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Abstract

An odd prime number p is called anti-elite if only finitely many Fermat numbers

are quadratic non-residues to p. This concept is the exact opposite to that of elite

prime numbers. We study some fundamental properties of anti-elites and show that

there are infinitely many of them. A computational search among all the numbers up

to 100 billion yielded 84 anti-elite primes.

1 Introduction

Let Fn := 22n

+ 1 be the sequence of Fermat numbers. In recent research some effort has
been spent on so-called elite primes. A prime number p is called elite if there is an integer
index m for which all Fn with n > m are quadratic non-residues to p, i.e., there is no solution
to the congruence x2 ≡ Fn (mod p) for n > m. Aigner [1], who first defined and studied elite
primes, discovered 14 such numbers between 1 and 35 million. More computational effort
yielded all 27 elites up to 2.5 · 1012 together with some 60 much larger numbers [7, 3, 4].
Despite these results, the question whether there are infinitely many such numbers remains
open.

The opposite concept of elite primes is the following. An odd prime number p is called
anti-elite if only finitely many Fermat numbers are quadratic non-residues modulo p. Due
to the well-known relation for Fermat numbers

Fn+1 = (Fn − 1)2 + 1 (1)

it is obvious that for any prime number p the congruences Fn (mod p) will become periodic
at some point. Aigner showed that for any prime number written in the form p = 2rh + 1
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with r ∈ N and h > 1 odd, this period begins at the latest with the term Fr. We call L

the length of the Fermat period, if L is the smallest natural number fulfilling the congruence
Fr+L ≡ Fr (mod p). L can be computed in the following way. The multiplicative order of 2
modulo p is of the form 2sk with 0 ≤ s ≤ r and k a divisor of h. Then L is the multiplicative
order of 2 modulo k, i.e., 2L ≡ 1 (mod k). [1]

The terms Fr+ν (mod p) with ν = 0, . . . , L − 1 are called Fermat remainders of p.
Therefore, a prime number p is anti-elite if and only if all L Fermat remainders are quadratic
residues modulo p. Moreover, it is easy to see that against the concept of elites there is no
necessary condition on the parity of L. That L has to be smaller than p−1

4
is still true

(compare Aigner [1, pp. 89 et seq.]).
By partly adapting the proof given by Kř́ıžek, Luca and Somer [6] for elites we find that

the number N(x) of all anti-elite primes less than or equal to x is asymptotically bounded
by

N(x) = O

(

x

(log x)2

)

, (2)

i.e., the series S of the reciprocals of all anti-elite primes is convergent. In the following
section we will deal with some fundamental properties of anti-elite prime numbers. We
show, inter alia, that there are infinitely many anti-elite primes. In addition to these theoretic
results we computed all anti-elite primes up to 1011.

2 Theoretical Results

Theorem 2.1. Let p > 5 be a prime number. Then p is a divisor of a Fermat number Fn

with n ≥ 2 if and only if p is anti-elite with L = 1.

Proof. Let p be a prime factor of Fn with n ≥ 2. If p = Fn, then equation (1) implies

Fm ≡ 2 (mod Fn) (3)

for all m > n and we get
(

Fm

Fn

)

= 1 since Fn ≡ 1 (mod 8). If Fn is not prime, all of its prime

divisors have the form p = 2n+2k + 1 with a natural number k > 1. Here again, we get from
(1) that

Fm ≡ 2 (mod p) (4)

for all m > n. In both cases we find L = 1 and hence p is anti-elite.
Let now p = 2rh + 1 with h odd be an anti-elite prime number with L = 1. This means

that Fr+1 ≡ Fr+2 (mod p), i.e., there exists a quadratic residue c modulo p such that

(c − 1)2 + 1 ≡ c (mod p). (5)

This is equivalent to

(c − 1)(c − 2) ≡ 0 (mod p), (6)
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and so either c ≡ 1 or c ≡ 2 (mod p). The first case leads us to 22r+1 ≡ 0 (mod p) which
is impossible for all odd primes p. Hence, c ≡ 2 (mod p), resp. Fr+1 ≡ 2 (mod p). Using
relation (1), we see that either Fr ≡ 0 (mod p), i.e. p|Fr, or Fr ≡ 2 (mod p). In the latter
case we obtain – again with formula (1) – either Fr−1 ≡ 0 or Fr−1 ≡ 2 (mod p) and so on.
As we have p > 5 there will hence be an index n such that 3 < Fn < p. This implies that
Fn ≡ 2 (mod p) is impossible which leaves us with an index n < m < r with Fm ≡ 0 (mod
p), i.e., p|Fm. This completes the proof.

From this immediately follows

Corollary 2.2. There are infinitely many anti-elite primes with L = 1.

Proof. It is well-known that the Fermat numbers are pairwise coprime. As every Fn with n ≥
2 is divided at least by one prime factor, Theorem 2.1 guarantees that each Fn contributes
an element to the set of all anti-elite primes with L = 1, which hence is infinite.

Remark: It is of interest to note that all primes dividing Fermat numbers are either elite
primes or anti-elite primes. Moreover, a prime p dividing a Fermat number is an elite prime if
and only if p is equal to the Fermat prime 3 or p is equal to the Fermat prime 5. Furthermore,
since the series S is convergent, this provides once more an affirmative answer to a famous
problem of Golomb, who asked in 1955 whether the series of the reciprocals of all prime
divisors of the Fermat numbers converges [5].

We shall now turn our attention to the period lengths L > 1.

Theorem 2.3. Let p = 2rh+1 be an anti-elite prime number with a Fermat period of length

L > 1. Then there exists a quadratic residue c modulo p such that Fr ≡ c + 1 (mod p) and

which is a solution of the Diophantine equation

2L
−2

∑

ν=0

cν ≡ 0 (mod p). (7)

Proof. Let p = 2rh + 1 be an anti-elite prime number. Write Fr ≡ c + 1 (mod p), hence c

is a quadratic residue modulo p. Then Fr+L ≡ c2L

+ 1 (mod p) and since L is the length of
the Fermat period of p, we obtain

c2L ≡ c (mod p), (8)

which is equivalent to

c(c − 1)
2L

−2
∑

ν=0

cν ≡ 0 (mod p). (9)

Notice that c = 0 gives Fr ≡ 1 (mod p) which by (1) leads to Fm ≡ 1 (mod p) for all m > r

contradicting L > 1. The solution c = 1 again only leads, as we have seen in the proof to
Theorem 2.1, to L = 1. Hence, for L > 1,

2L
−2

∑

ν=0

cν ≡ 0 (mod p). (10)

This completes the proof.
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Let us now have a look at the special case L = 2.

Corollary 2.4. Let p = 2rh + 1 be a prime number. Then p is anti-elite with L = 2 if

and only if p fulfills the congruential equation p ≡ 1 (mod 12) and is a divisor of the number

Nr := Fr(Fr − 1) + 1 = 22r
(

22r

+ 1
)

+ 1.

Proof.

1) If p is anti-elite with L = 2 then there must exist a solution c to the Diophantine
equation

c2 + c + 1 = kp, (11)

where k is an appropriate natural number. Notice that in Theorem 2.3 the residue c is
defined to be congruent to Fr − 1. With (11), we hence get

0 ≡ c(c + 1) + 1 ≡ Fr(Fr − 1) + 1 (modp), (12)

i.e., p is a divisor of Nr. Equation (11) has the two solutions

c1 =
−1 +

√
4kp − 3

2
and c2 =

−1 −
√

4kp − 3

2
, (13)

which are integer numbers only if
√

4kp − 3 is a natural number, i.e., 4kp − 3 is a perfect
square. Therefore there exists a solution to the quadratic congruential equation x2 ≡ −3

(mod 4p) and hence
(

−3
4p

)

= 1. Now, we have

(−3

4p

)

=
(p

3

)

(14)

using the fundamental properties of the Jacobi symbol and the Law of Quadratic Reciprocity.
A simple computation shows that

(

p

3

)

= 1 if and only if p ≡ 1 (mod 3). Hence, the even

number p − 1 is a multiple of 3. This means that ω := p−1
6

is a natural number and that
there exists a cyclic subgroup G modulo p of order 6 and index ω such that the two Fermat
remainders of the period of p are elements of G. So, there is a primitive root a modulo p

such that the elements of G have the form aων with ν = 0, 1, . . . , 5. Suppose that ω is odd,
then aων is a quadratic residue modulo p only if ν is even. For ν = 0, we have aων = 1 which
cannot lead to L = 2. So, the two Fermat remainders must be of the form a2ω, resp. a4ω.
Furthermore, the relation

(

a2ω − 1
)2

+ 1 ≡ a4ω (mod p) (15)

has to be fulfilled. But a simple transformation of this gives

a2ω ≡ 1 (modp), (16)

i.e., we again obtain a contradiction to the fact that L = 2. Therefore, the index ω has to
be an even number. This finally leads to p ≡ 1 (mod 12).

4



2) Let p be a prime with p ≡ 1 (mod 12) and p a divisor of Nr. There exists a quadratic
residue c modulo p such that Fr ≡ c + 1 (mod p). Hence, Nr ≡ c2 + c + 1 ≡ 0 (mod p).

This implies that Fr ≡ −c2 (mod p) and so, we get
(

Fr

p

)

=
(

−1
p

)

= 1. Moreover, we obtain

Fr+1 ≡ c2 + 1 ≡ −c (mod p), where −c again is a quadratic residue modulo p. Finally, there
is Fr+2 ≡ c4 + 1 ≡ (−c − 1)2 + 1 ≡ c + 1 (mod p), i.e., Fr+2 ≡ Fr (mod p) and hence p is
anti-elite with L = 2. This completes the proof.

Consequence 2.5. There are infinitely many anti-elite primes with L = 2.

Proof. With relation (1) we get

Nr+1 = F 2
r+1 − Fr+1 + 1

=
(

(Fr − 1)2 + 1
)2 − (Fr − 1)2

= (F 2
r − 3Fr + 3)(F 2

r − Fr + 1)

= Nr(Nr − 2(Fr − 1)).

Hence, for all natural numbers m ≤ M the number Nm is a divisor of NM . Especially,
N1 = 21 is a divisor of all Nr. It is an easy computation to check that

Nr ≡ 9 (mod 12) (17)

and with this that

Nr

21
≡ 1 (mod 12), (18)

resp.,

Nr+1

Nr

≡ 1 (mod 12), (19)

hold for all natural numbers r. Notice that the two odd numbers Nr and Nr+1

Nr
are relatively

prime. Since any of their common divisors d divides their difference, i.e., d|22r+1, we see that
d is of the form 2s. This is possible only if s = 0, i.e., d = 1.

As we have shown in the proof to the previous Corollary, every prime factor p > 3 of
Nr has a Fermat period of length L = 2. Write p = 2sh + 1 with h odd. By the above
mentioned Theorem of Aigner [1], we know that if 2jk with 0 ≤ j ≤ s and k a divisor of h is
the multiplicative order of 2 modulo p, then 2L = 4 ≡ 1 (mod k). This implies that k = 3.
Because 2j · 3 is a divisor of φ(p) = p − 1 we get p ≡ 1 (mod 3).

Suppose that j ≤ 1. Then we get either 23 = 8 ≡ 1 (mod p), i.e., p = 7 or 26 = 64 ≡ 1
(mod p), i.e., p = 3 or p = 7. But we already know that (21, Nr

21
) = 1 and hence every prime

factor p > 7 of Nr fulfills p ≡ 1 (mod 4).
Finally, every prime factor of Nr+1

Nr
has the form p ≡ 1 (mod 12) and it is relatively prime

to all prime factors of the numbers Nm with m ≤ r. Corollary 2.4 actually implies that every
such prime factor is an anti-elite prime with L = 2, such that there are infinitely many of
these numbers.
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Remarks: 1) Consequence 2.5 implies that for every R > 0 there exists a natural number
r ≥ R and an odd number h > 1 such that p = 2rh + 1 is anti-elite. Suppose that r were
bounded by R. Then all anti-elites p with L = 2 fulfill

22⌊R⌋
·3 ≡ 1 (mod p). (20)

This is possible only if 22⌊R⌋
·3 > p, i.e., for only finitely many p’s. The claim follows from

this contradiction.
2) There is an alternate proof of Consequence 2.5 based on a well-known Theorem, first

proved by A. S. Bang in 1886 [2]. It states that for any given integer a > 1 and every natural
number n > 6 the number an − 1 has a prime factor p which does not divide ak − 1 for
1 ≤ k < n. By Fermat’s little Theorem, it follows that p ≡ 1 (mod n) in this case. Now, we
can write Nr with r ≥ 2 as

Nr =
23(2r) − 1

22r − 1
. (21)

Then by Bang’s Theorem, the numerator of Nr has a prime factor p that does not divide
any number of the form 2k − 1 with 1 ≤ k < 3 · 2r. Hence, p divides Nr but none of the
numbers Ns with 1 ≤ s < r. Note that this prime number p fulfills p ≡ 1 (mod 3(2r)), and
as r ≥ 2 this implies p ≡ 1 (mod 12) for all r ≥ 2. With these two properties and Corollary
2.4 we again get the fact that there are infinitely many anti-elite primes with L = 2.

Using elementary congruential arguments we can derive some arithmetic progressions
that cannot contain anti-elite primes.

Theorem 2.6. There are no anti-elite primes of the forms 240k + a where

a ∈ {7, 23, 43, 47, 67, 83, 103, 107, 127, 143, 163, 167, 187, 203, 223, 227}.

Proof. Suppose the prime number p to be of the form 240k + a with the restrictions 1 ≤
a < 240, (240, a) = 1 and a ≡ 3 (mod 4). Then p has the form 2(120k + 2l + 1) + 1, i.e., in
the notation p = 2rh + 1 we have r = 1 and h = (120k + 2l + 1). So, by Aigner’s Theorem

we know that F1 = 5 is a Fermat remainder of p. As
(

5
p

)

=
(

p

5

)

=
(

a
5

)

, we can exclude all

residue classes a modulo 240 fulfilling (240, a) = 1, a ≡ 3 (mod 4) and
(

a
5

)

= −1. A simple
computation shows that these are exactly the 16 remainders a given in the Theorem.

Remark: Theorem 2.6 excludes 16 of the φ(240) = 64 residue classes able to contain prime
numbers. It is not difficult to get further residue classes excluded by similar congruential
arguments. E.g., using F2 = 17 we could exclude the classes p ≡ a (mod 204) with a ∈
{7, 31, 79, 91, 139, 163, 175, 199}, etc.

3 All anti-elite primes up to 100 billion

Using a variant of the well-known sieve method of Erathostenes, we constructed all prime
numbers up to 100 billion. After the elimination of all the primes contained in one of the
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residue classes excluded by Theorem 2.6 the remaining numbers were tested one by one for
anti-eliteness. Our test is based on the following necessary and sufficient condition for the
eliteness of a prime number:

Theorem 3.1. Let p = 2 rh + 1 be a prime number with h odd. Then p is elite if and only

if every Fermat remainder has a multiplicative order modulo p being a multiple of 2 r.

A proof of this result can be found in [7]. Taking the exact logical negation of this claim
gives us a necessary and sufficient test for anti-eliteness.

Theorem 3.2. Let p = 2 rh + 1 be a prime number with h odd. Then p is anti-elite if and

only if no Fermat remainder has a multiplicative order modulo p being a multiple of 2 r.

So, if f denotes a given Fermat remainder of a prime p = 2 rh+1, our algorithm checked
whether the congruence

f 2kh ≡ 1 mod p (22)

is solvable for any k < r. If this is fulfilled, equation (22) is solved for the next Fermat
remainder of p and so on, until either an entire Fermat period is successfully checked and
hence p is anti-elite, or a Fermat remainder f is found with k = r being the smallest solution
in (22) leading to a negative answer regarding the anti-eliteness of p.

We found in total 84 anti-elite primes smaller than 1011. These are listed in Table 1
together with the respective length L of their Fermat period. Notice that by Theorem 2.1
all prime factors of Fermat numbers are anti-elites with L = 1, such that the Table contains
all possible prime factors p of Fermat numbers that fulfill p < 1011.

The results of this section are summarized in sequence A128852 of Sloane [8].
The computations were run on an AMD Sempron 2600 XP+ and a Pentium-IV-processor

PC. A total CPU-time of about 1200 hours was needed to complete this project.
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p L p L p L

13 2 1376257 6 394783681 4
17 1 1489153 3 597688321 2
97 2 1810433 8 618289153 12

193 2 2424833 1 663239809 6
241 2 3602561 4 825753601 1
257 1 6700417 1 902430721 4
641 1 6942721 4 1107296257 2
673 2 7340033 3 1214251009 1
769 2 11304961 4 2281701377 8

2689 3 12380161 4 3221225473 2
5953 5 13631489 1 4278255361 4
8929 5 15790321 3 4562284561 4

12289 2 17047297 6 5733744641 4
40961 4 22253377 2 6487031809 1
49921 4 26017793 1 6511656961 4
61681 4 39714817 2 7348420609 2
65537 1 45592577 1 11560943617 2

101377 6 63766529 1 15600713729 14
114689 1 67411969 12 23447531521 8
274177 1 89210881 6 29796335617 2
286721 4 93585409 6 30450647041 10
319489 1 113246209 6 46908728641 4
414721 4 119782433 10 48919385089 3
417793 8 152371201 2 70525124609 1
550801 8 167772161 1 74490839041 2
786433 2 171048961 6 77309411329 2
974849 1 185602561 12 83751862273 12

1130641 12 377487361 4 96645260801 4

Table 1: All anti-elite primes up to 100 billion

4 Interpretations and open problems

Corollary 2.2 and Consequence 2.5 tell us that the set A of all anti-elite primes is infinite.
If we enumerate all anti-elites in order to get A = {13 = p1 < p2 < p3 < . . .} we can write
the partial sums of S as follows.

Sn =
n

∑

ν=1

1

pν

. (23)

As we know the first 84 anti-elite primes, we can compute

S84 ≈ 0.16447547409738350032. (24)
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Here again, our computational results suggest that N(x) might be asymptotically bounded
by N(x) = O(log(x)). If this is so, it is furthermore probable that S = S∞ is an irrational
number.

Moreover, it would be interesting to know whether there is an anti-elite prime p with
L = n for every natural number n. The smallest L not appearing in Table 1 is L = 7. Notice,
that the only number k fulfilling the congruential equation 27 ≡ 1 (mod k) is k = 127. Hence,
all prime numbers with a period length L = 7 have to be of the form p = 127 · 2r · h + 1
with r ≥ 1 and h odd. In fact, there are primes of that form known (e.g., 127 · 212 + 1,
127 · 218 + 1 or 127 · 2558 + 1; this latter number is a divisor of F556), but we were unable to
find an anti-elite with L = 7 among all these primes with r ≤ 3000 and h < 109.

Are there other L > 2 such that the number of anti-elites with period length L is infinite?
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