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Abstract

In this paper, we discuss the properties of associated Stirling numbers. By means

of the method of coefficients, we establish a series of identities involving associated

Stirling numbers, Bernoulli numbers, harmonic numbers, and the Cauchy numbers of

the first kind. In addition, we give the asymptotic expansion of certain sums involving

2-associated Stirling numbers of the second kind by Darboux’s method.

1 Introduction

Stirling numbers are generalized by many forms. See for instance [1,2,3,4,5] and [9]. In this
paper, we are interested in associated Stirling numbers. The associated Stirling numbers of
the first kind s2(n, k) [3] are given by

∞
∑

n=k

s2(n, k)
tn

n!
=

[ln(1 + t) − t]k

k!

and the r-associated Stirling numbers of the second kind Sr(n, k) [3] are given by

∞
∑

n=k

Sr(n, k)
tn

n!
=

1

k!

[

et −

r−1
∑

j=0

tj

j!

]k

,

where k and r are positive integers. It is clear that

∞
∑

n=k

S2(n, k)
tn

n!
=

(et − 1 − t)k

k!
,

∞
∑

n=k

S3(n, k)
tn

n!
=

(et − 1 − t − t2/2)k

k!
.

Like the ordinary Stirling numbers, the associated Stirling numbers also play important
roles in combinatorics. For example, |s2(n, k)| equals the number of derangements of a set N

1

mailto:fengzhenzhao@yahoo.com.cn


(|N | = n), with k orbits, and Sr(n, k) is the number of partitions of the set N (|N | = n), into
k blocks, all of cardinality ≥ r. It is clear that S1(n, k) is the Stirling number of the second
kind S(n, k). Therefore, associated Stirling numbers deserve to be investigated. The aim of
this paper is to investigate the properties of associated Stirling numbers by making use of
the method of coefficients [7]. We establish a series of identities relating associated Stirling
numbers with Bernoulli, harmonic, and Cauchy numbers of the first kind. In addition, we
give the asymptotic expansion of certain sums involving r-associated Stirling numbers by
Darboux’s method.

The paper is organized as follows. In Section 2, we establish a series of identities involving
associated Stirling, Bernoulli, harmonic and Cauchy numbers of the first kind. In Section
3, we give the asymptotic expansion of certain sums involving r-associated Stirling numbers
by Darboux’s method.

For convenience, we recall some definitions of combinatorial numbers involved in the
paper. Throughout, we denote Stirling numbers of the first kind by s(n, k), and let Bn, B

(k)
n ,

and En stand for Bernoulli, generalized Bernoulli, and Euler numbers respectively. That is,

∞
∑

n=k

s(n, k)
tn

n!
=

lnk(1 + t)

k!
,

∞
∑

n=0

Bn

tn

n!
=

t

et − 1
,

∞
∑

n=0

B(k)
n

tn

n!
=

tk

(et − 1)k
(k ≥ 1),

∞
∑

n=0

En

tn

n!
=

2

et + e−t
.

The Cauchy numbers of the first kind an are given by

∞
∑

n=0

an

tn

n!
=

t

ln(1 + t)
.

The harmonic numbers Hn are given by

∞
∑

n=1

Hnt
n = −

ln(1 − t)

1 − t
.

In this paper, [tn]f(t) denotes the coefficient of tn in f(t), where

f(t) =
∞

∑

n=0

fnt
n.

The expression [tn] is called the “coefficient of” functionals [7]. If f(t) and g(t) are formal
power series, the following relations hold [7]:

[tn](αf(t) + βg(t)) = α[tn]f(t) + β[tn]g(t), (1.1)

[tn]tf(t) = [tn−1]f(t), (1.2)

[tn]f ′(t) = (n + 1)[tn+1]f(t), (1.3)

[tn]f(t)g(t) =
n

∑

k=0

([yk]f(y))[tn−k]g(t). (1.4)

In Section 2, we obtain a series of identities related to associated Stirling numbers by using
(1.1)-(1.4).
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2 Identities involving associated Stirling, Bernoulli, and

harmonic numbers

Bernoulli numbers and harmonic numbers are important in combinatorics, and Stirling num-
bers are related to them. From [3], we know that Stirling numbers and Bernoulli numbers
satisfy

n
∑

j=0

(−1)jj!S(n, j)

j + 1
= Bn,

n
∑

j=0

s(n, j)Bj =
(−1)nn!

n + 1
.

By the generating functions of S2(n, k), S(n, k), and Bn, we observe that S2(n, k) is also
related to Bn, and we have

Theorem 2.1. For n ≥ 1 and k ≥ 1, S2(n, k), Bn, and S(n, k) satisfy the equations

n
∑

j=0

S2(n − j + k, k)

(

n + k

j

)

Bj = (n + k)
k

∑

j=1

(−1)k−j

j

(

n + k − 1

k − j

)

S(n + j − 1, j − 1)

+(−1)k

(

n + k

k

)

Bn, (2.1)

n
∑

j=0

(

n + k − 1

j

)

S2(n − j + k, k)Bj = (n + k − 1)S2(n + k − 2, k − 1) k ≥ 2. (2.2)

Proof. By the definitions of S2(n, k), Bn, and S(n, k), we have

n
∑

j=0

S2(n − j + k, k)

(

n + k

j

)

Bj = (n + k)!
n

∑

j=0

S2(n − j + k, k)

(n − j + k)!
·
Bj

j!

= (n + k)!
n

∑

j=0

[tn−j+k]
(et − 1 − t)k

k!
[tj]

t

et − 1

= (n + k)!
n

∑

j=0

[tn−j]
(et − 1 − t)k

k!tk
[tj]

t

et − 1

= (n + k)![tn]
(et − 1 − t)kt

k!tk(et − 1)

= (n + k)![tn]
k

∑

j=0

(−1)k−j

(

k

j

)

(et−)j−1t−j+1

k!

=
(−1)k(n + k)!

k!
[tn]

t

et − 1
+ (n + k)!

k
∑

j=1

[tn]
(−1)k−j(et − 1)j−1

j(k − j)!(j − 1)!tj−1

= (−1)k

(

n + k

k

)

Bn + (n + k)!
k

∑

j=1

(−1)k−jS(n + j − 1, j − 1)

j(k − j)!(n + j − 1)!
.
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Then (2.1) holds.
Now we give the proof of (2.2).

n
∑

j=0

(

n + k − 1

j

)

S2(n − j + k, k)Bj = (n + k − 1)!
n

∑

j=0

S2(n − j + k, k)

(n − j + k − 1)!
·
Bj

j!

= (n + k − 1)!
n

∑

j=0

(n − j + k)S2(n − j + k, k)

(n − j + k)!
·
Bj

j!

= (n + k − 1)!
n

∑

j=0

(n − j + k)[tn−j+k]
(et − 1 − t)k

k!
[tj]

t

et − 1

= (n + k − 1)!
n

∑

j=0

[tn−j+k−1]
(et − 1 − t)k−1(et − 1)

(k − 1)!
[tj]

t

et − 1

= (n + k − 1)!
n

∑

j=0

[tn−j]
k(et − 1 − t)k−1(et − 1)

tk−1k!
[tj]

t

et − 1

= (n + k − 1)![tn]
(et − 1 − t)k−1

tk−2(k − 1)!

= (n + k − 1)![tn+k−2]
(et − 1 − t)k−1

(k − 1)!

= (n + k − 1)S2(n + k − 2, k − 1).

This completes the proof.

Formula (2.1) relates associated Stirling, Bernoulli, and Stirling numbers of the second
kind.

The generating functions of generalized Bernoulli numbers B
(k)
n implies that they are

related to associated Stirling numbers. For S2(n, k) and B
(k)
n , we get

Corollary 2.1. For n ≥ 1 and k ≥ 1, 2-associated Stirling numbers S2(n, k) and generalized

Bernoulli numbers B
(k)
n satisfy

n
∑

j=0

S2(n − j + k, k)

(

n + k

j

)

B
(k)
j =

(

n + k

k

) k
∑

j=0

(−1)k−j

(

k

j

)

B(k−j)
n . (2.3)
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Proof.

n
∑

j=0

S2(n − j + k, k)

(

n + k

j

)

B
(k)
j = (n + k)!

n
∑

j=0

S2(n − j + k, k)

(n − j + k)!
·
B

(k)
j

j!

= (n + k)!
n

∑

j=0

[tn−j+k]
(et − 1 − t)k

k!
[tj]

tk

(et − 1)k

=
(n + k)!

k!

n
∑

j=0

[tn−j]
(et − 1 − t)k

tk
[tj]

tk

(et − 1)k

=
(n + k)!

k!
[tn]

(et − 1 − t)k

(et − 1)k

=
(n + k)!

k!

k
∑

j=0

(−1)k−j

(

k

j

)

B
(k−j)
n

n!
.

Hence (2.3) holds.

For S3(n, k) and Bernoulli numbers Bn, we have

Theorem 2.2. For n ≥ k and k ≥ 1, S3(n, k) and Bn satisfy

n
∑

j=0

(

n + k

j + k

)

S3(j + k, k)Bn−j = (n + k)!
k

∑

j=1

(−1)k−j

j(k − j)!

k−j
∑

j1=0

(

k − j

j1

)

S(n − j1 + j − 1, j − 1)

2j1(n − j1 + j − 1)!

+
(−1)k(n + k)!

k!

k
∑

j=0

Bn−j

2j(n − j)!

(

k

j

)

. (2.4)
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Proof. From the generating functions of S3(n, k) and Bn, we have

n
∑

j=0

(

n + k

j + k

)

S3(j + k, k)Bn−j = (n + k)!
n

∑

j=0

S3(j + k, k)

(j + k)!

Bn−j

(n − j)!

= (n + k)!
n

∑

j=0

[tj+k]
(et − 1 − t − t2/2)k

k!
[tn−j]

t

et − 1

= (n + k)!
n

∑

j=0

[tj]
(et − 1 − t − t2/2)k

tkk!
[tn−j]

t

et − 1

= (n + k)![tn]
(et − 1 − t − t2/2)kt

k!tk(et − 1)

= (n + k)![tn]

( k
∑

j=0

(−1)k−j

(

k

j

)

(et − 1)j(t + t2/2)k−jt

k!(et − 1)tk

)

= (n + k)![tn]
(−1)k(1 + t/2)kt

k!(et − 1)

+[tn]
k

∑

j=1

(−1)k−j

(

k

j

)

(et − 1)j−1(t + t2/2)k−jt

k!tk

= (−1)k(n + k)!
k

∑

j=0

(

k

j

)

Bn−j

2j(n − j)!k!

+
(n + k)!

k!
[tn]

k
∑

j=1

(−1)k−j

(

k

j

)

(et − 1)j−1

k−j
∑

j1=0

(

k − j

j1

)

tj1−j+1

2j1

=
(−1)k(n + k)!

k!

k
∑

j=0

(

k

j

)

Bn−j

2j(n − j)!

+(n + k)!
k

∑

j=1

(−1)k−j

j(k − j)!

k−j
∑

j1=0

(

k − j

j1

)

S(n − j1 + j − 1, j − 1)

2j1(n − j1 + j − 1)!

Then (2.4) holds.

There are many identities relating Stirling numbers of the first kind and harmonic num-
bers in [3]. For example,

(−1)n+1s(n + 1, 2) = n!Hn,

(−1)ns(n + 1, 3) =
n!

2
(H2

n − H(2)
n ),

(−1)n+1s(n + 1, 4) =
n!

6
(H2

n − 3HnH(2)
n + 2H(3)

n ),

where H
(s)
n = 1 + 2−s + 3−s + · · · + n−s.

For associated Stirling numbers of the first kind and harmonic numbers, we can prove
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Theorem 2.3. For n ≥ 1 and k ≥ 1, we have

n
∑

j=0

(−1)jHj+1s2(n − j + k, k)

(j + 2)(n − j + k)!
=

(−1)k

2

k
∑

j=0

(−1)j(j + 1)(j + 2)s(n + j + 2, j + 2)

(k − j)!(n + j + 2)!
.

(2.5)

Proof. By integrating the generating function for Hn we have
∞

∑

n=0

Hn+1t
n

n + 2
=

ln2(1 − t)

2t2
.

One can verify that

[ln(1 − t) + t]k ln2(1 − t)

2(−1)kk!tk+2
=

(−1)k

2k!

k
∑

j=0

(

k

j

)

lnj+2(1 − t)

tj+2
.

Then

[tn]
[ln(1 − t) + t]k ln2(1 − t)

2(−1)kk!tk+2
=

n
∑

j=0

[tn−j+k]
[ln(1 − t) + t]k

(−1)kk!
[tj]

ln2(1 − t)

2t2

=
n

∑

j=0

(−1)n−js2(n − j + k, k)Hj+1

(n − j + k)!(j + 2)

=
(−1)k

2k!

k
∑

j=0

(

k

j

)

[tn]
lnj+2(1 − t)

tj+2
,

n
∑

j=0

(−1)n−jHj+1s2(n − j + k, k)

(j + 2)(n − j + k)!
=

(−1)n+k

2

k
∑

j=0

(−1)j(j + 1)(j + 2)s(n + j + 2, j + 2)

(k − j)!(n + j + 2)!
.

Hence (2.5) holds.

There are some identities involving Stirling numbers and Cauchy numbers of the first
kind. For example

n
∑

j=0

ajS(n, j) =
1

n + 1
, an =

n
∑

j=0

s(n, j)

j + 1
.

See [3, 6] for more details. For associated Stirling numbers of the first kind and the Cauchy
numbers of the first kind, we have

Theorem 2.4. For n ≥ 1 and k ≥ 1, s2(n, k) and an satisfy

n
∑

j=0

s2(n − j + k, k)

(

n + k

j

)

aj = (n + k)
k

∑

j=1

(−1)k−j

j

(

n + k − 1

k − j

)

s(n + j − 1, j − 1)

+(−1)k

(

n + k

k

)

an. (2.6)

The proof of (2.6) is similar to that of (2.1) and is omitted here.
Formula (2.6) relates associated Stirling numbers and Cauchy numbers.
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3 Asymptotic Expansion of Certain Sums Involving

2-associated Stirling numbers of the second kind,

Bernoulli numbers, and Euler Numbers

We know that it is difficult to compute the accurate values of certain sums involving r-
associated Stirling numbers. However, sometimes we can give their asymptotic expansion. In
this section, we give asymptotic expansion of certain sums for 2-associated Stirling numbers
of the second kind, Bernoulli numbers, and Euler numbers by Darboux’s method. We first
recall a lemma (see [8]):
Lemma: Assume that f(t) =

∑

n≥0 ant
n is an analytic function for |t| < r and with a finite

number of algebraic singularities on the circle |t| = r. α1, α2, · · · , αl are singularities of
order ω, where ω is the highest order of all singularities. Then

an = (nω−1/Γ(ω)) ×

( l
∑

k=1

gk(αk)α
−n
k + o(r−n)

)

, (3.1)

where Γ(ω) is the gamma function, and

gk(αk) = lim
t→αk

(1 − (t/αk))
ωf(t).

By using (3.1), we obtain

Theorem 3.1. Suppose that n ≥ 1 and k ≥ 1, where k is fixed. When n → ∞, we have

∑

p+q=2n

S2(p + k, k)Bq

(p + k)!q!
∼

2(−1)n+k+1

(2π)2nk!
, (3.2)

∑

p+q=n

S2(p + k, k)Eq

(p + k)!q!
∼

2n+1[(2 + 2i − π)ki−n + (2 − 2i − π)k(−i)−n]

πn+k+1k!
. (3.3)

Proof. Because the proof of (3.3) is similar to that of (3.2), we only prove that (3.2) holds.
It is clear that

∞
∑

p=0

S2(p + k, k)
tp

(p + k)!

∞
∑

q=0

Bq

tq

q!
=

(et − 1 − t)k

k!tk−1(et − 1)
.

Let

f(t) =
(et − 1 − t)k

k!tk−1(et − 1)
.

Then f(t) is analytic for |t| < 2π and with two algebraic singularities on the circle |t| = 2π.
α1 = 2πi and α2 = −2πi are singularities of order 1. One can compute that

lim
t→2πi

(

1 −
t

2πi

)

f(t) = lim
t→−2πi

(

1 +
t

2πi

)

f(t)

=
(−1)k+1

k!
.
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It follows from (3.1) that

∑

p+q=n

S2(p + k, k)Bq

(p + k)!q!
=

1

Γ(1)

{

(−1)k+1[(2πi)−n + (−2πi)−n]

k!
+ o((2π)−n)

}

.

Then we have
∑

p+q=2n

S2(p + k, k)Bq

(p + k)!q!
∼

(−1)k+1[i2n + (−i)2n]

(2π)2nk!

Hence (3.2) holds.
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