Journal of Integer Sequences, Vol. 11 (2008),

On the Number of Subsets Relatively Prime to an Integer

Mohamed Ayad
Laboratoire de Mathématiques Pures et Appliquées
Université du Littoral
F-62228 Calais
France
ayad@lmpa.univ-littoral.fr
Omar Kihel
Department of Mathematics
Brock University
St. Catharines, Ontario L2S 3A1
Canada
okihel@brocku.ca

Abstract

Fix a positive integer and a finite set whose elements are in arithmetic progression. We give a formula for the number of nonempty subsets of this set that are coprime to the given integer. A similar formula is given when we restrict our attention to the subsets having the same fixed cardinality. These formulas generalize previous results of El Bachraoui.

1 Introduction

A nonempty subset A of $\{1,2, \ldots, n\}$ is said to be relatively prime if $\operatorname{gcd}(A)=1$. Nathanson [4] defined $f(n)$ to be the number of relatively prime subsets of $\{1,2, \ldots, n\}$ and, for $k \geq 1, f_{k}(n)$ to be the number of relatively prime subsets of $\{1,2, \ldots, n\}$ of cardinality k. Nathanson [4] defined $\Phi(n)$ to be the number of nonempty subsets A of the set $\{1,2, \ldots, n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n and, for integer $k \geq 1, \Phi_{k}(n)$ to be the number of subsets A of the set $\{1,2, \ldots, n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n and $\operatorname{card}(A)=k$.

He obtained explicit formulas for these functions and deduced asymptotic estimates. These functions have been generalized by El Bachraoui [3] to subsets $A \in\{m+1, m+2, \ldots, n\}$ where m is any nonnegative integer, and then by Ayad and Kihel [1] to subsets of the set $\{a, a+b, \ldots, a+(n-1) b\}$ where a and b are any integers.

El Bachraoui [2] defined for any given positive integers $l \leq m \leq n, \Phi([l, m], n)$ to be the number of nonempty subsets of $\{l, l+1, \ldots, m\}$ which are relatively prime to n and $\Phi_{k}([l, m], n)$ to be the number of such subsets of cardinality k. He found formulas for these functions when $l=1$ [2]. In this paper, we generalize these functions and obtain El Bachraoui's result as a particular case.

2 Phi functions for $\{1,2, \ldots, m\}$

Let k and $l \leq m \leq n$ be positive integers. Let $\lfloor x\rfloor$ denote the greatest integer less than or equal to x, and $\mu(n)$ the Möbius function. El Bachraoui [2] defined $\Phi([l, m], n)$ to be the number of nonempty subsets of $\{l, l+1, \ldots, m\}$ which are relatively prime to n and $\Phi_{k}([l, m], n)$ to be the number of such subsets of cardinality k. He proved the following formulas [2]:

$$
\begin{equation*}
\Phi([1, m], n)=\sum_{d \mid n} \mu(d) 2^{\left[\frac{m}{d}\right]} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{k}([1, m], n)=\sum_{d \mid n} \mu(d)\binom{\left[\frac{m}{d}\right]}{k} . \tag{2}
\end{equation*}
$$

In his proof of Eqs. (1) and (2), El Bachraoui [2] used the Möbius inversion formula and its extension to functions of several variables. The case $m=n$ in (1), was proved by Nathanson [4].

3 Phi functions for $\{a, a+b, \ldots, a+(m-1) b\}$

It is natural to ask whether one can generalize the formulas obtained by El Bachraoui [2] to a set $A=\{a, a+b, \ldots, a+(m-1) b\}$, where a, b, and m are positive integers. Let $\Phi^{(a, b)}(m, n)$ be the number of nonempty subsets of $\{a, a+b, \ldots, a+(m-1) b\}$ which are relatively prime to n and $\Phi_{k}([l, m], n)$ to be the number of such subsets of cardinality k. To state our main theorem, we need the following lemma, which is proved in [1]:

Lemma 1. For an integer $d \geq 1$, and for nonzero integers a and b such that $\operatorname{gcd}(a, b)=1$, let $A_{d}=\{x=a+i b$ for $i=0, \ldots,(m-1)|d| x\}$. Then
(i) If $\operatorname{gcd}(b, d) \neq 1$, then $\left|A_{d}\right|=0$.
(ii) If $\operatorname{gcd}(b, d)=1$, then $\left|A_{d}\right|=\left\lfloor\frac{m}{d}\right\rfloor+\varepsilon_{d}$, where

$$
\varepsilon_{d}= \begin{cases}0, & \text { if } d \mid m ; \tag{3}\\ 1, & \text { if } d \nmid m \text { and }\left(-a b^{-1}\right) \bmod d \in\left\{0, \ldots, m-\left\lfloor\frac{m}{d}\right\rfloor d-1\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Theorem 2.

$$
\begin{equation*}
\Phi^{(a, b)}(m, n)=\sum_{\substack{d \mid n \\ \operatorname{gcd}(b, d)=1}} \mu(d)\left(2^{\left\lfloor\frac{m}{d}\right\rfloor+\epsilon_{d}}-1\right) \tag{4}
\end{equation*}
$$

and

$$
\Phi_{k}^{(a, b)}(m, n)=\sum_{\substack{d \mid n \\ \operatorname{gcd}(b, d)=1}} \mu(d)\binom{\left\lfloor\frac{m}{d}\right\rfloor+\epsilon_{d}}{k}
$$

where ϵ_{d} is the function defined in Lemma 1.
Proof. Let $A_{d}=\{x=a+i b$ for $i=0, \ldots,(m-1)|d| x\}$, and $\mathcal{P}\left(A_{d}\right)=\left\{\right.$ the nonempty subsets of $\left.A_{d}\right\}$.
It is easy to see that $\Phi^{(a, b)}(m, n)=\left(2^{m}-1\right)-\left|\bigcup_{p \text { prime }} \mathcal{P}\left(A_{p}\right)\right|$. Clearly, if p_{1}, \ldots, p_{t} are

$$
p \mid n
$$

distinct primes, then

$$
\left|\bigcap_{i=1}^{t} \mathcal{P}\left(A_{p_{i}}\right)\right|=\left|\mathcal{P}\left(A_{\prod_{i=1}^{t} p_{i}}\right)\right| .
$$

Thus, using the principle of inclusion-exclusion, one obtains from above that

$$
\Phi^{(a, b)}(m, n)=\sum_{d \mid n} \mu(d)\left|\mathcal{P}\left(A_{d}\right)\right|
$$

It was proved in Lemma 1, that if $\operatorname{gcd}(b, d) \neq 1$, then $\left|A_{d}\right|=0$ and if $\operatorname{gcd}(b, d)=1$, then $\left|A_{d}\right|=\left(\left\lfloor\frac{m}{d}\right\rfloor+\varepsilon_{d}\right)$. Hence

$$
\Phi^{(a, b)}(m, n)=\sum_{\substack{d \mid n \\ \operatorname{gcd}(b, d)=1}} \mu(d)\left(2^{\left[\frac{m}{d}\right]+\epsilon_{d}}-1\right) .
$$

The proof for Eq. (5) is similar.
Theorem 3 in [2] can be deduced from Theorem 2 above as the particular case where $a=$ $b=1$. We prove the following.

Corollary 3. (a) $\Phi([1, m], n)=\Phi^{(1,1)}(m, n)$
and
(b) $\Phi_{k}([l, m], n)=\Phi_{k}^{(1,1)}(m, n)$.

Proof. It is not difficult to prove that when $a=b=1$ in Lemma $1, \epsilon_{d}=0$. Using Theorem 2, and the well-known equality $\sum_{d \mid n} \mu(d)=0$, one obtains that

$$
\begin{equation*}
\Phi^{(1,1)}(m, n)=\sum_{d \mid n} \mu(d)\left(2^{\left\lfloor\frac{m}{d}\right\rfloor}-1\right)=\sum_{d \mid n} \mu(d) 2^{\left\lfloor\frac{m}{d}\right\rfloor}=\Phi([1, m], n) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{k}^{(1,1)}(n)=\sum_{d \mid n} \mu(d)\binom{\left\lfloor\frac{m}{d}\right\rfloor}{ k}=\Phi_{k}([1, m], n) . \tag{7}
\end{equation*}
$$

Example 4. Using Theorem 2, one can obtain asymptotic estimates and generalize Corollary 4 proved by El Bachraoui [2].

References

[1] M. Ayad and O. Kihel, On relatively prime sets, submitted.
[2] M. El Bachraoui, On the number of subsets of $[1, m]$ relatively prime to n and asymptotic estimates, Integers 8 (2008), A41, 5 pp. (electronic).
[3] M. El Bachraoui, The number of relatively prime subsets and phi functions for $\{m, m+$ $1, \ldots, n\}$, Integers 7 (2007), A43, 8 pp . (electronic).
[4] M. B. Nathanson, Affine invariants, relatively prime sets, and a phi function for subsets of $\{1,2, \ldots, n\}$, Integers 7 (2007), A1, 7 pp. (electronic).
[5] M. B. Nathanson and B. Orosz, Asymptotic estimates for phi functions for subsets of $\{M+1, M+2, \ldots, N\}$, Integers 7 (2007), A54, 5 pp . (electronic).

2000 Mathematics Subject Classification: Primary 05A15.
Keywords: relatively prime subset, Euler phi function.

Received October 22 2008; revised version received December 13 2008. Published in Journal of Integer Sequences, December 132008.

Return to Journal of Integer Sequences home page.

