1→A2
...
∇i : Ai−1→Ai

...
∇m : Am−1→Am

∇m+1 : Am→Am−1
...
∇n−j : Aj+1→Aj

...
∇n−1 : A2→A1

∇n : A1→A0,

An (n=2m+1): ∇1 : A0→A1

∇2 : A1→A2
...
∇i : Ai−1→Ai

...
∇m : Am−1→Am

∇m+1 : Am→Am

∇m+2 : Am→Am−1
...
∇n−j : Aj+1→Aj

...
∇n−1 : A2→A1

∇n : A1→A0.

(13)

Let us define higher order differential operations as meaningful compositions of higher order
of differential operations from the set An = {∇1, . . . ,∇n}. The number of higher order
differential operations is given according to the paper [4]. Furthermore, let us define a
binary relation ρ “to be in composition”: ∇i ρ∇j iff the composition ∇j ◦ ∇i is meaningful.
Then Cayley table of the relation ρ is determined by

∇i ρ∇j =

{

⊤ , (j = i + 1) ∨ (i + j = n + 1);

⊥ , otherwise.
(14)

Let A = [aij] ∈ { 0, 1}n×n be the adjacency matrix associated with the graph which is
determined by the relation ρ. Malešević [6] proved the following statements.

Theorem 3.1. Let Pn(λ)= |A−λI|=α0λ
n+α1λ

n−1+· · ·+αn be the characteristic polynomial

of the matrix A and vn = [ 1 . . . 1 ]1×n. If f(k) is the number of the kth order differential

operations, then the following formulas hold:

f(k) = vn · Ak−1 · vT
n (15)

and

α0f(k) + α1f(k − 1) + · · · + αnf(k − n) = 0 (k > n). (16)
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Lemma 3.2. Let Pn(λ) be the characteristic polynomial of the matrix A. Then the following

recurrence holds:

Pn(λ) = λ2
(

Pn−2(λ) − Pn−4(λ)
)

. (17)

Lemma 3.3. Let Pn(λ) be the characteristic polynomial of the matrix A. Then it has the

following explicit form:

Pn(λ) =



























⌊n+2

4
⌋+1

∑

k=1

(−1)k−1

( n

2
−k+2

k−1

)

λn−2k+2 , n=2m;

⌊n+2

4
⌋+2

∑

k=1

(−1)k−1

(

( n+3

2
−k

k−1

)

+

( n+3

2
−k

k−2

)

λ

)

λn−2k+2 , n=2m+1.

(18)

From previous statements one can obtain the recurrences in the table, [4]:

Dimension Recurrence for the number of the kth order differential operations
n = 3 f(k) = f(k − 1) + f(k − 2)
n = 4 f(k) = 2f(k − 2)
n = 5 f(k) = f(k − 1) + 2f(k − 2) − f(k − 3)
n = 6 f(k) = 3f(k − 2) − f(k − 4)
n = 7 f(k) = f(k − 1) + 3f(k − 2) − 2f(k − 3) − f(k − 4)
n = 8 f(k) = 4f(k − 2) − 3f(k − 4)
n = 9 f(k) = f(k − 1) + 4f(k − 2) − 3f(k − 3) − 3f(k − 4) + f(k − 5)
n = 10 f(k) = 5f(k − 2) − 6f(k − 4) + f(k − 6)

The values of the function f(k), for small values of the argument k, are given in the database
of integer sequences [8] as the following sequences A020701 (n = 3), A090989 (n = 4),
A090990 (n = 5), A090991 (n = 6), A090992 (n = 7), A090993 (n = 8), A090994 (n = 9),
A090995 (n = 10).

4 The compositions of differential operations and Gateaux

directional derivative of the space R
n

Let f ∈ A0 be a scalar function and ~e = (e1, . . . , en) ∈ R
n be a unit vector. The Gateaux

directional derivative in direction ~e is defined by [5, p. 71]:

dir~e f = ∇0f =
n
∑

k=1

∂f

∂xk

ek : A0 −→ A0. (19)
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Let us extend the set of differential operations An = {∇1, . . . ,∇n} with Gateaux directional
derivative to the set Bn = An ∪ {∇0} = {∇0,∇1, . . . ,∇n}:

Bn (n=2m): ∇0 : A0→A0

∇1 : A0→A1

∇2 : A1→A2
...
∇i : Ai−1→Ai

...
∇m : Am−1→Am

∇m+1 : Am→Am−1
...
∇n−j : Aj+1→Aj

...
∇n−1 : A2→A1

∇n : A1→A0,

Bn (n=2m+1): ∇0 : A0→A0

∇1 : A0→A1

∇2 : A1→A2
...
∇i : Ai−1→Ai

...
∇m : Am−1→Am

∇m+1 : Am→Am

∇m+2 : Am→Am−1
...
∇n−j : Aj+1→Aj

...
∇n−1 : A2→A1

∇n : A1→A0.

(20)

Let us define higher order differential operations with Gateaux derivative as the meaningful
compositions of higher order of the functions from the set Bn = {∇0,∇1, . . . ,∇n}. Our aim
is to determine the number of higher order differential operations with Gateaux derivative.
Let us define a binary relation σ “to be in composition”:

∇i σ∇j =

{

⊤ , (i=0 ∧ j =0) ∨ (i=n ∧ j =0) ∨ (j = i+1) ∨ (i+j =n+1);

⊥ , otherwise.
(21)

and let B = [bij] ∈ { 0, 1}(n+1)×n be the adjacency matrix associated with the graph which is
determined by relation σ. So, analogously to the paper [6], the following statements hold.

Theorem 4.1. Let Qn(λ) = |B−λI| = β0λ
n+1 + β1λ

n + · · · + βn+1 be the characteristic

polynomial of the matrix B and vn+1 = [ 1 . . . 1 ]1×(n+1). If g(k) is the number of the kth order

differential operations with Gateaux derivative, then the following formulas hold:

g(k) = vn+1 · B
k−1 · vT

n+1 (22)

and

β0g(k) + β1g(k − 1) + · · · + βn+1g(k − (n + 1)) = 0 (k > n+1). (23)

Lemma 4.2. Let Qn(λ) and Pn(λ) be the characteristic polynomials of the matrices B and

A respectively. Then the following equality holds:

Qn(λ) = λ2Pn−2(λ) − λPn(λ). (24)
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Proof. Let us calculate the characteristic polynomial

Qn(λ) = |B− λI| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 − λ 1 0 0 . . . 0 0 0 0
0 −λ 1 0 . . . 0 0 0 1
0 0 −λ 1 . . . 0 0 1 0
...

...
...

...
. . .

...
...

...
...

0 0 0 1 . . . 0 −λ 1 0
0 0 1 0 . . . 0 0 −λ 1
1 1 0 0 . . . 0 0 0 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (25)

Expanding the determinant Qn(λ) by the first column we have

Qn(λ) = (1 − λ)Pn(λ) + (−1)n+2Dn(λ), (26)

where

Dn(λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 . . . 0 0 0 0
−λ 1 0 0 . . . 0 0 0 1

0 −λ 1 0 . . . 0 0 1 0
...

...
...

...
. . .

...
...

...
...

0 0 0 1 . . . −λ 1 0 0
0 0 1 0 . . . 0 −λ 1 0
0 1 0 0 . . . 0 0 −λ 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (27)

Let us expand the determinant Dn(λ) by the first row and then in the next step, multiply
the first row by −1 and add it to the last row. We obtain the determinant of order n − 1 :

Dn(λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 . . . 0 0 0 1
−λ 1 0 0 . . . 0 0 1 0

0 −λ 1 0 . . . 0 1 0 0
...

...
...

...
. . .

...
...

...
...

0 0 1 0 . . . −λ 1 0 0
0 1 0 0 . . . 0 −λ 1 0
0 0 0 0 . . . 0 0 −λ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (28)

Expanding the previous determinant by the last column we have

Dn(λ) = (−1)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 0 . . . 0 0 0 1
0 −λ 1 0 . . . 0 0 1 0
0 0 −λ 1 . . . 0 1 0 0
...

...
...

...
. . .

...
...

...
...

0 0 1 0 . . . 0 −λ 1 0
0 1 0 0 . . . 0 0 −λ 1
0 0 0 0 . . . 0 0 0 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (29)
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If we expand the previous determinant by the last row and if we expand the obtained
determinant by the first column, we have the determinant of order n − 4 :

Dn(λ) = (−1)nλ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 0 . . . 0 0 0 1
0 −λ 1 0 . . . 0 0 1 0
0 0 −λ 1 . . . 0 1 0 0
...

...
...

...
. . .

...
...

...
...

0 0 1 0 . . . 0 −λ 1 0
0 1 0 0 . . . 0 0 −λ 1
1 0 0 0 . . . 0 0 0 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (30)

In other words

Dn(λ) = (−1)nλ2Pn−4(λ). (31)

From equalities (31) and (26) there follows:

Qn(λ) = (1 − λ)Pn(λ) + λ2Pn−4(λ). (32)

On the basis of Lemma 3.2. the following equality holds:

Qn(λ) = λ2Pn−2(λ) − λPn(λ). (33)

Lemma 4.3. Let Qn(λ) be the characteristic polynomial of the matrix B. Then the following

recurrence holds:

Qn(λ) = λ2
(

Qn−2(λ) − Qn−4(λ)
)

. (34)

Proof. On the basis of Lemma 3.2. and Lemma 4.2. the Lemma follows.

Lemma 4.4. Let Qn(λ) be the characteristic polynomial of the matrix B. Then it has the

following explicit form:

Qn(λ) =































(λ − 2)

⌊ n

4
⌋+1
∑

k=1

(−1)k−1

( n + 1

2
−k

k−1

)

λn−2k+2 , n=2m+1;

⌊n+3

4
⌋+2

∑

k=1

(−1)k−1

(

( n

2
−k+2

k−1

)

+

( n

2
−k+2

k−2

)

λ

)

λn−2k+3 , n=2m.

(35)

Proof. On the basis of Lemma 3.3 and Lemma 4.2. the Lemma follows.

The recurrences for dimensions n = 3, 4, . . . , 10 are obtained by means of Malešević-
Jovović [7] and they are given in the table below.
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Dimension Recurrence for the num. of the kth order diff. operations with Gateaux derivative
n = 3 g(k) = 2g(k − 1)
n = 4 g(k) = g(k − 1) + 2g(k − 2) − g(k − 3)
n = 5 g(k) = 2g(k − 1) + g(k − 2) − 2g(k − 3)
n = 6 g(k) = g(k − 1) + 3g(k − 2) − 2g(k − 3) − g(k − 4)
n = 7 g(k) = 2g(k − 1) + 2g(k − 2) − 4g(k − 3)
n = 8 g(k) = g(k − 1) + 4g(k − 2) − 3g(k − 3) − 3g(k − 4) + g(k − 5)
n = 9 g(k) = 2g(k − 1) + 3g(k − 2) − 6g(k − 3) − g(k − 4) + 2g(k − 5)
n =10 g(k) = g(k − 1) + 5g(k − 2) − 4g(k − 3) − 6g(k − 4) + 3g(k − 5) + g(k − 6)

The values of the function g(k), for small values of the argument k, are given in the database
of integer sequences [8] as the following sequences A000079 (n = 3), A090990 (n = 4),
A007283 (n = 5), A090992 (n = 6), A000079 (n = 7), A090994 (n = 8), A020714 (n = 9),
A129638 (n = 10).
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