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Abstract

In this note we prove that there are no perfect totient numbers of the form 3%p,
k>4, where s =2%3Y + 1, r = 2¢3%s 4+ 1, ¢ = 2°3/r + 1, and p = 293"¢ + 1 are primes
with a,c,e,g > 1, and b,d, f,h > 0.

1 Introduction

Let ¢ denote Euler’s totient function. Define ¢'(n) = ¢(n) and ¢*(n) = ¢(¢*1(n)) for all
integers n > 2 |, k > 2. Let ¢ be the smallest positive integer such that ¢°(n) = 1. Define
the arithmetic function S by

S(n) =Y _¢*(n).
k=1

We say that n is a perfect totient number (or PTN for short) if S(n) = n.

There are infinitely many PTNs, since it is easy to show that 3% is a PTN for all positive
integers k. Perez Cacho [6] proved that 3p, for an odd prime p, is a PTN if and only if
p = 4n + 1, where n is a PTN. Mohan and Suryanarayana [5] proved that 3p, for an odd
prime p, is not a PTN if p = 3 (mod 4). Thus PTNs of the form 3p have been completely
characterized. D. E. Iannucci, the author and G. L. Cohen [3] investigated PTNs of the form
3*p in the following cases:

1. k>2, p=2%3%+1and ¢ = 23" + 1 are primes with a,c > 1 and b, d > 0;
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2. k>2 p=23qg+1,q=23%+1and r = 23" + 1 are all primes with a, ¢, e > 1
and b, d, f > 0;

3. k>3, p=293"q+1,¢g=23r+1,r=23%+1and s = 223" + 1, are all primes
with a,c,e,g > 1, b,d, f,h > 0.

In the first case, they determined all PTNs for & = 2, 3 and proved that there are no PTNs of
the form 3*p for £ > 4 by solving the related Diophantine equations. In the remaining cases,
they only found several PTNs by computer searches. The author ([1, 2]) gave all solutions
to the Diophantine equations 2% — 2¥3* —2.3% = 9% 41, and 2% — 2¥3* —4-3¥ = 3. 9% + 1,
which shows that there are no PTNs of the form 3*p for k£ > 4 in the second case mentioned
above.

In general, let M be the set of all perfect totients, I. E. Shparlinski [7] has shown that
M is of asymptotic density zero, and F. Luca [4] showed that ), _\, < converges.

The purpose of this note is to prove that, in the third case mentioned above, there are
no PTNs of the form 3%p for k > 4.

2 Lemmas

We first deduce related Diophantine equations. Let & > 3, n = 3*p. Suppose all of s =
203 + 1, r = 2939 + 1, ¢ = 2°3/r + 1, and p = 293"q + 1 are prime with a,c,e,g > 1,
b,d,f,h > 0. If nis a PTN | then S(n) = n by definition, which implies the diophantine
equation

29(26(2<:(2a o 3d+f+h+k—3) _ 3f+h+k—2) o 3h+k—1) — 3k +1. (1)

Apparently, g = 1 or 2 for k even or odd, respectively. Next, according to k = 2k; or
k = 2k; 4+ 1, we consider more general Diophantine equations

27 — V3T - 2u3Y —2.3¥ =9M 41, (2)
with x > 4, y,u,w >0, z,v > 0, k; > 2, and
27 — V37 —2U3¥ —4.3¥ =3.9M 41, (3)

with x > 4, y,u,w > 0, z,v > 0, k; > 1, respectively. Since the terms 2Y3* and 2"3" have
symmetry in (2) and (3), we need only determine the solutions (z,y, z, u,v,w, k) to (2) and
(3) such that y > w or y = u,z > v.

Let (z,y,z,u,v,w, ky) be any solution to the equation (2) (or (3)), and let

(x,y, z,u,v,w, k1) = (o, B,7,0, A\, i, v,) (mod 36, 36, 36, 36, 36, 36, 18)

denote x = o (mod 36),y = 3 (mod 36),z =+ (mod 36),u =0 (mod 36),v = A (mod 36),
w = p (mod 36), and k; = v (mod 18). In solving equation (2) and equation (3), we first
determine all the «, 3,7, 0, \, u, v.

LEMMA 1. Let (x,y, z,u,v,w, ki) be any solution to the equation (2), and let

(x,y,z,u,v,w, k1) = (a, B,7,0, \, u, v) (mod 36, 36, 36, 36, 36, 36, 18).
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Then all the possible o, 3,7,0, A\, u, v with 36 > «,3,6,A > 1,35 > y,A >0, 19 > v > 2,
>0 or =408 andy > X\ are listed in Table 1 and Table 1'.

PROOF: Since
2% =1 (mod 5-7-13-19-37-73),3% =1 (mod 5-7-13-19-37-73),
a, 3,7,0, A, i, v must satisfy
2% — 2937 —2°3* 2.3 =9"4+1 (mod5-7-13-19-37-73). (4)

But note that 2* = 0 (mod 2%),9" = 0 (mod 3%),2%¢ = 1 (mod 3%),3% = 1 (mod 2*);
M = 360 + m implies 2 = 0 or 2™ (mod 2*) and 3% = 0 or 3™ (mod 3%). Hence
a, 3,7,0, A\, u, v must satisfy one of the 4 congruences

—20.B.37-2°.D.-3~2.3*=9"4+1 (mod 2% (5)
and one of the 8 congruences
20 —2037.C—23 . F—-2.3"-F=1 (mod 3%), (6)

where B,C, D, E, F take value 0,1 independently. The congruences (4), (5) and (6) were
tested on a computer with a program written in UBASIC. All the (o, 3,7,0, A\, i, v) that
satisfy (4), (5) and (6) are divided into two parts: those listed in Table 1 are in fact solutions
to equation (2), and the remainder, listed in Table 1’, are not. [J

Similarly, we have

LEMMA 2. Let (x,y, z,u,v,w, ki) be any solution to the equation (3), and let
(,y, z,u,v,w, k) = (e, B,7,0, A\, 1, v) (mod 36, 36, 36, 36, 36, 36, 18).

Then all the possible o, 3,7,6, A\, u, v with 36 > o, 3,0, > 1,35 > v, A >0, 18 > v > 1,
B>0 or =409 andy > X\ are listed in Table 2 and Table 2'.

LEMMA 3. Let (o, 3,7,0, A, i, v) be any solution to equation (2) or (3) that is listed in Table
1 or Table 2, and suppose

1.a>p>6;or
2.a>0+2,3=90;

holds. Then there is no other solution (x,y,vy,u, A, 1, v) to equation (2) or (3) that satisfies
(x,y,u) = («, 5,d) (mod 36,36, 36)

PROOF: Let x = a+ 36i,y = 5+ 364, u = 6 + 36]. We have
24(2%% — 1) = 2737(2%% — 1) + 2°3*(2% — 1), (7)

In case 1, consideration of (7), modulo 2¢ and 2% in turn gives [ = 0 and j = 0. Hence we
have i = 0. In case 2, since 37 + 3* = 2,4 (mod 8), consideration of (7), modulo 2%, gives
7 =1=0, and therefore 7 = 0.



3 Main Results

THEOREM 1. All the solutions to equation (2) are given by (x,y, z,u,v,w, ki) = (o, 5,7, 5, A,
W, V) with o, B,v,8, A\, u, v listed in Table 1.

PROOF: Let (z,vy, z,u,v,w, k) be any solution to equation (2), and let
(z,y,z,u,v,w, k) = (o, 3,7, 0, \, u, v) (mod 36, 36, 36, 36, 36, 36, 18).

By Lemma 1, all of a, 3,7,0, A\, u, v are listed in Table 1 or Table 1'. Put z = o + 36i,y =
B+36j,2z=~+36l,u =0+ 36m,v =X+ 36n,w = u+ 36t,k; = v+ 18t;. Then we must
have

Qo361 _9f+36] 3y H361_9o+36m gA+36n _ o 3uh36l — grts6h 11 (mod 11-31-181-331-631). (8)

For a, 3,7, 0, A\, i, v appearing in Table 1, since 2!% = 330 =1 (mod 11-31-181-331:631),
we first test (8) within

With computer assistance, it follows that | = n =t = t; = 0 in this case. Since any
a, 3,7,0, A, i, v that listed in Table 1 satisfy the conditions of Lemma 3, we must have
1 =7 =m =0 by Lemma 3.

For a, 3,7,0, A, u, v appearing in Table 1’; since («, 3,7,9d, A, i, v) is not a solution to
equation(2), we have ¢ > 1. The congruence (8) was then tested on a computer within the
ranges

5>i>1,4>7>0,9>0>04>m>0,9>n>0,9>¢t>0,9>¢ >0

with no (¢,7,1,m,n,t, t;) being found, which shows that (z,y, z, u,v,w, k) cannot be a
solution to equation (2). [

THEOREM 2. All the solutions to equation (3) are given by (x,y, z,u,v,w, ki) = (a, 5,7, 6, A,
W, V) with o, B,7,8, A\, u, v listed in Table 2 .

PRrROOF: The proof is basically the same as that for theorem 1, with the only difference being
that (a, B,7,0, A\, u,v) = (9,7,0,7,0,1,2), listed in Table 2, does not satisfy the conditions
of Lemma 3. Suppose that x =9+ 36i,y =7+ 367, 2 = 36[,u =7+ 36m,v = 36n,w =1+
36t, k; = 2+4-36t; is a solution to equation (3). Then a computer test of the related congruence
within 4 > i > 0,4>j>09>1>04>m>09>n>0,9>t>0,9>t >0 gives
I =n=1t=1t; =0. Consideration of (7) with «, 3,7, 9, A replaced by 9,7,0,7,0 , modulo
27, gives j = | = 0. Therefor i = 0.

THEOREM 3. There are no PTNs of the form 3Fp, k > 4, where all of s = 293 + 1,
r=23%+1, ¢g=23"r+1, and p = 293"q + 1 are prime with a,c,e,g > 1, b,d, f,h > 0.

PROOF: Suppose (a,c,d, e, f, g, h, k) is a solution to equation (1). Let z =a+c+e+ g,
y=ctetg, z=d+f+k-3, u=e+g,v=f+h+k—2,w=h+k—1,and k; = % or ky = %1
for k even or odd, respectively. Then (z,y, z, u, v, w, k1) must be a solution to equation (2)
or equation (3). From the first two theorems it follows that the only solutions to equation(1)
are (a,c,d,e, f,h k) = (4,1,0,1,2,1,3),(1,2,0,4,0,0,3),(3,1,0,4,1,0,3),(2,2,1,4,0,0, 3),
(8,1,4,1,0,1,3),(5,1,2,4,1,0,3),(4,2,0,4,2,0,3). O
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a B v 6 N p via B v 6 AN pu via [ vy 0 AN pu v
6 1 2 1 1 2 187 6 0 3 1 2 18|18 18 18 2 9 1 14
6 2 1 2 1 2 188 3 3 3 1 1 18|18 18 20 1 14 31 18
6 2 2 2 1 1 188 5 1 4 2 1 18|18 20 33 14 20 36 1
6 3 1 3 1 1 188 6 1 3 1 2 18|18 23 12 17 3 32 1
6 3 33 1 2 17|8 6 1 4 1 1 18|18 27 30 3 34 9 7
6 4 0 3 0 2 188 9 33 2 1 17|18 28 18 7 20 3 2
6 5 3 4 0 2 177|103 1 3 1 5 18|18 28 18 7 20 4 1
6 6 33 3 2 18127 2 3 1 6 18|18 29 2 3 29 31 6
6 6 3 4 3 2 17|18 11 0 10 4 36 5 |18 29 5 23 21 34 3
6 9 33 0 2 16|18 18 18 2 1 9 14|18 33 35 19 24 12 15
Table 2°
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