G\ Journal of Integer Sequences, Vol. 10 (2007),
vy Article07.9.4
(2]11)

On Anti-Elite Prime Numbers

Tom Miiller
Institut fiir Cusanus-Forschung
an der Universitat und der Theologischen Fakultat Trier
Domfreihof 3
54290 Trier
Germany
mueld5030@uni-trier.de

Abstract

An odd prime number p is called anti-elite if only finitely many Fermat numbers
are quadratic non-residues to p. This concept is the exact opposite to that of elite
prime numbers. We study some fundamental properties of anti-elites and show that
there are infinitely many of them. A computational search among all the numbers up
to 100 billion yielded 84 anti-elite primes.

1 Introduction

Let F, := 2%" 4+ 1 be the sequence of Fermat numbers. In recent research some effort has
been spent on so-called elite primes. A prime number p is called elite if there is an integer
index m for which all F}, with n > m are quadratic non-residues to p, i.e., there is no solution
to the congruence z% = F, (mod p) for n > m. Aigner [1], who first defined and studied elite
primes, discovered 14 such numbers between 1 and 35 million. More computational effort
yvielded all 27 elites up to 2.5 - 10'? together with some 60 much larger numbers [7, 3, 4].
Despite these results, the question whether there are infinitely many such numbers remains
open.

The opposite concept of elite primes is the following. An odd prime number p is called
anti-elite if only finitely many Fermat numbers are quadratic non-residues modulo p. Due
to the well-known relation for Fermat numbers

Fro=(F, —1)*+1 (1)

it is obvious that for any prime number p the congruences F), (mod p) will become periodic
at some point. Aigner showed that for any prime number written in the form p = 2"h + 1


mailto:muel4503@uni-trier.de

with » € N and A > 1 odd, this period begins at the latest with the term F,.. We call L
the length of the Fermat period, if L is the smallest natural number fulfilling the congruence
F..; = F, (mod p). L can be computed in the following way. The multiplicative order of 2
modulo p is of the form 2°k with 0 < s < r and k a divisor of A. Then L is the multiplicative
order of 2 modulo k, i.e., 2L’ =1 (mod k). [1]

The terms F,,, (mod p) with v = 0,...,L — 1 are called Fermat remainders of p.
Therefore, a prime number p is anti-elite if and only if all L Fermat remainders are quadratic
residues modulo p. Moreover, it is easy to see that against the concept of elites there is no
necessary condition on the parity of L. That L has to be smaller than ’%1 is still true
(compare Aigner [1, pp. 89 et seq.]).

By partly adapting the proof given by Kiizek, Luca and Somer [6] for elites we find that
the number N(x) of all anti-elite primes less than or equal to z is asymptotically bounded

by

N(z)=0 <@) , (2)

i.e., the series S of the reciprocals of all anti-elite primes is convergent. In the following
section we will deal with some fundamental properties of anti-elite prime numbers. We
show, inter alia, that there are infinitely many anti-elite primes. In addition to these theoretic
results we computed all anti-elite primes up to 10,

2 Theoretical Results

Theorem 2.1. Let p > 5 be a prime number. Then p is a divisor of a Fermat number F,
with n > 2 if and only if p is anti-elite with L = 1.

Proof. Let p be a prime factor of F,, with n > 2. If p = F,,, then equation (1) implies

F,=2 (modF),) (3)

for all m > n and we get (%) = 1 since F,, =1 (mod 8). If F,, is not prime, all of its prime

divisors have the form p = 2""2k + 1 with a natural number k > 1. Here again, we get from
(1) that

F,, =2 (modp) (4)

for all m > n. In both cases we find L = 1 and hence p is anti-elite.
Let now p = 2"h + 1 with h odd be an anti-elite prime number with L = 1. This means
that F,..1 = F,4o (mod p), i.e., there exists a quadratic residue ¢ modulo p such that

(c—=1+1=c (modp). (5)
This is equivalent to

(c—=1)(c=2)=0 (modp), (6)
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and so either ¢ = 1 or ¢ = 2 (mod p). The first case leads us to 22" = 0 (mod p) which
is impossible for all odd primes p. Hence, ¢ = 2 (mod p), resp. F,y; = 2 (mod p). Using
relation (1), we see that either F,. = 0 (mod p), i.e. p|F,, or F, = 2 (mod p). In the latter
case we obtain — again with formula (1) — either F,._; = 0 or F,_; = 2 (mod p) and so on.
As we have p > 5 there will hence be an index n such that 3 < F,, < p. This implies that
F,, =2 (mod p) is impossible which leaves us with an index n < m < r with F,,, = 0 (mod
p), i.e., p|Fy,. This completes the proof. O

From this immediately follows
Corollary 2.2. There are infinitely many anti-elite primes with L = 1.

Proof. 1t is well-known that the Fermat numbers are pairwise coprime. As every F,, with n >
2 is divided at least by one prime factor, Theorem 2.1 guarantees that each F}, contributes
an element to the set of all anti-elite primes with L = 1, which hence is infinite. O

Remark: It is of interest to note that all primes dividing Fermat numbers are either elite
primes or anti-elite primes. Moreover, a prime p dividing a Fermat number is an elite prime if
and only if p is equal to the Fermat prime 3 or p is equal to the Fermat prime 5. Furthermore,
since the series S is convergent, this provides once more an affirmative answer to a famous
problem of Golomb, who asked in 1955 whether the series of the reciprocals of all prime
divisors of the Fermat numbers converges [5].

We shall now turn our attention to the period lengths L > 1.

Theorem 2.3. Let p = 2"h+1 be an anti-elite prime number with a Fermat period of length
L > 1. Then there exists a quadratic residue ¢ modulo p such that F, = ¢+ 1(mod p) and
which 1s a solution of the Diophantine equation

2L 9

Z =0 (modp). (7)

v=0
Proof. Let p = 2"h + 1 be an anti-elite prime number. Write F, = ¢+ 1 (mod p), hence ¢
is a quadratic residue modulo p. Then Fl. . = 2" + 1 (mod p) and since L is the length of
the Fermat period of p, we obtain

¢ =c¢ (modp), (8)
which is equivalent to

2L 2

clc—1) Z =0 (modp). 9)

Notice that ¢ = 0 gives F,, = 1 (mod p) which by (1) leads to F,, = 1 (mod p) for all m > r
contradicting L > 1. The solution ¢ = 1 again only leads, as we have seen in the proof to
Theorem 2.1, to L = 1. Hence, for L > 1,

2l —2
Z =0 (modp). (10)
v=0

This completes the proof. O



Let us now have a look at the special case L = 2.

Corollary 2.4. Let p = 2"h + 1 be a prime number. Then p is anti-elite with L = 2 if
and only if p fulfills the congruential equation p = 1 (mod 12) and is a divisor of the number
N, :=F.(F, —1)+1=2" (22 +1) +1.

Proof.
1) If p is anti-elite with L = 2 then there must exist a solution ¢ to the Diophantine
equation

& +c+1=kp, (11)

where k is an appropriate natural number. Notice that in Theorem 2.3 the residue c is
defined to be congruent to F, — 1. With (11), we hence get

0=clc+1)+1=F.(F.—1)+1 (modp), (12)
i.e., p is a divisor of N,. Equation (11) has the two solutions

:—1+\/4kp—3 and 02:—1—\/4kp—3 (13)
2 2 ’

C1

which are integer numbers only if \/4kp — 3 is a natural number, i.e., 4kp — 3 is a perfect
square. Therefore there exists a solution to the quadratic congruential equation 2% = —3

(mod 4p) and hence <_—3> = 1. Now, we have

@)-@

using the fundamental properties of the Jacobi symbol and the Law of Quadratic Reciprocity.
A simple computation shows that (g) = 1 if and only if p = 1 (mod 3). Hence, the even
number p — 1 is a multiple of 3. This means that w := p%l is a natural number and that
there exists a cyclic subgroup G modulo p of order 6 and index w such that the two Fermat
remainders of the period of p are elements of G. So, there is a primitive root a modulo p
such that the elements of GG have the form a*¥ with v = 0,1,...,5. Suppose that w is odd,
then a“” is a quadratic residue modulo p only if v is even. For v = 0, we have a*¥ = 1 which
cannot lead to L = 2. So, the two Fermat remainders must be of the form a?*, resp. a**.

Furthermore, the relation
(a* — 1)2 +1=a"™ (modp) (15)
has to be fulfilled. But a simple transformation of this gives

a* =1 (modp), (16)

i.e., we again obtain a contradiction to the fact that L = 2. Therefore, the index w has to
be an even number. This finally leads to p = 1 (mod 12).
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2) Let p be a prime with p = 1 (mod 12) and p a divisor of NNV,.. There exists a quadratic
residue ¢ modulo p such that F, = ¢+ 1 (mod p). Hence, N, = > +c+1 = 0 (mod p).

This implies that F, = —c? (mod p) and so, we get (%) = (‘—1) = 1. Moreover, we obtain

P

Foy 1 =c®+1= —c (mod p), where —c again is a quadratic residue modulo p. Finally, there
is Fo=c'+1=(—c—1?+1=c+1 (mod p), i.e., F,45 = F, (mod p) and hence p is
anti-elite with L = 2. This completes the proof. O]

Consequence 2.5. There are infinitely many anti-elite primes with L = 2.

Proof. With relation (1) we get

Neyi = F2—Fog+1
— ((F,=1)?+1)" = (F, —1)?
= (F? =3, +3)(F:—F, +1)
= N(N, = 2(F, - 1)).

Hence, for all natural numbers m < M the number N,, is a divisor of N,;. Especially,
N7 = 21 is a divisor of all N,. It is an easy computation to check that

N, =9 (mod12) (17)
and with this that
Ny
97 = 1 (mod 12), (18)
resp.,
N,
N:l =1 (mod12), (19)

hold for all natural numbers r. Notice that the two odd numbers N, and N’““ are relatively
prime. Since any of their common divisors d divides their difference, i.e. al|22 +1 we see that
d is of the form 2°. This is possible only if s =0, i.e., d = 1.

As we have shown in the proof to the previous Corollary, every prime factor p > 3 of
N, has a Fermat period of length L = 2. Write p = 2°h + 1 with h odd. By the above
mentioned Theorem of Aigner [1], we know that if 2/k with 0 < j < s and k a divisor of h is
the multiplicative order of 2 modulo p, then 2X° = 4 =1 (mod k). This implies that k& = 3.
Because 27 - 3 is a divisor of ¢(p) =p — 1 we get p =1 (mod 3).

Suppose that j < 1. Then we get either 22> =8 =1 (mod p), i.e., p=Tor 26 =64 =1
(mod p), i.e., p =3 or p = 7. But we already know that (21, ]2\7{“) = 1 and hence every prime
factor p > 7 of N, fulfills p =1 (mod 4).

Finally, every prime factor of ’““ has the form p = 1 (mod 12) and it is relatively prime
to all prime factors of the numbers N with m < r. Corollary 2.4 actually implies that every
such prime factor is an anti-elite prime with L = 2, such that there are infinitely many of
these numbers. O




Remarks: 1) Consequence 2.5 implies that for every R > 0 there exists a natural number
r > R and an odd number A > 1 such that p = 2"h 4+ 1 is anti-elite. Suppose that r were
bounded by R. Then all anti-elites p with L = 2 fulfill

223 = 1 (mod D). (20)
This is possible only if 9213 p, i.e., for only finitely many p’s. The claim follows from
this contradiction.

2) There is an alternate proof of Consequence 2.5 based on a well-known Theorem, first
proved by A. S. Bang in 1886 [2]. It states that for any given integer a > 1 and every natural
number n > 6 the number a” — 1 has a prime factor p which does not divide a* — 1 for
1 < k < n. By Fermat’s little Theorem, it follows that p = 1 (mod n) in this case. Now, we
can write N, with » > 2 as

232" 1
Ny= " —.
22" 1

(21)
Then by Bang’s Theorem, the numerator of N, has a prime factor p that does not divide
any number of the form 2¥ — 1 with 1 < k < 3-2". Hence, p divides N, but none of the
numbers N, with 1 < s < r. Note that this prime number p fulfills p = 1 (mod 3(2")), and
as r > 2 this implies p = 1 (mod 12) for all » > 2. With these two properties and Corollary
2.4 we again get the fact that there are infinitely many anti-elite primes with L = 2.

Using elementary congruential arguments we can derive some arithmetic progressions
that cannot contain anti-elite primes.

Theorem 2.6. There are no anti-elite primes of the forms 240k + a where
a € {7,23,43,47,67,83,103,107,127, 143,163, 167, 187,203, 223, 227}.

Proof. Suppose the prime number p to be of the form 240k + a with the restrictions 1 <
a < 240, (240,a) = 1 and @ = 3 (mod 4). Then p has the form 2(120k + 2[ + 1) + 1, i.e., in
the notation p = 2"h + 1 we have r = 1 and h = (120k + 2] + 1). So, by Aigner’s Theorem

we know that F; = 5 is a Fermat remainder of p. As (§> = (g) = (%), we can exclude all
p

residue classes a modulo 240 fulfilling (240,a) = 1, a = 3 (mod 4) and (%) = —1. A simple
computation shows that these are exactly the 16 remainders a given in the Theorem. O

Remark: Theorem 2.6 excludes 16 of the ¢(240) = 64 residue classes able to contain prime
numbers. It is not difficult to get further residue classes excluded by similar congruential
arguments. E.g., using Fy = 17 we could exclude the classes p = a (mod 204) with a €
{7,31,79,91,139, 163,175,199}, etc.

3 All anti-elite primes up to 100 billion

Using a variant of the well-known sieve method of Erathostenes, we constructed all prime
numbers up to 100 billion. After the elimination of all the primes contained in one of the
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residue classes excluded by Theorem 2.6 the remaining numbers were tested one by one for
anti-eliteness. Our test is based on the following necessary and sufficient condition for the
eliteness of a prime number:

Theorem 3.1. Let p =2"h + 1 be a prime number with h odd. Then p s elite if and only
if every Fermat remainder has a multiplicative order modulo p being a multiple of 27.

A proof of this result can be found in [7]. Taking the exact logical negation of this claim
gives us a necessary and sufficient test for anti-eliteness.

Theorem 3.2. Let p = 2"h + 1 be a prime number with h odd. Then p is anti-elite if and
only if no Fermat remainder has a multiplicative order modulo p being a multiple of 27.

So, if f denotes a given Fermat remainder of a prime p = 2"h + 1, our algorithm checked
whether the congruence

£ =1modp (22)

is solvable for any k& < r. If this is fulfilled, equation (22) is solved for the next Fermat
remainder of p and so on, until either an entire Fermat period is successfully checked and
hence p is anti-elite, or a Fermat remainder f is found with k£ = r being the smallest solution
in (22) leading to a negative answer regarding the anti-eliteness of p.

We found in total 84 anti-elite primes smaller than 10'*. These are listed in Table 1
together with the respective length L of their Fermat period. Notice that by Theorem 2.1
all prime factors of Fermat numbers are anti-elites with L = 1, such that the Table contains
all possible prime factors p of Fermat numbers that fulfill p < 10!

The results of this section are summarized in sequence A128852 of Sloane [8].

The computations were run on an AMD Sempron 2600 XP+ and a Pentium-IV-processor
PC. A total CPU-time of about 1200 hours was needed to complete this project.


http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A128852

p| L p| L p| L

131 2 1376257 | 6 394783681 | 4

171 1 1489153 | 3 597688321 | 2

97 | 2 1810433 | 8 618289153 | 12

193 | 2 2424833 | 1 663239809 | 6
241 | 2 3602561 | 4 825753601 | 1
257 | 1 6700417 | 1 902430721 | 4
641 | 1 6942721 | 4 | 1107296257 | 2
673 | 2 7340033 | 3 | 1214251009 | 1
769 | 2 | 11304961 | 4 | 2281701377 | 8
2689 | 3 || 12380161 | 4 | 3221225473 | 2
5953 | 5 || 13631489 | 1 | 4278255361 | 4
8929 | 5 || 15790321 | 3 | 4562284561 | 4
12289 | 2 | 17047297 | 6 | 5733744641 | 4
40961 | 4 || 22253377 | 2 || 6487031809 | 1
49921 | 4 || 26017793 | 1 || 6511656961 | 4
61681 | 4 || 39714817 | 2 || 7348420609 | 2
65537 | 1 || 45592577 | 1 || 11560943617 | 2
101377 | 6 | 63766529 | 1 | 15600713729 | 14
114689 | 1 || 67411969 | 12 | 23447531521 | 8
274177 | 1 || 89210881 | 6 | 29796335617 | 2
286721 | 4 | 93585409 | 6 | 30450647041 | 10
319489 | 1 || 113246209 | 6 || 46908728641 | 4
414721 | 4 || 119782433 | 10 || 48919385089 | 3
417793 | 8 || 152371201 | 2 || 70525124609 | 1
550801 | 8 | 167772161 | 1 | 74490839041 | 2
786433 | 2 | 171048961 | 6 | 77309411329 | 2
974849 | 1 || 185602561 | 12 || 83751862273 | 12
1130641 | 12 || 377487361 | 4 || 96645260801 | 4

Table 1: All anti-elite primes up to 100 billion

4 Interpretations and open problems

Corollary 2.2 and Consequence 2.5 tell us that the set A of all anti-elite primes is infinite.
If we enumerate all anti-elites in order to get A = {13 = p; < py < p3 < ...} we can write
the partial sums of S as follows.

Sp=> L (23)

As we know the first 84 anti-elite primes, we can compute

Sga = 0.16447547409738350032. (24)
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Here again, our computational results suggest that N (z) might be asymptotically bounded
by N(z) = O(log(x)). If this is so, it is furthermore probable that S = S, is an irrational
number.

Moreover, it would be interesting to know whether there is an anti-elite prime p with
L = n for every natural number n. The smallest L not appearing in Table 1 is L = 7. Notice,
that the only number k fulfilling the congruential equation 27 = 1 (mod k) is k = 127. Hence,
all prime numbers with a period length L = 7 have to be of the form p = 127 -2" - h + 1
with 7 > 1 and h odd. In fact, there are primes of that form known (e.g., 127 - 2'2 + 1,
127 - 218 + 1 or 127 - 2558 4 1; this latter number is a divisor of Fis6), but we were unable to
find an anti-elite with L = 7 among all these primes with » < 3000 and h < 10°.

Are there other L > 2 such that the number of anti-elites with period length L is infinite?
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