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Abstract

We determine the infinite sequences (ak) of integers that can be generated by poly-
nomials with integral coefficients, in the sense that for each finite initial segment of
length n there is an integral polynomial fn(x) of degree < n such that ak = fn(k) for
k = 0, 1, . . . , n − 1.

Let P be the set of such sequences and Π the additive group of all infinite sequences
of integers. Then P is a subgroup of Π and Π/P ∼=

∏∞
n=2 Z/n!Z. The methods and

results are applied to familiar families of polynomials such as Chebyshev polynomials
and shifted Legendre polynomials.

The results are achieved by extending Lagrange interpolation polynomials to power
series, using a special basis for the group of integral polynomials, called the integral
root basis.

1 Introduction

In [4], we characterized the finite sequences (a1, a2, . . . , an) of integers for which there exists
a polynomial f(x) ∈ Z[x] such that f(i) = ai for i = 1, . . . , n. Let Pn denote the set of all
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such sequences, which we call polynomial sequences or polynomial points, and let Zn be the
set of all integer sequences of length n, where Z represents the ring of integers. Further,
let Z[x] denote the ring of polynomials over the integers and Z[x]n the group of integral
polynomials of degree < n; let N denote the natural numbers, and N+ the positive integers.
Finally, let Q denote the rationals.

The main results of [4] were the following two theorems:

Theorem 1.1. Let a = (a1, a2, . . . , an) ∈ Zn. Let ℓa(x) be the Lagrange interpolation
polynomial for the sequence a. Let Bn be the n × n rational matrix whose (i, j)–entry is
(−1)i+j

i!

(

i
j

)

for 0 ≤ i, j ≤ n − 1. The following are equivalent:

1. a ∈ Pn

2. ℓa(x) ∈ Z[x]n

3. Bna ∈ Zn

Remarks 1.2. 1. In (3) above, a is treated as a column vector. Explicitly, a ∈ Pn if and
only if for all i = 0, 1, . . . , n − 1,

i
∑

j=0

(−1)i+j

j!(i − j)!
aj+1 is an integer.

2. The matrices Bn, as n varies, have the property that Bm is the upper left m×m corner
of Bn for all m ≤ n.

3. It is easy to see that if a sequence a is not generated by a unique polynomial of degree
< n, then it cannot be generated by any polynomial at all.

4. The theorem determines a duality between the coefficients of an integral polynomial
and its initial sequence of values.

Theorem 1.3. Pn is a rank n subgroup of the free abelian group Zn. P1 = Z, P2 = Z2 and
for n > 2, Zn/Pn

∼= Z/2!Z ⊕ Z/3!Z ⊕ · · · ⊕ Z/(n − 1)!Z.

The purpose of this paper is to extend these results to the infinite realm by replacing Zn

by Π =
∏

i∈N
Zi, Zi = Z, known as the Baer–Specker group. The three clauses of Theorem

1.1 suggest possibly different ways of extending the theorem by defining a suitable subgroup
of Π as the analog of the Pn.

To simplify the notation, we index finite and infinite sequences, sums, products and
matrices by natural numbers beginning with zero except where indicated. This slight change
in notation from that in [4] does not of course make any substantive changes to the results
of that paper.

If M is an n × n or ω × ω matrix over the integers, we write M = (mij) where mij is
an expression representing an integer, i represents the row index and j the column index.
In matrix–vector multiplication, the matrix acts on the left with the vector considered as
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a column. If necessary to render division by non–zero integers meaningful, we consider a
torsion–free abelian group to be imbedded in its divisible hull [6, p 107].

The paper is organized as follows:
In Section 2, we define the integral root basis for Z[x] and use it to find stacked bases

for Zn and Pn, n ≥ 1. We describe the transition matrices between these bases and the
standard bases, and apply them to determine a duality between the coefficients and the
values of Lagrange interpolation polynomials. An interesting consequence is that for every
positive integer n, there are infinitely many polynomials f(x) ∈ Z[x] of degree < n whose
sequences of values (f(0), f(1), . . . , f(n − 1)) consist entirely of primes.

In the short Section 3, we deal in a similar manner with some special classes of integral
polynomials, namely Chebyshev polynomials and shifted Legendre polynomials.

The major results of the paper are in Section 4. We expand integral polynomials to
integral power series with respect to the integral root basis and extend the duality between
coefficients and values mentioned above. We extend our earlier results from free groups of
finite rank to Π and its subgroup P, the infinite analog of Pn. We then compute the factor
group Π/P and the product of the factor groups

∏

n∈N+ Zn/Pn.
In Section 5, we apply these results to study various familiar subgroups of the Baer–

Specker group, and describe the torsion part of Π/P.
Finally, in Section 6, we consider consider formal and analytic properties of power series

with respect to the integral root basis.

2 The Integral Root Basis

The methodology in [4] is based upon the integral root basis of Z[x], R = {ρj(x) : j ∈ N}
where ρ0(x) ≡ 1 and ρj+1(x) = ρj(x)(x − j) for j ∈ N. Each initial segment of R, Rn =
{ρj(x) : j = 0, 1, . . . , n − 1}, forms a basis for Z[x]n, n ∈ N+, which we refer to as the
integral root basis of Z[x]n.

Let a be the initial segment of length m of an integer sequence b of length n, m ≤ n.
The integral root basis has the property that the Lagrange interpolation polynomial for a is
the initial segment of degree < m of the Lagrange interpolation polynomial for b, when the
polynomials are expressed as linear combinations of that basis.

The valuation map v : Z[x] → Zn, defined by

f(x) 7→ (f(0), f(1), . . . , f(n − 1))

has kernel ρn(x)Z[x]. When restricted to Z[x]n, v determines an isomorphism of Z[x]n with
Pn, under which the integral root basis of Z[x]n is mapped to a basis of Pn that we call the
Gamma basis. Specifically, ρj(x) 7→ γj = ((0)j, (1)j, . . . , (n − 1)j) where (i)j is the falling

factorial j!
(

i
j

)

. Since γj is divisible by j!, we may set αj = γj/j! =
(

(

0
j

)

,
(

1
j

)

, . . . ,
(

n−1
j

)

)

.

Consequently, we obtain a basis of Zn, which we call the Alpha basis. The Alpha and Gamma
bases are stacked bases [3; 6, Lemma 15.4] that readily reveal the structure of Zn/Pn.

The transition matrix from the Alpha basis for Zn to the standard basis is Pascal’s ma-
trix An [5], a lower-triangular matrix, the (i, j)–entry of which is

(

i
j

)

, i, j = 0, 1, . . . , n −
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1. An is easily seen to be invertible with lower-triangular inverse whose (i, j)–entry is
(−1)i+j

(

i
j

)

, i, j = 0, 1, . . . , n − 1.
As the dimension increases from n to n + 1, the valuation map induces a canonical

injection of Pn into Pn+1, under which the Gamma basis of Pn is mapped into the first n
elements of the Gamma basis of Pn+1, which, together with the image of ρn(x), form the
Gamma basis of Pn+1. Conversely, the Gamma basis of Pn is the canonical projection of the
first n elements of the Gamma basis of Pn+1 into Pn. Similarly, the Alpha basis of Zn+1 is
derived from the Alpha basis of Zn, and conversely. Consequently, no confusion arises from
using the symbols αj and γj without reference to dimension.

The matrix Cn whose columns are the Gamma basis of Pn is not integrally invertible for
n > 2, but is invertible over Q. If Dn is the diagonal matrix whose jth diagonal entry is j!,
for j = 0, 1, . . . , n−1, then Cn = AnDn. Moreover the matrix Bn defined in the Introduction
is C−1

n = D−1
n A−1

n . Note that for m ≤ n, the top left m×m corner of An is Am and similarly
for Cn and Cm.

The following result is implicit in [4]. It is convenient to spell it out explicitly, since it
provides the motivation for generalizations to the infinite case.

Proposition 2.1. Let a = (a0, a1, . . . , an−1) ∈ Zn and let f(x) =
∑n−1

i=0 aiρi(x). Then Cna

is the sequence (f(0), f(1), . . . , f(n − 1)).
Conversely, let a ∈ Zn and let b = Bna. Then b is the sequence of (rational) coefficients

with respect to the integral root basis of the Lagrange interpolation polynomial ℓa(x) of a.

Proof. For j = 0, . . . , n−1, the jth of column of Cn is the sequence of values (ρj(0), ρj(1), . . . , ρj(n − 1))
of the jth element of the integral root basis of Z[x]n. Hence Cna is the sequence of values of
f(x) at 0, . . . , n − 1.

Conversely, the coefficients of ℓa(x), with respect to the integral root basis, are precisely
the terms of the sequence Bna.

Proposition 2.1 can be expressed in terms of the standard basis Sn = {xi : i = 0, . . . , n−
1} of Z[x]n. Let Ln be the n × n matrix

(ij), i, j = 0, 1, . . . , n − 1, with 00 = 1,

and let Mn be the n × n matrix
(

n−1
∑

k=0

(−1)i+k

[

k
i

]

(k)j

)

, i, j = 0, . . . , n − 1,

where the

[

k
i

]

are the Stirling cycle numbers, also known as Stirling numbers of the first

kind [10, pp 65–68].

Corollary 2.1. Let f(x) =
∑n−1

i=0 cix
i ∈ Z[x]n and let a be its sequence of values. Then

a = Lnc, where c = (c0, . . . , cn−1).
Conversely, let a ∈ Zn. Then c = Mna is the (rational) sequence of coefficients of

the Lagrange interpolation polynomial for a, with respect to the standard basis of Z[x]n.
Moreover, a ∈ Pn if and only if c ∈ Zn.
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Proof. The expansion of the integral root basis polynomials ρi(x) as polynomials in the
standard basis and vice versa are computed in [10, p 65, (40) and (41)]. The corresponding
transition matrices appear in slightly different form on page 66 of the same work.

The transition matrix from Rn to Sn is Kn =

(

(−1)i+j

[

j
i

])

. Its inverse is Jn =

({

j
i

})

[10, p 67, (43)], where the

{

j
i

}

are Stirling subset numbers, also known as Stirling numbers

of the second kind.
Then Ln = BnJn and Mn = KnCn, so the result follows from Proposition 2.1.

The integral root basis has important properties not shared by the standard basis:

1. Its evaluation provides stacked bases for Pn ⊆ Zn for every positive integer n, as shown
above.

2. Every integral coefficient power series, expressed with respect to the integral root basis,
converges at every non–negative integer. We exploit this property in Section 4 below.

An interesting consequence of Proposition 2.1 concerns the representation of primes by
polynomials, a topic of current interest in number theory. Green and Tao [9] have shown
that for every positive integer n, there are infinitely many arithmetic progressions of length n
consisting entirely of primes. Since every arithmetic progression of length n is a polynomial
point, Pn abounds with such sequences. A weaker but still interesting result can be obtained
with only the techniques employed here.

Proposition 2.2. For each n ∈ N+, there are infinitely many sequences of primes in Pn.

Proof. Fix n ∈ N+ and let a = (ai : i = 0, . . . , n−1) be a sequence of primes in the arithmetic
progression {1 + kn! : k ∈ N}. There are infinitely many choices of such sequences, by
Dirichlet’s theorem on primes in arithmetic progressions.

Each ai = 1 + kin! for some ki ∈ N. Let k = (ki) and let 1 = (1, 1, . . . , 1)T (n terms)
so that Bna = Bn1 + n!Bnk. By Proposition 2.1, Bn1 = (1, 0, . . . , 0)T and by Remark 1.2
(1), Bnk ∈ Zn. Hence Bna ∈ Zn, so by Theorem 1.1, a ∈ Pn. Hence a is v(f(x)) for some
polynomial f(x) of degree < n.

3 Special polynomials

The foregoing techniques also can be used to study familiar families of integral polynomials.
For example, let

Tn(x) =
n

2

⌊n/2⌋
∑

r=0

(−1)r

n − r

(

n − r

r

)

(2x)n−2r

denote the nth Chebyshev polynomial, a useful tool in approximation theory, solution of
differential equations and numerical analysis. Let T [x] denote the subgroup of Z[x] that
these polynomials generate. Let T [x]n = T [x]∩Z[x]n be the subgroup of the polynomials in
T [x] of degree < n. For n ∈ N+, let TPn denote the image in Zn of T [x]n under the valuation
map v.
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Proposition 3.1. With the notation above, Chebyshev polynomials have these properties:

1. {1, x, . . . , 2n−1xn, . . . } is a basis of T [x].

2. Z[x]n/T [x]n ∼= Pn/TPn
∼= ⊕n−1

i=2 Z/2i−1Z

3. Zn/TPn
∼= ⊕n−1

i=2 Z/2i−1i!Z

Proof. (1) It is clear that {1} and {1, x} are bases for T1(x) and T2(x), respectively. From this
fact and the recurrence satisfied by the Chebyshev polynomials, Tn+1(x) = 2xTn(x)−Tn−1(x),
the general result follows.

(2) The first isomorphism is induced by v, and the second follows from (1).
(3) follows from (2) and Theorem 1.3.

Similarly, let

Ln(x) = (−1)n

n
∑

k=0

(

n

k

)(

n + k

k

)

(−x)k

denote the nth shifted Legendre polynomial, used in the solution of certain differential equa-
tions that arise in physics. Let L[x] denote the subgroup of Z[x] that these polynomials
generate, and let L[x]n = L[x]∩Z[x]n be the subgroup of polynomials in L[x] of degree < n.
For n ∈ N+, let LPn denote the image in Zn of L[x]n under the valuation map v.

Proposition 3.2. With the notation above, Legendre polynomials have these properties:

1. {1, 2x, . . . , (2n)!/(n!)2xn, . . . } is a basis of L[x].

2. Z[x]n/L[x]n ∼= Pn/LPn
∼= ⊕n−1

i=1 Z/(2i)!/(i!)2Z

3. Zn/LPn
∼= ⊕n−1

i=1 Z/(2i)!/i!Z

Proof. (1) A straightforward induction argument reveals that the kth coefficient of Ln(x) is
a multiple of (2k)!/(k!)2.

(2) is clear from (1).
(3) In general, if S[x]n is a subgroup of Z[x]n that satisfies S[x]n = ⊕n−1

i=0 〈kix
i〉 for

ki ∈ Z, i = 0, . . . , n−1, then Zn/v(S[x]n) ∼= ⊕n−1
i=0 Z/kii!Z, where v is the valuation map.

4 Extensions to infinite sequences of integers

The first step in generalizing Theorems 1.1 and 1.3 to the infinite case is to extend the
valuation map v to v∗ : Z[x] → Π by v∗ : f(x) 7→ (f(n) : n ∈ N). Let Pω denote the image
of v∗ in Π and let Σ denote those sequences in Π that are eventually zero; Σ is a countable
free subgroup of Π. Further, let P∗ denote the pure subgroup of Π generated by Pω.

Next, extend the Gamma basis elements to elements of Π by the valuation map v∗ :
ρn(x) 7→ γn = ((k)n : k ∈ N) for all n ∈ N. Similarly, extend the Alpha basis elements to
αn = γn/n! =

((

k
n

)

: k ∈ N
)

. These extensions yield:

6



Theorem 4.1. 1. The valuation map v∗ : f(x) 7→ (f(n) : n ∈ N) is an isomorphism of
Z[x] onto Pω.

2. Pω is a countable free subgroup of Π and the extended Gamma basis is a basis of Pω.

3. P∗ also is a countable free subgroup of Π and the extended Alpha basis is a basis of P∗.

4. The extended Alpha and Gamma bases are stacked bases [3] of P∗ and Pω and P∗/Pω
∼=

⊕n≥2Z/n!Z.

Proof. (1) The valuation map v∗ is epic by definition of Pω and v∗ is certainly monic, since
only the zero polynomial has infinitely many zeros. Thus v∗ is an isomorphism.

(2) Clearly Z[x] ∼= Σ ∼= Pω, so that Pω is a countable free subgroup of Π. Since v∗ is an
isomorphism, it carries the integral root basis of Z[x] to a basis for Pω, which by definition
is the Gamma basis.

(3) P∗ is countable because it is the pure subgroup of Π generated by the countable
subgroup Pω [6, p 116], and it is free because all countable subgroups of Π are free. The
independence of the Alpha basis elements of P∗ follows from the fact that αn = γn/n! for all
n ∈ N and the γn are themselves independent.

All that remains is to demonstrate that the αn span P∗. From n!αn = γn it follows that
each αn ∈ P∗. Suppose that mx = j0γ0 + · · · + jkγk ∈ Pω is a linear combination of the γn,
so that x ∈ P∗ by purity.

Then mx = j00!α0 + · · · + jkk!αk. From the finite dimensional case, we know that m
divides each term jnn! in this sum, since α0, . . . , αk is a basis of Zk+1. Thus x = (j00!/m)α0+
· · · + (jkk!/m)αk, so that the αn span P∗ and hence form a basis.

(4) The Alpha and Gamma bases are stacked so that P∗/Pω
∼= ⊕n∈N Z/n!Z. Because

0! = 1 = 1!, the first two factors are degenerate, leaving the required result.

The ω × ω matrix whose columns are the extended Alpha basis is the infinite Pascal

matrix A =
(

(

i
j

)

: i, j ∈ N

)

which has integral inverse A−1 =
(

(−1)i+j
(

i
j

)

: i, j ∈ N

)

[1, p

2]. Similarly, the matrices Cn can be extended to an ω × ω matrix C, the top left n × n
corner of which, for all n ∈ N+, is Cn; and the matrices Bn can be extended to an ω × ω
matrix B, the top left n×n corner of which, for all n ∈ N+, is Bn; then C = B−1. Likewise,
the diagonal matrices Dn can be extended to a diagonal ω × ω matrix D, so that C = AD.
Since A, B, C and D are row finite, they act by left multiplication on Π. B of course is not
integral.

We proceed to generalize Theorems 1.1 and 1.3. Let a = (ai : i ∈ N) ∈ Π and define
the (formal) power series with respect to the integral root basis with coefficient sequence a

to be the expression, ra(x) =
∑

i∈N
aiρi(x). Let Z[[x]]R denote the group under addition of

coefficients of all such power series so that Z[[x]]R ∼= Π. Let Z[x]R denote those elements of
Z[[x]]R which have only finitely many non–zero coefficients, i.e., the polynomials in Z[[x]]R.
As defined here, neither Z[x]R nor Z[[x]]R is a ring.

Note that for each n ∈ N, ρi(n) = 0 for all i > n, so that ra(n) is an integer. Thus
the sequence of values (ra(0), ra(1), . . . ) is well–defined. As a result, the valuation map
ν : Z[[x]]R → Π given by ra(x) 7→ (ra(0), ra(1), . . . ) is a monomorphism of Z[[x]]R into Π.
Analogously with the finite dimensional case, we call the image of ν the group of polynomial
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points P. Since each f(x) ∈ Z[x] can be expressed uniquely as a polynomial in Z[x]R, and
conversely, ν maps Z[x]R isomorphically onto Pω ⊂ P.

We thank the referee for pointing out that P is the closure of Pω with respect to the
product topology on Π where Z has the discrete topology. For discussion and application of
this metrizable topology, see [2].

Let ρ denote the sequence of polynomials (ρ0(x), ρ1(x), . . . ), considered as a row vector,
and for all a ∈ Π, let ℓa(x) = ρBa. Since B is not integral, ℓa(x) need not lie in Z[[x]]R,
but nevertheless a = (ℓa(0), ℓa(1), . . . ); i.e., ℓa(x) is an infinite extension of the Lagrange
interpolation polynomials with respect to the integral root basis. The following lemma
demonstrates that the definition of ℓa(x) in the infinite case is consistent with that in the
finite case.

Lemma 4.1. Let a = (ai : i ∈ N) ∈ Π and for all n ≥ 1, let an = (a0, a1, . . . , an−1). Then
the sum of the first n terms of ℓa(x) is ℓan

(x).

Proof. The sum of the first n terms of ρBa is

(ρ0(x), ρ1(x), . . . , ρn−1(x))Bnan,

which equals ℓan
(x) by [4, Lemma 2.2].

Lemma 4.2. Let a, b ∈ Π. The following are equivalent:

1. Cb = a = (rb(0), rb(1), . . . )

2. Ba = b

Proof. Both parts follow immediately from Corollary 2.1 and Lemma 4.1.

The following corollary also is immediate.

Corollary 4.1. Let a ∈ Π. Then

1. Ca ∈ P, and P = CΠ

2. a ∈ P if and only if Ba ∈ Π

The following theorems are the promised infinite analogs of Theorems 1.1 and 1.3.

Theorem 4.2. Let a = (ai : i ∈ N) ∈ Π. The following are equivalent:

1. a ∈ P

2. ℓa(x) ∈ Z[[x]]R

3. Ba ∈ Π

Proof. The equivalence of (1) and (3) is just Corollary 4.1 (2).
For a ∈ Π, a = (ℓa(0), ℓa(1), . . . ). For a ∈ P, each intial segment an = (a0, a1, . . . , an−1) ∈

Pn, so by Theorem 1.1 (2), ℓan
(x) ∈ Z[x]n. That all the coefficients of ℓa(x) are integral fol-

lows from Lemma 4.1.
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Theorem 4.3. Π/P ∼=
∏

n≥2 Z/n!Z

Proof. Since the lower-triangular matrix A is integrally invertible with columns forming the
Alpha basis {αn : n ∈ N}, Π is the product of the αn’s, Π =

∏

n∈N
〈αn〉 [7, p 164, definitions

only]. Similarly, by Corollary 4.1 (1), P = CΠ with the columns of the lower-triangular
non-singular matrix C forming the Gamma basis {γn : n ∈ N}, so that P is also a product,
P =

∏

n∈N
〈γn〉. Since γn = n!αn for all n ∈ N, Π/P ∼=

∏

n∈N
Z/n!Z. Because 0! = 1 = 1!,

the first two factors are degenerate, leaving the required result.

The following lemma enables us to describe the group
∏

n∈N+ Zn/Pn.

Lemma 4.3. For all i ∈ N+, let Gi be an abelian group and ni a positive integer such that
ni < ni+1. Then

∏

j∈N+

⊕nj

i=1 Gi
∼=
∏

j∈N+

∏

i∈N+ Gi.

Proof. We construct a 1–1 correspondence between the constituent groups Gi on the left
and those on the right, in such a way that corresponding groups have the same subscript.
The identity maps on the Gi’s then induce the desired isomorphism between the group on
the left (call it L) and the group on the right (call it R).

The proof is essentially combinatorial, and we abuse notation for the sake of simplicity.
We display L and R schematically:

L =

G1 · · · Gn1

G1 . . . Gn1
. . . Gn2

...
...

...
...

...
G1 . . . Gn1

. . . Gn2
. . . Gnk

...
...

...
...

...
...

...

and

R =

G1 . . . Gn1
. . . Gn2

. . . Gnk
. . .

G1 . . . Gn1
. . . Gn2

. . . Gnk
. . .

...
...

...
...

...
...

... . . .
G1 . . . Gn1

. . . Gn2
. . . Gnk

. . .
...

...
...

...
...

...
...

...

Now operate on the array L by “pushing all the columns to the top” to form the array R.
This establishes the required isomorphism.

Application of Theorems 1.3 and 4.3 and Lemma 4.3 immediately yields the following
result.

Theorem 4.4.

∏

n∈N+

Zn/Pn
∼=
∏

n∈N+

n
⊕

k=1

Z/(k − 1)!Z ∼=
∏

n∈N+

∏

k∈N+

Z/(k − 1)!Z ∼=
∏

n∈N+

Π/P
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5 Subgroups of the Baer–Specker group

The Baer–Specker group Π is a well known source of examples and counter-examples in
abelian group theory; see for example [6, Section 19] and [2]. We now relate some of these
results to our theory of polynomial points.

Let B denote the subgroup of Π consisting of the bounded sequences of integers; B is a
basic subgroup of Π in the sense that it is a pure, free subgroup with divisible quotient [2,
p 5771]. Recall that Σ is the subgroup of sequences that are eventually 0; by [2, Theorem
1.5], Σ is a direct summand of B. Furthermore, by [2, p 5770], the quotient Π/Σ is the
direct sum of a divisible group and a reduced algebraically compact group, with the reduced
summand being isomorphic to the direct product of countably many copies of the groups of
p-adic integers for all primes p.

The following results show the relation between Theorems 4.3 and 1.1 and illustrate the
power and utility of the integral root basis. Recall that C is the ω×ω matrix whose columns
are the extended Gamma basis.

Theorem 5.1. In the notation above,

1. CΣ = Pω

2. Multiplication by C induces an isomorphism Π/Σ → P/Pω.

3. B ∩ P consists of the constant sequences.

4. (B + P)/P is torsion–free.

Proof. (1) Let a ∈ Pω, say a = (f(k) : k ∈ N), f(x) ∈ Z[x]. Write f = c0ρ0 + · · ·+cnρn with
respect to the integral root basis and let c = (c0, . . . , cn, 0, . . . ). Then c ∈ Σ and Cc = a.
Thus Pω ⊆ CΣ.

Conversely, let c = (c0, . . . , cn, 0, . . . ) ∈ Σ and define f(x) ∈ Z[x]n+1 by f = c0ρ0 + · · · +
cnρn. Then the values (f(k)), k ∈ N, form the sequence Cc. Thus CΣ ⊆ Pω, and the two
sets are equal.

(2) By Corollary 4.1 (1), P = CΠ, and from (1) above, Pω = CΣ so that C induces an
isomorphism Π/Σ → P/Pω.

(3) The constant sequences, being the values of degree zero polynomials, are clearly in
B∩P. No other sequence occurs there because the values of polynomials of non–zero degree
are unbounded.

(4) B is separable so that the constant sequences B ∩ P = (1, 1, . . . )T Z are a direct
summand, B = (B ∩ P) ⊕ B′ say. Thus (B + P)/P ∼= B/(B ∩ P) ∼= B′ ⊆ Π.

Recall that a group H is said to be algebraically compact if H is a direct summand of
every group G that contains H as a pure subgroup [6, Section 38]. Every bounded group
is algebraically compact. In the p–adic topology of a group G, p a prime, the subgroups
pnG, n ∈ N, form a base of neighborhoods of 0 [6, p 30]. A group G is cotorsion if every
extension of G by a torsion–free group splits; i.e., if Ext(J,G) = 0 for every torsion–free
group J [6, Section 54]. An algebraically compact group is cotorsion, but the converse need
not be true.

With this terminology, Π/P and its torsion subgroup can be described as follows:
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Theorem 5.2. 1. Π/P is a reduced, algebraically compact group and so is of the form
Π/P =

∏

Ap, the product over all primes p, where each Ap is complete in its p–adic
topology and is uniquely determined by Π/P.

2. Let T = ⊕Tp be the torsion subgroup of Π/P, where Tp is the p–primary component
of T for all primes p. Then Tp is the torsion subgroup of Ap and is isomorphic to the
torsion completion of ⊕k∈N+

(

⊕2ℵ0Z/pkZ
)

. Thus T is not cotorsion and so is not a
direct summand of Π/P.

Proof. (1) Π/P is reduced and algebraically compact because all of the product components
Z/n!Z in Theorem 4.3 are [6, Corollary 38.3]. As a result, it is of the form Π/P =

∏

Ap

where each Ap is complete in its p–adic topology and is uniquely determined [6, Proposition
40.1].

(2) By [7, Theorem 68.4], each Tp is torsion–complete since it is the torsion part of the
algebraically compact group Ap. Hence by the results of [7, Section 68], Tp is uniquely deter-
mined by any basic subgroup. Thus it remains to determine the Ulm–Kaplansky invariants
of Tp for each prime p.

For each prime p, the p–component of
∏

n≥2 Z/n!Z consists of those sequences a =

(an + n!Z) for which there is a positive integer k such that for all n, pkan is a multiple of n!.
For each fixed k,

∏

n≥2 Z/n!Z has 2ℵ0 independent elements of order pk. For example, let

{Fν : ν < 2ℵ0} be a family of 2ℵ0 almost disjoint infinite subsets of N; i.e., any two intersect
in a finite set. For each ν < 2ℵ0 let aν have n–component (n!/pk) + n!Z for each n ≥ pk in
Fν , and zero otherwise. Then the aν are independent elements of the product of order pk.
Since |Tp| ≤ |Π| = 2ℵ0 , Tp is the torsion completion of ⊕k∈N+

(

⊕2ℵ0Z/pkZ
)

[6, Section 40].
Since T is unbounded and reduced, it cannot be algebraically compact [6, Corollary 40.3]

or cotorsion [6, Corollary 54.4], so it is not a summand of Π/P, since any direct summand
of an algebraically compact group is itself algebraically compact and hence cotorsion [6, p
159].

6 Analytic properties of the power series

and Pascal’s matrix

Recall from Section 4 the definition of Z[[x]]R as the group of power series with respect
to the integral root basis; that is, elements of Z[[x]]R are formal expressions of the form
ra(x) =

∑

n∈N
anρn(x) with a = (an) ∈ Π.

We have seen that the elements of Z[[x]]R are the infinite analogs of the integral Lagrange
interpolation polynomials. We also have seen that there is a natural map Π → Z[[x]]R → Π

defined by a 7→ ra(x) 7→ (ra(n)). The image is P and as in the proof of Theorem 4.3,
Π =

∏

j∈N
〈αj〉 and P =

∏

j∈N
〈j!αj〉 where the αj are the elements of the extended Alpha

basis which form the columns of the infinite Pascal matrix A.
Through use of the observation that A can be obtained from the transpose UT of the

matrix (with respect to the standard basis) of the translation U : Z[x] → Z[x], x 7→ x + 1,
computations involving A can be greatly simplified. More precisely, let U(t) denote the
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matrix of the translation x 7→ x + t. Then U(t) = (uij(t)) where uij(t) =
(

j
i

)

tj−i, i.e.,

U(t) =















1 t t2 t3 . . .
0 1 2t 3t2 . . .
0 0 1 3t . . .
0 0 0 1 . . .
...

...
...

... · · ·















so that U = U(1).
Since for any numbers m and n, U(m)U(n) = U(m + n), we have for all n ∈ Z, Un =

U(n). Then defining A(t) = U(t)T , we find for all n ∈ Z that A(n) = U(n)T = (Un)T =
(UT )n. In particular, A−1 = U(−1)T . Thus computations with A are easier than they first
appear.

As with Z[[x]]R considered above, there is a natural isomorphism Π → Z[[x]] defined by
a 7→

∑

i∈N
aix

i. In particular, the image of the Alpha basis can be expressed in terms of the

standard basis by αj(x) =
∑

i∈N

(

i
j

)

xi. It is interesting to note that αj(x) = xj/(1 − x)j+1.

Proposition 6.1. With the notation above, αj(x) = xj/(1 − x)j+1

Proof.
∑

i∈N

(

i

j

)

xi =
xj

j!

dj

dxj

∑

i∈N

xi =
xj

j!

dj

dxj

(

1

1 − x

)

=
xj

(1 − x)j+1

We thank the referee for this short proof, which appeared in [8].

Proposition 6.2. Let F(x) =
∑

j∈N
ajx

j ∈ Z[[x]]. Then formally, F(x) = 1/(1−x)
∑

j∈N
bj(x/(1−

x))j, with a = (aj) and b = (bj) = A−1a.

Proof. We view a and b as infinite column vectors. Since Π =
∏

j∈N
〈αj〉 with respect to the

Alpha basis and Π ∼= Z[[x]], Z[[x]] =
∏

j∈N
〈αj(x)〉, where αj(x) =

∑

i∈N

(

i
j

)

xi for all j ∈ N.

The coefficients of F(x) with respect to the Alpha basis are given by A−1a = b, so

F(x) =
∑

j∈N

bjαj(x) =
∑

j∈N

bj
xj

(1 − x)j+1
=

1

1 − x

∑

j∈N

bj

(

x

1 − x

)j

Remark 6.1. Although the expansion described in Proposition 6.2 is formal, the series
may actually converge analytically. In particular, by the ratio test, each αj(x) =

∑
(

i
j

)

xi

converges on the unit disc |x| < 1. Moreover, we can construct a single variable generating
function for the entire infinite Pascal matrix as follows:

From the definition of αj(x) and Proposition 6.1,

1. αj(x) =
∑

i∈N

(

i
j

)

xi =
xj

(1 − x)j+1
. Sum equations (1) over j to obtain
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2.
∑

j∈N
αj(x) =

∑

j∈N

∑

i∈N

(

i
j

)

xi =
∑

j∈N

xj

(1 − x)j+1
. Now reverse the order of summa-

tion in the middle term of (2) and factor out 1/(1 − x) on the right to obtain

3.
∑

i∈N

∑

j∈N

(

i
j

)

xi =
1

1 − x

∑

j∈N

(

x

1 − x

)j

. From (3), factor out xi and use
(

i
j

)

= 0 for

j > i on the left, and the sum of a geometric series on the right to conclude that

4.
∑

i∈N
xi
∑i

j=0

(

i
j

)

=
1

1 − x

(

1

1 − x
1−x

)

=
1

1 − 2x
. Substituting 2i for

∑i
j=0

(

i
j

)

yields

5.
∑

j∈N
αj(x) =

∑

i∈N
(2x)i =

1

1 − 2x
and the series converges on the smaller disc |x| <

1/2.

To explicate Pascal’s infinite matrix from 1/(1−2x), simply reverse the steps:
1

1 − 2x
→

∑

i∈N
xi2i →

∑

i∈N
xi
∑i

j=0

(

i
j

)

→
∑

i∈N

∑

j∈N

(

i
j

)

xi. With this technique, two variables are

not required to generate the matrix; compare [10, p 93, Ex. 12 and solution p 494].
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