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Abstract

We introduce polynomial generalizations of the r-Fibonacci, r-Gibonacci, and r-
Lucas sequences which arise in connection with two statistics defined, respectively, on
linear, phased, and circular r-mino arrangements.

1 Introduction

In what follows, Z, N, and P denote, respectively, the integers, the nonnegative integers, and
the positive integers. Empty sums take the value 0 and empty products the value 1, with
0° := 1. If ¢ is an indeterminate, then 0, := 0, n, :==1+¢q+---+¢" ' for n € P, O(!] =1,

n}l = 1424---ng for n € P, and

|
n

4 if0<k<n;

| |

n ky(n—k);
= 1.1
(k>q (1.1)

0, ifk<0Oor0<n<Ek.
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The (Z)q are also given, equivalently, by the column generating function [12, pp. 201-202]

n=0

If r > 2, the r-Fibonacci numbers F,\" are defined by F"=F"=...= F" =1, with
F" = F(T) + F™ if n > r. The r-Lucas numbers L\ are defined by L = Lg) ==

n s

Lff)lzmnd LY =r 41, with L =1 + L™ ifn>r+1. If r = 2, the F" andL”

n—1
reduce, respectively, to the classical Fibonacci and Lucas numbers (parametrlzed, as in Wilf
[13] by Fy = Fy =1, ete., and Ly = 1, Ly = 3, etc.).

Polynomial generalizations of F,, and/or L, have arisen as distribution polynomials for
statistics on binary words [3], lattice paths [8], Morse code sequences [7], and linear and
circular domino arrangements [9]. Generalizations of F\” and/or LY have arisen similarly
in connection with statistics on Morse code sequences [7] as well as on linear and circular
r-mino arrangements [10, 11].

In the next section, we consider the g-generalization

FD(qt):= > ¢+ (5) (”_ (;_ 1>k> th (1.3)

0k n/7]

of F\"'. The r = 2 case of (1.3) or close variants thereof have appeared several times in
the literature starting with Carlitz (see, e.g., [3, 4, 5, 8, 9]. The Fn(r)(q,t) arise as joint
distribution polynomials for two statistics on linear r-mino arrangements which naturally
extend well known statistics on domino arrangements. When defined, more broadly, on
phased r-mino arrangements, these statistics lead to a further generalization of the FV(LT)(q, t)

which we denote by Gg)(q, t). In the third section, we consider the g-generalization

b= ok n/r] 4 {(” - (:q— 1)/<f)q] (" ! (Tk_ l)k) qtk (14)

of Lq(f), which arises as the joint distribution polynomial for the same two statistics, now
defined on circular r-mino arrangements. The r = 2 case of (1.4) was introduced by Carlitz
[3] and has been subsequently studied (see, e.g., [9]).

2 Linear and Phased r-Mino Arrangements

Let RSL denote the set of coverings of the numbers 1,2,... n arranged in a row by k
indistinguishable r-minos and n — rk indistinguishable squares, where pieces do not overlap,
an r-mino, r > 2, is a rectangular piece covering » numbers, and a square is a piece covering
a single number. Each such covering corresponds uniquely to a word in the alphabet {r, s}
comprising k r’s and n — rk s’s so that

RY)| = (” - (Tk‘ 1)k>, 0< k< |n/rl, (2.1)
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for all n € P. (If we set Rg:()) = {0}, the “empty covering,” then (2.1) holds for n = 0 as
well.) In what follows, we will identify coverings ¢ with such words ¢jco -+ in {r,s}. With

RO = |J R, neN, (2.2)

n
0<k<n/r]

it follows that

|R’£LT)| _ Z (TL - (Tk— 1)k’> _ FW(JT), (23)

0<k<|n/r]
where FO(T) = Fl(r) == Fr(i)l = 1, with F" = F(T)1 + FfQT if n > r. Note that
1
S RO (2.4
T l—z—a
n>0

Given ¢ € RY, let v(c) := the number of r-minos in the covering ¢, let o(c) := the sum
of the numbers covered by the leftmost segments of each of these r-minos, and let

E"(q,t) : Zq pvie), n € N. (2.5)
cERgp

Categorizing linear covers of 1,2, ..., n according to the final and initial pieces, respectively,

yields the recurrences
ED(q,t) = B2 (0. 8) + "R (0., nz (2.6)

and

F(gt) = B (g, at) + atFy (0,47, n> (2.7)
where F{"(q,t) = F{"(q,t) = --- = F") (q,t) = 1. Tterating (2.6) or (2.7) gives F")(¢,t) = 0

if 1<i<r—1with F")(q,t ) = ¢""'~!, which we’ll take as a convention.
With the ordinary generating function

(x,q.t) == > F{"(q,t)a", (2.8)

n>0

recurrence (2.6) is equivalent to the identity
M (z,q,t) =1+ 20 (2, q,t) + qta"® (¢qz, ¢, 1), (2.9)
which may be rewritten, with the operator ¢ f(z) := f(qz), as
(1—z — qtz"e)®")(z,q,t) = 1,

or

11—z 1—=x

tx” 1
(1 S g) ") (2, q,t) = . (2.10)
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From (2.10), we immediately get

k
, qtx” 1

k>0

which implies

Theorem 2.1.

ket (5) ph ok
oM (1, q.t) = q . 2.11
@00 =2 T =gy =) 2
By (2.11) and (1.2),
k
" (z,q,t) = qk-l-r(g)th(rfl)k. x
@ad) = 2, T—a)0—q) (- o)
— (r— 1)k
_ quw(’;)t%(rq)k Z <n (7;{7 ) ) = (r=1)k
k>0 n>rk q

x5 () )

n20 \ 0<k<|n/7]
which establishes the explicit formula:
Theorem 2.2. For alln € N,
—(r—10k
F™(q,t) = wer(s) (0 . 2.12
n(q,t) Yoot " q (2.12)

0<k<|n/r|

Remark: Cigler [7] has studied algebraically the polynomials
Frsag= > ¢& <" Sumne ”) shan AL s,
0<jk<n—j+1 q

which, by (2.12), are related to the FV(LT)(q, t) by

Fn(]? z,s, q) = xn7j+1F7§j—)j+1 (q7 q%) L 2 0. (213)

From (2.5) and (2.13), one gets a combinatorial interpretation for the F,,(j, z, s, ¢) in terms of
Jj-mino arrangements; viz., F,(j, x, s, q) is the joint distribution polynomial for the statistics

on Rﬁf}j 41 recording the number of squares, the number of j-minos, and the sum of the
numbers directly preceding leftmost segments of j-minos.

Note that (2.11) and (2.12) reduce, respectively, to (2.4) and (2.3) when ¢ = ¢t = 1.
Setting ¢ = 1 and ¢ = —1 in (2.11) gives



Corollary 2.3.

O (x,1,t) = (2.14)

1—ax—ta"
and

Corollary 2.4.
1+x—ta"

1 — a2 4 (—1)r+1222

M) (z,—1,1) = (2.15)

Taking the even and odd parts of both sides of (2.15), replacing = with #'/2, and applying
(2.14) yields

Theorem 2.5. Let m € N. If m and r have the same parity, then

F(=1,8) = B, (1, (1)) —tF() (1, (1)1, (2.16)

and if m and r have different parity, then

FD(=1,6) = F{1) o (1,(=1)"82). (2.17)

One can provide combinatorial proofs of (2.16) and (2.17) similar to those in [10, 11] given
for comparable formulas involving other g-Fibonacci polynomials.

The F\" (¢, t) may be generalized as follows:

If » > 2 and a,b € P, then define the sequence (G,@)nez by the recurrence G =
Gy + G, for all n € Z with the initial conditions G7) , = = G"} =0, G = q,
and GY) = b. When r = 2, these are the Gibonacci numbers G,, (shorthand for generalized
Fibonacci numbers) occurring in Benjamin and Quinn [2, p. 17]. Whena =b=1and a = r,
b =1, the Gg) reduce to the r-Fibonacci and r-Lucas numbers, respectively. We'll call the
G\ r_Gibonacci numbers.

From the initial conditions and recurrence, one sees that the Gg), when n > 1, count
linear r-mino coverings of length n in which an initial r-mino is assigned one of a phases and
an initial square is assigned one of b phases. We'll call such coverings phased r-mino tilings
(of length n), in accordance with Benjamin and Quinn [1, 2] in the case r = 2. Let R be
the set consisting of these phased tilings and let

GO(qt) = > ¢ 99 n>1, (2.18)
R

where the o and v statistics on R are defined as above. When a = b = 1, the Gg)(q, t)

reduce to the Fy)(q, t).
Conditioning on the final and initial pieces of a phased r-mino tiling yields the respective
recurrences

G (q,t) =G (q¢,) + " TG (g, 1), n=r+1, (2.19)

n—1
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and

G (g,t) = bF (4, 9t) + agt B (q,7), n>r+1, (2.20)
with G1(g,t) = -+ = G\ (q,t) = b and G\ (¢, t) = b+ agt. From (2.20), one gets formulas

for Gg)(q,t) similar to those for FT(LT)(q, t). For example, taking a = r, b = 1 in (2.20), and
applying (2.12), yields

gn= 3 ¢+ {(T — Dkg+ (n—(r— 1)’%} (n —(r— 1)k‘) #(221)

ohnr] (n—(r—1)k), k

a g-generalization of the r-Lucas numbers.

3 Circular r-Mino Arrangements

IfnePand0< k< [n/r],let Cf:,l denote the set of coverings by k r-minos and n — rk
squares of the numbers 1,2, ..., n arranged clockwise around a circle:

By the initial segment of an r-mino occurring in such a cover, we mean the segment first
encountered as the circle is traversed clockwise. Classifying members of CT(LTI)c according as (i)
1 is covered by one of r segments of an r-mino or (ii) 1 is covered by a square, and applying

(2.1), yields
_ T<n—(7;€—_11)k—1) N (n—(r—knk—l)

_ ﬁ("_(r_m;), 0< k< |n/r]. (3.1)

(r)
Cn,k

Below we illustrate two members of Céfll) :

(i)




In covering (i), the initial segment of the 4-mino covers 1, and in covering (ii), the initial
segment covers 4.
With
c= J ¢, nep (3.2)

0<k<n/7]

it follows that

ele S () e e

0<k<[n/r)
where LY) = Lg) =...= Lf,i)l =1, L =r4 1, and LY = L1(21 + L(r) if n > r+ 1. Note
that ,
Z L) g — _Erre (3.4)
" l—2—a"
n>1
and that

L0 = FO 4 (r = 1)F"

n n n—rm

n > 1. (3.5)

Given ¢ € C”, let v(c) := the number of r-minos in the covering ¢, let o(c) := the sum
of the numbers covered by the initial segments of each of these r-minos, and let

LI (g, t) == Y ¢, (3.6)
cECSLT>

Conditioning on whether the number 1 is covered by a square or by an initial segment of an
r-mino or by an r-mino with initial segment n — (r — 1 —4) for some i, 1 < i < r — 1, yields
the formula

LO(q.t) = FO@.t) + e S D (0. 4), n> 1, (3.7)

which reduces to the well known formula (see, e.g., [10])
LOL,t) = FO 1) + (r = DtED (1L,1), n>1, (3.8)
when ¢ = 1. The Lg)(q,t), though, do not appear to satisfy a simple recurrence like (2.6)

or (2.7).
With the ordinary generating function

(z,q,t) =Y _L{(q,t)a", (3.9)

n>=1
one sees that (3.7) is equivalent to
r—1
AN (@, q,1) = =1+ @)z, q,t) + qta” Y ¢'®"(qz, q, q't). (3.10)
i=1

By (2.11), identity (3.10) is equivalent to



Theorem 3.1.

k+r( ) gh ok 1+ (1—2)Y- qul]

A (z,q,t) T+ : (3.11)
; (I —x)(1—gqx)-- (1 —qgkx)

The following theorem gives an explicit formula for the Lg)(q, t):
Theorem 3.2. For alln € P,

=Y 06 { "o ] (n_ (Tk_ Dk)qt’f. (3.12)

e (n = (r—1)k),

Proof. 1t suffices to show

S 0= ) {(n - (:q_ 1)k)q} (n - (Tk— 1)k>q.

cecfj"L

Partitioning Cf:,)g into three classes according to whether (i) 1 is covered by an initial segment
of an r-mino, (ii) 1 is covered by an r-mino with initial segment n — (r — 1 — 7) for some 4,
1 <i<r—1,or (iii) 1 is covered by a square, and applying (2.12) to each class, yields

r—1
_ () (T (r—1k-—1 r(k—1)+1 (k—1)i+ (n—r+1+4)
> () (e X

(r) i=1
ECn %

) (n Sl ke 1) ¢

_ 0 (n - (7;{;—_11)15 — 1)q (1 n Tz_iqn(ri)k> 2+ () (n —(r —kl)k — 1)q

) [(n—(rk—_ll)k‘—l)q <1+jzjqn k) Y (n—(r—kl)k—l)q]

o N [ (I > p

(n—(r —1)k)q k P

from which (3.12) now follows from the easily verified identity

r—1
ng =k, (1 + Z q"ki> +q"(n —rk),.

i=1
[

Note that (3.11) and (3.12) reduce, respectively, to (3.4) and (3.3) when ¢ = ¢t = 1.
Setting ¢ = 1 and ¢ = —1 in (3.11) gives



Corollary 3.3.

+ rtx”
A (2, 1,8) = T 3.13
(z,1,1) 1 —x—ta" (3:.13)
and
Corollary 3.4.
2 _¢ 2L%J+1 — 1) 2
A (g, —1,4) = LT - r(-1)t (3.14)

1 — .1'2 + (_1)r+1t2x2r

Either setting ¢ = —1 in (3.7) and applying (2.16), (2.17), and (3.8) or taking the even
and odd parts of both sides of (3.14), replacing  with x'/2, and applying (3.13) and (2.14)
yields

Theorem 3.5. If m € P, then

L (=1,4) = LY(1,(=1)'¢?) (3.15)
and
L1 (=1,8) = By (1, (1)) =ty (1 (=1)782). (3.16)

For a combinatorial proof of (3.15) and (3.16), we first associate to each ¢ € ¢ a word
Ue = ujus - -+ in the alphabet {r, s}, where

' r, if the i** piece of ¢ is an r-mino;
U; ‘= if tho. .
s, if the i"" piece of ¢ is a square,

and one determines the i*" piece of ¢ by starting with the piece covering 1 and proceeding
clockwise from that piece. Note that for each word starting with r, there are exactly r
associated members of C,(f), while for each word starting with s, there is only one associated
member.

Assign to each covering ¢ € ¢ the weight w, := (—1)7@#"() where t is an indeterminate.

Let Cq(f)/ consist of those ¢ in C,(f) whose associated words u. = ujus - - - satisfy the conditions
Ug; = Ugit1, ¢ = 1. Suppose ¢ € el — C,(f)/, with i¢ being the smallest value of ¢ for which
Ug; # Ugiy1. Exchanging the positions of the (2ig)™ and (2ig + 1)* pieces within ¢ produces
a o-parity changing, v-preserving involution of C{” — C{"”".

First assume n = 2m and let cg;i* - Cg,): comprise those ¢ whose first and last pieces
are the same and containing an even number of pieces in all. We extend the involution of
e — el above to €57 — i7" as follows. Let ¢ € CJ) — € first assuming r is even. If
the initial segment of the r-mino covering 1 in ¢ lies on an odd (resp., even) number, then
rotate the entire arrangement counterclockwise (resp., clockwise) one position, moving the
pieces but keeping the numbered positions fixed.

Now assume r is odd. If 1 is covered by a segment of an r-mino which isn’t initial, the
rotate the entire arrangement clockwise or counterclockwise depending on whether the initial
segment of this r-mino covers an odd or an even number. If 1 is covered by a square or by an
initial segment of an r-mino, then pair ¢ with the covering obtained by reading u, = ujus - - -

backwards. Thus,



L1t = S w= 3 w= Y (~1)r@Rp0

cECéz cECé:i* cech*
= Y ()@ = L1, (~ 1)),
cEC,(,i)

which gives (3.15).
Next, assume n = 2m — 1 and let Cégil - Cé:gfl comprise those ¢ in which 1 is covered
by a square or by an initial segment of an r-mino and containing an odd number of pieces

in all if 1 is covered by a square. Define an involution of 052',1 — (,’52’11 as follows. If 7 is

odd, then use the mapping defined above for ng/ — o

5m  When r was even. If r is even, then

slightly modify the mapping defined above for CéQL/ — " when r was odd (i.e., replace the

2m
word “initial” with “second” in a couple of places). Thus,

Lgn)z—l(_Lt) = Z We = Z We + Z We

cecs)” cecs)™ | cec{)”

2m—1 m 27.n71
u1=s in ue w1=r in ue
S
CGREQL_Q CGRgrlr)zlfrfl
v(c) even
= E (L (1)) =ty (L (1)),
which gives (3.16), where RI" C R consists of those ¢ = cy¢y - -+ such that ey = ca,
1> 1.
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