Journal of Integer Sequences, Vol. 12 (2009), Article 09.3.5

A New Identity for Complete Bell Polynomials Based on a Formula of Ramanujan

Sadek Bouroubi
University of Science and Technology Houari Boumediene
Faculty of Mathematics
Laboratory LAID3
P. O. Box 32
16111 El-Alia, Bab-Ezzouar, Algiers
Algeria
sbouroubi@usthb.dz
bouroubis@yahoo.fr
Nesrine Benyahia Tani
Faculty of Economics and Management Sciences
Laboratory LAID3
Ahmed Waked Street
Dely Brahim, Algiers
Algeria
benyahiatani@yahoo.fr

Abstract

Let $p(n)$ be the number of partitions of n. In this paper, we give a new identity for complete Bell polynomials based on a sequence related to the generating function of $p(5 n+4)$ established by Srinivasa Ramanujan.

1 Introduction

Let us first present some necessary definitions related to the Bell polynomials, which are quite general and have numerous applications in combinatorics. For a more complete exposition, the reader is referred to the excellent books of Comtet [4], Riordan [6] and Stanley [9].

Let $\left(a_{1}, a_{2}, \ldots\right)$ be a sequence of real or complex numbers. Its partial (exponential) Bell polynomial $B_{n, k}\left(a_{1}, a_{2}, \ldots\right)$, is defined as follows:

$$
\sum_{n=k}^{\infty} B_{n, k}\left(a_{1}, a_{2}, \ldots\right) \frac{t^{n}}{n!}=\frac{1}{k!}\left(\sum_{m=1}^{\infty} a_{m} \frac{t^{m}}{m!}\right)^{k}
$$

Their exact expression is

$$
B_{n, k}\left(a_{1}, a_{2}, \ldots\right)=\sum_{\pi(n, k)} \frac{n!}{k_{1}!k_{2}!\cdots}\left(\frac{a_{1}}{1!}\right)^{k_{1}}\left(\frac{a_{2}}{2!}\right)^{k_{2}} \cdots
$$

where $\pi(n, k)$ denotes the set of all integer solutions $\left(k_{1}, k_{2}, \ldots\right)$ of the system

$$
\left\{\begin{array}{l}
k_{1}+\cdots+k_{j}+\cdots=k \\
k_{1}+\cdots+j k_{j}+\cdots=n
\end{array}\right.
$$

The (exponential) complete Bell polynomials are given by

$$
\exp \left(\sum_{m=1}^{\infty} a_{m} \frac{t^{m}}{m!}\right)=\sum_{n=0}^{\infty} A_{n}\left(a_{1}, a_{2}, \ldots\right) \frac{t^{n}}{n!}
$$

In other words,

$$
A_{0}\left(a_{1}, a_{2}, \ldots\right)=1 \quad \text { and } \quad A_{n}\left(a_{1}, a_{2}, \ldots\right)=\sum_{k=1}^{n} B_{n, k}\left(a_{1}, a_{2}, \ldots\right), \forall n \geq 1
$$

Hence

$$
A_{n}\left(a_{1}, a_{2}, \ldots\right)=\sum_{k_{1}+\ldots+j k_{j}+\ldots=n} \frac{n!}{k_{1}!k_{2}!\cdots}\left(\frac{a_{1}}{1!}\right)^{k_{1}}\left(\frac{a_{2}}{2!}\right)^{k_{2}} \ldots
$$

The main tool used to prove our main result in the next section is the following formula of Ramanujan, about which G. H. Hardy [5] said: "... but here Ramanujan must take second place to Prof. Rogers; and if I had to select one formula from all of Ramanujan's work, I would agree with Major MacMahon in selecting ...

$$
\begin{equation*}
\sum_{n=0}^{\infty} p(5 n+4) x^{n}=\frac{5\left\{\left(1-x^{5}\right)\left(1-x^{10}\right)\left(1-x^{15}\right) \cdots\right\}^{5}}{\left\{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots\right\}^{6}} \tag{1}
\end{equation*}
$$

where $p(n)$ is the number of partitions of $n . "$

2 Some basic properties of the divisor function

Let $\sigma(n)$ be the sum of the positive divisors of n. It is clear that $\sigma(p)=1+p$ for any prime number p, since the only positive divisors of p are 1 and p. Also the only divisors of p^{2} are $1, p$ and p^{2}. Thus

$$
\sigma\left(p^{2}\right)=1+p+p^{2}=\frac{p^{3}-1}{p-1}
$$

It is now easy to prove [8]

$$
\begin{equation*}
\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1} \tag{2}
\end{equation*}
$$

It is well known in number theory [8] that $\sigma(n)$ is a multiplicative function, that is, if n and m are relatively prime, then

$$
\begin{equation*}
\sigma(n m)=\sigma(n) \sigma(m) \tag{3}
\end{equation*}
$$

An immediate consequence of these facts is the following Lemma:
Lemma 1. If $5 \mid n$, then it exists $\alpha \geq 1$, so that

$$
\begin{equation*}
\sigma(n)=\frac{5^{\alpha+1}-1}{5^{\alpha}-1} \sigma\left(\frac{n}{5}\right) . \tag{4}
\end{equation*}
$$

where α is the power to which 5 occur in the decomposition of n into prime factors.
Proof. From (2) and (3), we have

$$
\begin{aligned}
\sigma(n) & =\frac{5^{\alpha+1}-1}{4} \sigma\left(\frac{n}{5^{\alpha}}\right), \text { and } \\
\sigma\left(\frac{n}{5}\right) & =\frac{5^{\alpha}-1}{4} \sigma\left(\frac{n}{5^{\alpha}}\right)
\end{aligned}
$$

Hence the result follows.

3 Main result

Henceforth, let us express n by $n=5^{\alpha} \cdot p_{1}^{\alpha 1} \cdot p_{2}^{\alpha 2} \cdots p_{r}^{\alpha_{r}}$, where the $p^{\prime} s$ are distinct primes different from 5 , and the $\alpha^{\prime} s$ are the powers to which they occur.

The present theorem is the main result of this work.
Theorem 2. Let $a(n)$ be the real number defined as follows:

$$
a_{n}=\left(1+\frac{20}{5^{\alpha+1}-1}\right) \frac{\sigma(n)}{n} .
$$

Then we have

$$
A_{n}\left(1!a_{1}, 2!a_{2}, \ldots, n!a_{n}\right)=\frac{n!}{5} p(5 n+4)
$$

Proof. Put

$$
g(x)=\frac{5\left\{\left(1-x^{5}\right)\left(1-x^{10}\right)\left(1-x^{15}\right) \cdots\right\}^{5}}{\left\{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots\right\}^{6}} .
$$

Then

$$
\begin{align*}
\ln (g(x)) & =\ln 5+5 \ln \prod_{i=1}^{\infty}\left(1-x^{5 i}\right)-6 \ln \prod_{i=1}^{\infty}\left(1-x^{i}\right) \\
& =\ln 5+5 \sum_{i=1}^{\infty} \ln \left(1-x^{5 i}\right)-6 \sum_{i=1}^{\infty} \ln \left(1-x^{i}\right) \\
& =\ln 5-5 \sum_{i, j=1}^{\infty} \frac{x^{5 i j}}{j}+6 \sum_{i, j=1}^{\infty} \frac{x^{i j}}{j} \tag{5}\\
& =\ln 5+\sum_{n=1}^{\infty} a_{n} x^{n},
\end{align*}
$$

where

$$
a_{n}= \begin{cases}\frac{6 \sigma(n)-25 \sigma\left(\frac{n}{5}\right)}{n}, & \text { if } 5 \mid n \\ \frac{6}{n} \sigma(n), & \text { otherwise }\end{cases}
$$

If $\alpha \geq 1$, i.e., $5 \mid n$, then we get by (4)

$$
\sigma\left(\frac{n}{5}\right)=\frac{5^{\alpha}-1}{5^{\alpha+1}-1} \sigma(n) .
$$

Thus

$$
a_{n}=\left(1+\frac{20}{5^{\alpha+1}-1}\right) \frac{\sigma(n)}{n}, \forall \alpha \geq 0 .
$$

Hence, we obtain from (5)

$$
\begin{aligned}
g(x) & =5 \cdot \exp \left(\sum_{n=1}^{\infty} a_{n} x^{n}\right) \\
& =5\left(1+\sum_{k=1}^{\infty} \frac{\left(\sum_{n=1}^{\infty} n!a_{n} \frac{x^{n}}{n!}\right)^{k}}{k!}\right) \\
& =5+5 \sum_{k=1}^{\infty}\left(\sum_{n=k}^{\infty} B_{n, k}\left(1!a_{1}, 2!a_{2}, \ldots\right) \frac{x^{n}}{n!}\right) \\
& =5+5 \sum_{n=1}^{\infty} A_{n}\left(1!a_{1}, 2!a_{2}, \ldots, n!a_{n}\right) \frac{x^{n}}{n!} \\
& =5 \sum_{n=0}^{\infty} A_{n}\left(1!a_{1}, \ldots, n!a_{n}\right) \frac{x^{n}}{n!}
\end{aligned}
$$

Therefore, by comparing coefficients of the two power series in (1), we finally get

$$
A_{n}\left(1!a_{1}, 2!a_{2}, \ldots, n!a_{n}\right)=\frac{n!}{5} p(5 n+4), \text { for } n \geq 0
$$

Theorem 2 has the following Corollary.

Corollary 3. For $n \geq 1$, we have

$$
\sigma(n)=\frac{5^{\alpha+1}-1}{5^{\alpha+1}+19} \cdot \frac{1}{(n-1)!} \sum_{j=1}^{n}(-1)^{j-1}(j-1)!B_{n, j}\left(\frac{1!}{5} p(9), \frac{2!}{5} p(14), \ldots\right)
$$

Proof. This follows from the following inversion relation of Chaou and al [3]:

$$
y_{n}=\sum_{k=1}^{n} B_{n, k}\left(x_{1}, x_{2}, \ldots\right) \Leftrightarrow x_{n}=\sum_{k=1}^{n}(-1)^{k-1}(k-1)!B_{n, k}\left(y_{1}, y_{2}, \ldots\right) .
$$

4 Acknowledgements

The authors would like to thank the referee for his valuable comments which have improved the quality of the paper.

References

[1] M. Abbas and S. Bouroubi, On new identities for Bell's polynomials, Discrete Mathematics 293 (2005) 5-10.
[2] E. T. Bell, Exponential polynomials, Annals of Mathematics 35 (1934), 258-277.
[3] W.-S. Chaou, Leetsch C. Hsu, and Peter J.-S. Shiue, Application of Faà di Bruno's formula in characterization of inverse relations. Journal of Computational and Applied Mathematics 190 (2006), 151-169.
[4] L. Comtet, Advanced Combinatorics. D. Reidel Publishing Company, DordrechtHolland, Boston, 1974, pp. 133-175.
[5] G. H. Hardy, Ramanujan, Amer. Math. Soc., Providence, 1999.
[6] J. Riordan, Combinatorial Identities, Huntington, New York, 1979.
[7] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley \& Sons, New York, 1958; Princeton University Press, Princeton, NJ, 1980.
[8] K. Rosen, Elementary Number Theory and Its Applications, 4th ed., Addison-Wesley, 2000.
[9] R. P. Stanley, Enumerative Combinatorics, Volume 1, Cambridge Studies in Advanced Mathematics 49, Cambridge University Press, Cambridge, 1997.

2000 Mathematics Subject Classification: 05A16, 05A17, 11P81
Keywords: Bell polynomials, integer partition, Ramanujan's formula.
(Concerned with sequences $\underline{\text { A000041 }}$ and $\underline{\text { A071734. }}$

Received January 3 2009; revised version received March 22 2009. Published in Journal of Integer Sequences March 272009.

Return to Journal of Integer Sequences home page.

