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Abstract

We explore the subsequence of primes with prime subscripts, (qn), and derive its
density and estimates for its counting function. We obtain bounds for the weighted
gaps between elements of the subsequence and show that for every positive integer m

there is an integer arithmetic progression (an + b : n ∈ N) with at least m of the (qn)
satisfying qn = an + b.

1 Introduction

There are a number of subsets of primes with a conjectured density of a constant times
x/ log2 x. These include the primes separated by a fixed even integer, Sophie Germain
primes and the so-called “thin primes”, i.e., primes of the form 2eq − 1 where q is prime [3].

In order to gain some familiarity with sequences of this density we undertook an inves-
tigation of the set of primes of prime order, called here “prime-primes”, and report on the
results of this investigation here. Some of the properties of this sequence are reasonably
straight forward and the derivation follows that of the corresponding property for the primes
themselves. Others appear to be quite deep and difficult. Of course the process of tak-
ing a prime indexed subsequence can be iterated, leading to sequences of primes of density
x/ log3 x, x/ log4 x etc, but these sequences are not considered here.

In Section 2 upper and lower bounds for the nth prime-prime are derived, in Section 3 the
prime-prime number theorem is proved with error bounds equivalent to that of the prime
number theorem, in Section 4 an initial study of gaps between prime-primes is begun, and
in Section 5 it is shown that for each m there is an arithmetic progression containing m
prime-primes.
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Definition 1. A prime-indexed-prime or prime-prime is a rational prime q such that
when the set of all primes is written in increasing order (p1, p2, · · · ) = (2, 3, · · · ), we have
q = pn where n is prime also.

Here is a list of the primes up to 109 with the prime-primes in bold type so q1 = p2 = 3
and q10 = p29 = 109: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109.

Definition 2. If x > 0 the number of prime-primes q up to x is given by ππ(x) :=
∑

q≤x 1.
Then ππ(x) = π(π(x)) =

∑x

n=1 χP(n) · χP(π(n)), where χP(n) := π(n)− π(n− 1), for n ∈ N,
is the characteristic function of the primes.

2 Bounds for the sequence of prime-primes:

The following theorem and its corollary gives a set of useful inequalities for estimating the
size of the nth prime-prime and for comparing it with the nth prime.

Theorem 3. As n → ∞:

qn < n(log n + 2 loglog n)(log n + loglog n) − n log n + O(n loglog n),

qn > n(log n + 2 loglog n)(log n + loglog n) − 3n log n + O(n log log n).

Proof. We use the inequalities of Rosser and Schoenfeld [14]. Namely

pn < n(log n + loglog n − 1/2) valid for n ≥ 20,

pn > n(log n + loglog n − 3/2) valid for n ≥ 2,

by first substituting pn for n, then using both the upper and lower bounds on each side, and
finally simplifying.

Corollary 4. The following inequalities are also satisfied by the (qn): as n → ∞:

(a) qn = n log2 n + 3n log n loglog n + O(n log n),

(b) qn ∼ n log2 n,

(c)
qn

qn+1

→ 1,

(d) qn ∼ log n · pn,

(e) for all ǫ > 0 there is an nǫ ∈ N such that for all n ≥ nǫ, qn ≤ p1+ǫ
n ,

(f) for n > 1, qn < p
3

2
n ,

(g) For all m,n ∈ N, qn · qm > qmn,

(h) For real a > 1 and n sufficiently large, q⌊an⌋ > aqn.

Proof. The inequalities (a)-(e) follow from Theorem 3. Item (f) follows by an explicit com-
putation up to n = 2000 and then by contradiction, assuming n(log n + loglog n − 2) <
pn < n(log n + loglog n), for n > 2000. Item (g) follows from the corresponding theorem of
Ishikawa [7] for primes and (h) from that of Giordano [6].
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3 The prime-prime number theorem and inequalities

Here we obtain two forms for the asymptotic order of the counting function of the prime-
primes:

Theorem 5. As x → ∞,

ππ(x) ∼ x

log2 x
, and ππ(x) = Li(Li(x)) + O

(

x exp(−A log
3

5 x loglog− 1

5 x)
)

,

for some absolute constant A > 0, where the implied “big-O” constant is also absolute.

Proof. The first asymptotic relation follows from a substitution: As x → ∞:

π(π(x)) =
π(x)

log π(x)
+ O

( π(x)

log2 π(x)

)

=

x
log x

+ O( x

log2 x
)

log
(

x
log x

+ O( x

log2 x
)
) + O

(x loglog x

log4 x

)

=
x/ log x

log(x/ log x) + O(1/ log x)
+ O

(x loglog x

log4 x

)

,

=
x

log2 x[1 + O( loglog x

log x
)]

+ O
(x loglog x

log4 x

)

,

=
x

log2 x
+ O

(x loglog x

log3 x

)

.

Now let ∆(x) := O
(

x exp(−A log
3

5 x loglog− 1

5 x)
)

and use the equation [8, 15]

π(x) = Li(x) + ∆(x).

By the Mean Value Theorem there is a real number θ with |θ| < 1 such that

π(π(x)) = Li[Li(x) + ∆(x)] + ∆(π(x)),

= Li(Li(x)) +
∆(x)

log[Li(x) + θ∆(x)]
+ ∆(x),

= Li(Li(x)) + ∆(x).

Proposition 6. The following inequalities are true for every integer k > 1 and real x, y
sufficiently large:

(a) ππ(kx) < kππ(x),

(b) ππ(x + y) ≤ ππ(x) + 4ππ(y),

(c) ππ(x + y) − ππ(x) ≪ y

log2 y
.
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Proof. (a) We apply the theorem of Panaitopol [11], namely that for all k > 1 and x suffi-
ciently large π(kx) < kπ(x) to derive

ππ(kx) = π(π(kx)) ≤ π(kπ(x)) < kπ(π(x)) = kππ(x).

(b) Now apply the inequality of Montgomery and Vaughan [9] as well as the theorem of
Panaitopol:

ππ(x + y) = π(π(x + y)) ≤ π(π(x) + 2π(y))

≤ π(π(x)) + 2π(2π(y)) < ππ(x) + 4ππ(y).

(c) This follows directly from (b) and Theorem 5.

In part (c) compare the expression when ππ is replaced by π [10, p. 34].
The following integral expression shows that, approximately, the local density of the

prime-primes is dt/ log2 t:

Proposition 7. As x → ∞

Li(Li(x)) =

∫ x

2

( 1

log2 t
+

loglog t

log3 t

)

dt + O
(x(loglog x)2

log4 t

)

=

∫ x

2

dt

log2 t
+ O

(x loglog x

log3 x

)

Proof. Use the expression [5, p. 86]

Li(x) =
x

log(x)
+

x

log2(x)
+ · · · + (n − 1)!x

logn(x)
+ O

( x

logn+1(x)

)

.

in the case n = 1, so

Li(x) =
x

log(x)
+ O

( x

log2(x)

)

.

Then let

F (x) := Li(Li(x))

=

∫ y

2

1

log t
dt, where

y =

∫ x

2

1

log u
du.

Then

F ′(x) = 1/[log x log(Li(x))]

= 1/[log2 x(1 − loglog x

log x
+ O(

1

log2 x
)]

=
1

log2 x
[1 +

loglog x

log x
+ O(

(loglog x)2

log2 x
)

=
1

log2 x
+

loglog x

log3 x
+ O(

(loglog x)2

log4 x
)
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so therefore

F (x) =

∫ x

2

(
1

log2 t
+

log log t

log3 t
)dt + O(

x(log log x)2

log4 x
).

To derive the second expression, split the integral for the second term in the integrand of
the first expression at

√
x.

4 Extreme values of gaps between prime-primes

Note that for n > 1 the number of primes between each pair of prime primes is always odd,
so qn+1 − qn ≥ 6. It is natural to conjecture that this gap size of 6 is taken on an infinite
number of times, as is every even gap size larger than 6.

Since for n > 2, qn+1 ≤ 2qn [4], we have qn+1 − qn ≤ qθ
n for θ = 1.0. The same best

current value for primes, due to Baker, Harman and Pintz [1, 2], namely

pn+1 − pn ≪ǫ pθ+ǫ
n , θ = 0.525

works for prime-primes. To see this replace x by π(x) in their equation [2, p. 562]

π(x + x0.525) − π(x) ≥ 9

10

x0.525

log x

to derive the formula, for every ǫ > 0 and x sufficiently large

ππ(x + x0.525+ǫ) − ππ(x) ≥ 9

10

x0.525−ǫ

log2 x
.

The first proposition below is modeled directly on the corresponding result for primes.
The second is also closely related to the derivation for primes, [13, p. 155].

Proposition 8. For every integer m > 1 there exists an even number δ such that more than
m prime-primes are at distance δ.

Proof. Let n ∈ N, S := {q1, · · · , qn+1} be a finite initial subset of the ordered sequence of
prime-primes, and let D := {qj+1 − qj : 1 ≤ j ≤ n} be the n differences of consecutive
elements of S.

If |D| ≥ ⌊ n
m
⌋, then

qn+1 − q1 = (q2 − q1) + (q3 − q2) + · · · + (qn+1 − qn)

≥ 6 + 8 + · · · + 2⌊ n

m
⌋

≥ n2

m2
+ O(1).

By Theorem 3, we can choose n sufficiently large so qn+1 < 2n log2 n and the inequality for
qn+1 − q1 is not satisfied.

Therefore we can assume n is sufficiently large so |D| < ⌊ n
m
⌋. Then one of the differences

must appear more than m times. Call the size of this difference δ.
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Proposition 9.

lim inf
n→∞

qn+1 − qn

log2 qn

≤ 1.

Proof. Let ǫ > 0 be given. Define two positive constants α, β with

α =
β + 1

β − 1

with β > 3 and so 1 < α < 2. Let ǫ > 0 be another positive constant with ǫ < 1/α − 1/2.
Let L := 1 + 2ǫ and let

{qm, · · · , qm+k}
be all of the prime-primes in the interval [x, βx]. Now suppose (to obtain a contradiction)
that for all n with m ≤ n ≤ m + k − 1 we have

qn+1 − qn ≥ L log2 qn.

Then

(β − 1)x ≥ qm+k − qm

≥ L
m+k−1
∑

n=m

log2 qn

≥ Lk log2 x.

But by Theorem 5, for all x sufficiently large

(1 − ǫ

2
)

x

log2 x
< ππ(x) < (1 +

ǫ

2
)

x

log2 x

so

k ≥ ππ(βx) − ππ(x) − 1

≥ (1 − ǫ
2
)βx

log2 βx
− (1 + ǫ

2
)x

log2 x
− 1

≥ x(β − 1 − ǫ(β + 1))

log2 x
for x sufficiently large.

Therefore (β − 1) ≥ L(β − 1 − ǫ(β + 1)), or in other words 1 ≥ (1 + 2ǫ)(1 − αǫ), which is
impossible.

Therefore there exists an n such that qn ∈ [x, βx] and

qn+1 − qn

log2 qn

< 1 + 2ǫ

so lim infn→∞(qn+1 − qn)/ log2 qn ≤ 1.
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Using a similar approach one can show that lim supn→∞
qn+1−qn

log2 qn
≥ 1. It is expected

however that the limit infinum of the ratio should be zero and the limit supremum infinity.
Fig. 1 is based on the normalized nearest neighbor gaps for the first two million prime-primes
with a bin size of 0.025 and with the x-axis 160 corresponding to a normalized gap value of
4.0.
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Figure 1: Normalized gap frequencies.

5 Prime-primes in arithmetic progressions

Using the prime number graph technique of Pomerance [12], applied to the sequences (n, qn)
and (n, log qn), we are able to demonstrate the existence of infinite subsets of the qn such as
the following:

Proposition 10. (a) There exists an infinite set of n ∈ N with 2qn ≤ qn−i + qn+i for all
0 < i < n.

(b) There exists an infinite set of n ∈ N with q2
n > qn−iqn+i for all 0 < i < n.

Now we show that there are arithmetic progressions (an + b : n ∈ N) containing speci-
fied numbers of prime-primes, not necessarily consecutive, satisfying qn = an + b. Although
modelled on the technique of Pomerance, [12, Theorem 4.1], the key step is introducing func-
tions, named f(u) and g(u), but delaying their explicit definitions until sufficient information
becomes available.

Theorem 11. For every integer m > 1 there exists an arithmetic progression (an + b : n ∈
N), with a, b ∈ N, with at least m prime-primes satisfying qn = an + b.

Proof.
1. Definitions: Let u > 0 be a real variable and f(u) > 0 and g(u) > 0 two real decreasing
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functions both tending to zero as u → ∞, to be chosen later. Let v = u + u · f(u) so

log v = log u(1 + O
(f(u)

log u

)

), and (1)

log Li(v) = log Li(u)(1 + O
(f(u)

log u

)

). (2)

Let T be a parallelogram in the first quadrant of the x–y plane bounded by the lines
x = u, x = v,

y = Li(Li(u)) + 2ug(u) +
x − u

k
, and

y = Li(Li(u)) − 2ug(u) +
x − u

k
,

where k = log Li(u) log u.
Claim: If |y − Li(Li(x))| < ug(u) then (x, y) ∈ T . This is demonstrated in 2.–4. below.
2. The upper bound: since y < Li(Li(x)) + ug(u) we have, for some u < ξ < x,

y < Li(Li(u)) +
x − u

log Li(ξ) log ξ
+ 2ug(u),

≤ Li(Li(u)) +
x − u

log Li(u) log u
+ 2ug(u).

3. The lower bound: We have Li(Li(x)) − ug(u) < y and need Li(Li(u)) + x−u
log Li(u) log u

−
2ug(u) < y so it is sufficient to have

x − u

log Li(u) log u
− x − u

log Li(ξ) log ξ
≤ ug(u) or

v − u

log Li(u) log u
− v − u

log Li(v) log v
≤ ug(u), which is equivalent to

f(u)[
1

log Li(u) log u
− 1

log Li(v) log v
] ≤ g(u), or by (1) and (2)

f(u)

log Li(u) log u
[1 − 1

1 + O(f(u)/ log u)
] = O

(f(u)2

log3 u

)

≤ M · f(u)2

log3 u
) ≤ g(u) (3)

for some M > 0.
4. Counting points and lines: by 2. and 3. each point (qn, n) with u ≤ qn ≤ v is in T , so the

number of such points is, by Theorem 5, bounded below by the numerator in the expression
below. The number of lines with slope 1/k passing through the integer lattice points of T is
bounded above by the denominator of this expression. Therefore for u sufficiently large:

#points

# lines
≥

uf(u)
2

· 1
log2 u

(log Li(u) log u)4ug(u)

≥ f(u)/8

(log u)4g(u)
(4)
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Now let f(u) := 1
logα u

and g(u) := 1
logβ u

where α, β > 0 are chosen so that

α + 4 < β < 2α + 3.

For example α = 2, β = 6.5. Then in (4)

f(u)

(log u)4g(u)
= logβ−α−4 u → ∞

and in (3)
f(u)2

(log u)3g(u)
= logβ−2α−3 u → 0+,

so choose u sufficiently large that f(u)2/(log3 ug(u)) ≤ 1/M , thus ensuring the validity of
the lower bound.

With these choices, the number of points divided by the number of lines tends to positive
infinity, so for every natural number m there is at least one line on the graph of (qn, n) with
m of these points. Finally we note that since k varies continuously with u, we can choose
k ∈ N and so qn = an + b with a, b ∈ N since a = k.

6 Epilog

Leading on from Section 5, a natural aim is to show that there are an infinite number of
prime-primes congruent, say, to 1 modulo 4, or some other explicit arithmetic progression.
Then show that every arithmetic progression (an + b : n ∈ N), with (a, b) = 1, contains an
infinite number of prime-primes. This has been demonstrated numerically, with the number
of prime-primes falling approximately evenly between the equivalence classes modulo a.

This problem appears to have considerable more depth than the results given here. For
example it is, on the face of it, more difficult than the corresponding theorem of Dirichlet
for primes, because the primes in residue classes given by that theorem do not appear in any
particular order.
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