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Abstract

We prove that three classes of numbers – the non-central Stirling numbers of the first

kind, generalized factorial coefficients, and Gould-Hopper numbers – may be defined

by the use of derivatives. We derive several properties of these numbers from their

definitions. We also prove a result for harmonic numbers. The coefficients of Hermite

and Bessel polynomials are a particular case of generalized factorial coefficients, The

coefficients of the associated Laguerre polynomials are a particular case of Gould-

Hopper numbers. So we obtain some properties of these polynomials. In particular, we

derive an orthogonality relation for the coefficients of Hermite and Bessel polynomials.

1 Introduction

The purpose of this paper is to investigate properties of the non-central Stirling numbers of
the first kind, the generalized factorial coefficients, and Gould-Hopper numbers by the use
of derivatives.

We use the following notation throughout the paper:

• (a)n denotes the falling factorial of a, that is, (a)n = a(a− 1) · · · (a− n + 1), (a)0 = 1;

• s(n, k) and s(n, k) denote the signed and the unsigned Stirling numbers of the first
kind respectively;

• Hn denotes the harmonic number
∑

1≤i≤n 1/i;

• s(n, k, a) denotes the non-central Stirling number of the first kind;

• C(n, k, a) denotes the generalized factorial coefficient;
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• C(n, k, b, a) denotes the non-central generalized factorial coefficient or Gould-Hopper
number.

The notation and the terminology are taken from Charalambides’ book [4]. Sloane [6]
calls the s(n, k, a) the generalized Stirling numbers. Further,

• Hn(x) denotes the Hermite polynomial;

• pn(x) denotes the (reverse) Bessel polynomial, and

• Lk
n(x) denotes the associated Laguerre polynomial, where L0

n(x) = Ln(x) is a Laguerre
polynomial.

The paper is organized as follows. The first section is an introduction.
In the second section we prove that the non-central Stirling numbers s(n, k, a) of the first

kind naturally appear in the expansion of derivatives of the function x−a lnb x, where a and
b are arbitrary real numbers. We first obtain a recurrence relation for s(n, k, a) and then,
using Leibnitz rule, we obtain an explicit formula. We then consider a particular formula
for s(n, 1, a) and derive some combinatorial identities. The results are related to a number
of sequences from Sloane’s Encyclopedia [6].

In the third section we first prove that the generalized factorial coefficients appear as
coefficients in the expansion of the nth derivative of the function f(xa), where a is arbitrary
real number, and f ∈ C∞(0, +∞) is arbitrary function. Choosing suitable functions f we
derive some properties of generalized factorial coefficients. We are particularly concerned
with some properties of coefficients of Hermite and Bessel polynomials. The results of this
section are also related to a number of sequences from [6].

In the fourth section we first show that Gould-Hopper numbers are coefficients in the
expansion of the nth derivative of the function xaf(xb), where a, b are arbitrary real num-
bers, and f ∈ C∞(0, +∞) is arbitrary function. The coefficients of associated Laguerre
polynomials are particular case of Gould-Hopper numbers. Using similar methods as in the
third section we prove a number of properties which describe connections between Gould-
Hopper numbers, generalized factorial coefficients, powers, factorials, binomial coefficients,
and Stirling numbers. The results are also concerned with some sequences from [6].

Note that these considerations are related with Bell polynomials which naturally appear
in derivatives of composition functions [2, 5, 7] .

2 Non-central Stirling numbers of the first kind

We shall first derive a formula for the nth derivative of the function

f(x) = x−a lnb x, (a, b ∈ R).

Theorem 1. Let a be a real number, and let n be a nonnegative integer. Then

dn

dxn
f(x) = x−a−n

n
∑

i=0

p(n, i, a)(b)i ln
b−i x. (1)

where p(n, i, a), (0 ≤ i ≤ n) are polynomials of a with integer coefficients.
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Proof. Theorem 1 is true for n = 0, if we define p(0, 0, a) = 1.
If we define

p(1, 0, a) = −a, p(1, 1, a) = 1

then Theorem 1 is also true for n = 1.
Assume Theorem 1 is valid for n ≥ 1.
Taking derivative in (1) we find that

dn+1

dxn+1
f(x) = x−a−n−1

[

(−a − n)
n
∑

i=0

p(n, i, a)(b)i ln
b−i x +

n
∑

i=0

p(n, i, a)(b)i+1 lnb−i−1 x

]

.

Replacing i + 1 by i in the second sum on the right side yields

dn+1

dxn+1
f(x) = xa−n−1(−a − n)p(n, 0, a) + s(n, n, a)(b)n+1 lnb−n−1 x+

+xa−n−1

n
∑

i=1

[

(−a − n)p(n, i, a) + s(n, i − 1, a) lnb−i x
]

(b)i.

It follows that Theorem 1 is true if we define

p(n + 1, 0, a) = −(a + n)p(n, 0, a), p(n + 1, n + 1, a) = p(n, n, a),

p(n + 1, i, a) = −(a + n)p(n, i, a) + p(n, i − 1, a), (i = 1, . . . , n).

The preceding equations are the recurrence relations for non-central Stirling numbers of
the first kind s(n, i, a), [4, p. 316]. In what follows we shall denote p(n, i, a) by s(n, i, a).

It is easy to see that the following equations hold

s(n, 0, a) = (−a)n, (n = 0, 1, 2, . . .),

and
s(n, n, a) = 1, (n = 0, 1, 2, . . .).

By Leibnitz rule we get

dn

dxn
f(x) =

n
∑

k=0

(

n

k

)

dk

dxk
x−a dn−k

dxn−k
lnb x. (2)

From the well-known formulas
dk

dxk
x−a = (−a)kx

a−k,

and
dn−k

dxn−k
lnb x = x−n+k

n−k
∑

i=1

s(n − k, i)(b)i ln
b−i x,

by comparing (1) and (2) we obtain the following:
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Proposition 2. Let a be a real number, and let n, i, (i ≤ n) be nonnegative integers. Then

s(n, i, a) =
n−i
∑

k=0

(

n

k

)

(−a)ks(n − k, i). (3)

Remark 3. Proposition 2 is true in the case a = 0 with the convention that (0)0 = 1.

Taking i = 1 in (3) we have the following:

Proposition 4. Let a be a real number, and n be a positive integer. Then

s(n, 1, a) = n!
n−1
∑

k=0

(−1)n−k−1

(

−a

k

)

n − k
.

For s(n, 1, a) we have the following recurrence relation:

s(1, 1, a) = 1, s(n, 1, a) = (−a − n + 1)s(n − 1, 1, a) + (−a)n−1, (n ≥ 2). (4)

We shall now prove that polynomials r(n, a), (n = 1, 2, . . .) defined by

r(n, a) =
n−1
∑

k=0

(k + 1)s(n, k + 1)(−a)k

satisfy (4). For n = 1 this is obviously true.
Using the two terms recurrence relation for Stirling numbers of the first kind, for n > 1

we have

r(n, a) =
n−1
∑

k=0

(k + 1)s(n − 1, k)(−a)k − (n − 1)
n−2
∑

k=0

(k + 1)s(n − 1, k + 1)(−a)k.

Since s(n − 1, 0) = 0, by replacing k + 1 instead of k in the first sum on the right side we
obtain

r(n, a) = (−a − n + 1)r(n − 1, a) +
n−2
∑

k=0

s(n − 1, k + 1)(−a)k+1.

Furthermore, a well known property of Stirling numbers of the first kind implies

n−2
∑

k=0

s(n − 1, k + 1)(−a)k+1 = (−a)n−1,

which means that r(n, a) satisfies (4). We have proved the following:

Proposition 5. Let a be a real number, and let n ≥ 1 be an integer. Then

n!
n−1
∑

k=0

(−1)k

(

−a

k

)

n − k
=

n−1
∑

k=0

(k + 1)s(n, k + 1)ak. (5)
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Remark 6. Proposition 5 is true for a = 0 with the convention that 00 = 1.

In the case that a is a negative integer and n ≤ −a, the identity (5) is related to the
harmonic numbers.

Proposition 7. Define h(n,m) such that

h(n,m) = (Hm − Hm−n)
m!

(m − n)!
, (m = 1, 2, . . . ; n = 1, 2, . . . ,m).

Then h(n,m) satisfies (4).

Proof. The proof goes by induction with respect to n. For n = 1 we have

h(1,m) =
(m)!

(m − 1)!
(Hm − Hm−1) = 1.

Furthermore, for n > 1 we have

(m − n + 1)h(n − 1,m) + (m)n−1 =
(m)!

(m − n)!
(Hm − Hm−n+1) + (m)n−1 =

=
(m)!

(m − n)!
(Hm − Hm−n),

since (m)!
(m−n)!(m−n+1)

= (m)n−1. It follows that

h(n,m) = (m − n + 1)h(n − 1,m) + (m)n−1,

and the result is proved.

As an immediate consequence of Proposition 7 we obtain

Proposition 8. Let m be a positive integer and let n, (1 ≤ n ≤ m) be any integers. Then

Hm − Hm−n =
(−1)n+1

(

m

n

)

n−1
∑

k=0

(−1)k
(

m

k

)

n − k
.

Remark 9. The results of this section are concerned with the following sequences in [6]:
A001701, A001702, A001705, A001706, A001707, A001708, A001709, A001711, A001712,
A001713, A001716, A001717, A001718, A001722, A001723, A001724, A049444, A049458,
A049459, A049600, A051338, A051339, A051379, A051523, A051524, A051525, A051545,
A051546, A051560, A051561, A051562, A051563, A051564, A051565.
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3 Generalized factorial coefficients

The first result in this section is a closed formula for the nth derivative of the function f(xa),
where f ∈ C∞(0, +∞), and a is a real number. Such one formula may be obtained as a
particular case of Faá di Bruno’s formula. We obtain here the formula which is easily proved
by induction. In addition, we obtain a recurrence relation for coefficients.

Theorem 10. Let n > 0 be an integer, and let a be a real number. Then

dn

dxn
f(xa) =

n
∑

k=1

q(n, k, a)xak−n dk

dxk
f(t), (6)

where t = xa, and q(n, k, a) is a polynomials of a with integer coefficients. The degree of
q(n, k, a) is n, and it does not depend on f.

Proof. The result is true for n = 1 if we take q(1, 1, a) = a. Assume that the result is true
for n ≥ 1. Taking derivative in (6) we obtain

dn+1

dxn+1
f(xa) =

n
∑

k=1

(ka − n)q(n, k, a)xka−n−1 dk

dxk
f(t)+

+a
n
∑

k=1

q(n, k, a)xka−n+a−1 dk+1

dxk+1
f(t) =

=
n
∑

k=2

[

(ka − n)q(n, k, a) + aq(n, k − 1, a)]xka−n−1 dk

dxk
f(t)+

+(a − n)q(n, 1, a)xa−n−1 d

dx
f(t) + aq(n, n, a)x(n+1)(a−1) dn+1

dxn+1
f(t).

Define
q(n, 0, a) = 0, q(n, k, a) = 0, (k > n),

and
q(n + 1, k, a) = (ka − n)q(n, k, a) + aq(n, k − 1, a), (k = 1, . . . , n + 1), (7)

to obtain

xn+1 dn+1

dxn+1
f(xa) =

n+1
∑

k=1

q(n + 1, k, a)tk
dk

dxk
f(t),

and the result is proved.

If, additionally, we define q(0, 0, a) = 1 then the formula (6) may be written in the form

dn

dxn
f(xa) =

n
∑

k=0

q(n, k, a)
dk

dxk
f(t)xak−n, (n = 0, 1, . . .). (8)

The equations (7) shows that the polynomials q(n, k, a) are in fact the generalized factorial
coefficients C(n, k, a) ([4, p. 309]).
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Proposition 11. Generalized factorial coefficients satisfy the following equations:

C(n, 1, a) = (a)n, C(n, n, a) = an, C(n, k, 1) = 0, (k < n)(n = 1, 2, . . .).

Proof. For the first equation it is enough to take f(t) ≡ t in (8).
The second equation follows immediately from (7).
If a = 1 then (8) takes the form

xn dn

dxn
f(x) =

n
∑

k=0

C(n, k, 1)xk dk

dxk
f(t).

and since f is arbitrary function the third equation is also true.

The generalized factorial coefficients are related with Hermite and Bessel polynomials.
Taking f(t) = ebt in (8) we obtain

dn

dxn
ebxa

= ebxa

n
∑

k=1

C(n, k, a)bkxak−n. (9)

Proposition 12. Let n and m be positive integers. Then

dn

dxn
e−xm

= e−xm

n
∑

k=⌈ n

m
⌉

(−1)kC(n, k,m)xmk−n. (10)

Proof. Take b = −1 in (9), hence

dn

dxn
e−xm

= e−xm

n
∑

k=0

C(n, k,m)xmk−n, (n ≥ 0).

It is clear that taking derivatives on the left-hand side of this equation can not produce
negative powers of x. This means that C(n, k,m) = 0 if km − n < 0, and Proposition 12 is
proved.

Remark 13. The equation (10) defines generalized Hermite polynomials, [3].

Proposition 14. If Hn(x), n = 1, . . . are Hermite polynomials then

Hn(x) =
n
∑

k=⌈n

2
⌉

(−1)n+kC(n, k, 2)x2k−n. (11)

It is easy to check that functions f(n, k), (n = 1, . . . ; k = 1, . . . , n) defined by

f(n, k) =
(−1)n−k(2n − k − 1)!

22n−k(n − k)!(k − 1)!

fulfill the recurrence relation (7) for a = 1
2
. We thus obtain the following:
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Proposition 15. Bessel polynomials pn(x) satisfy the following equation:

pn(x) = 2n

n
∑

k=1

(−1)n−kC

(

n, k,
1

2

)

xk. (12)

The next result shows that generalized factorial coefficients are coefficients in the expan-
sion of falling factorials of b in terms of falling factorials of a, where a and b are arbitrary
real numbers.

Proposition 16. Let n be a nonnegative integer, and let a, b be arbitrary real numbers. Then

(b)n =
n
∑

k=0

C

(

n, k,
b

a

)

(a)k. (13)

Proof. Replacing a by b
a

in (8) we have

xn dn

dxn
f(x

b

a ) =
n
∑

k=1

C

(

n, k,
b

a

)

tk
dk

dxk
f(t),

where t = x
b

a .
Choosing f(t) = ta implies f(x

b

a ) = xb, hence

xn dn

dxn
xb =

n
∑

k=1

C

(

n, k,
b

a

)

tk
dk

dxk
ta,

that is,

(b)nx
b =

n
∑

k=1

C

(

n, k,
b

a

)

(a)kt
a.

Since xb = ta the result follows.

Remark 17. The equation (13) serves as the definition of generalized factorial coefficients
in [4, Definition 8.2].

Choosing b = −a implies (−a)n = (−1)na(a + 1) · · · (a + n − 1). We thus obtain the
expression in which rising factorials are given in terms of falling factorials.

Proposition 18. Let a be a real number. Then

a(a + 1) · · · (a + n − 1) = (−1)n

n
∑

k=1

C(n, k,−1)(a)k.

Remark 19. The preceding equation means that C(n, k,−1) are Lah numbers.
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From the equation (13) we shall derive some properties of coefficients of Hermite and
Bessel polynomials. Denote by b(n, k) the coefficient by xk in the expansion of Pn(x) in (12).
Then

C

(

n, k,
1

2

)

= (−1)n−k2−nb(n, k), (n = 1, 2, . . . , k = 1, 2, . . . , n).

Next, denote by h(n, k) the coefficient by xk in the expansion of Hn(x) in (11). It follows
that

C(n, k, 2) = (−1)n+kh(n, 2k − n),

where h(n, 2k − n) = 0 if 2k − n < 0. We have thus proved the following:

Proposition 20. Let a be a real number, and let n be a positive integer. Then the following
equations hold

(2a)n =
n
∑

k=1

(−1)n+kh(n, 2k − n)(a)k,

and

(a)n =
n
∑

k=1

(−1)n−k2−nb(n, k)(2a)k.

The following proposition gives a known property of generalized factorial coefficients, [4,
Theorem 8.18].

Proposition 21. Let n ≥ k be integers, and let a, b be real numbers. Then

C(n, k, a1a2) =
n
∑

j=k

C(n, j, a2)C(j, k, a1). (14)

Proof. Take f1(t) = ta1 and f2(t) = ta2 , hence

f(xa1a2) = (f ◦ f1)(x
a2).

Firstly, it follows from (6) that

xn dn

dxn
f(xa1a2) =

n
∑

k=1

C(n, k, a1a2)x
a1a2k dk

dxk
f(t), (t = xa1a2). (15)

On the other hand, (6) also implies

xn dn

dxn
(f ◦ f1)(x

a2) =
n
∑

j=1

C(n, j, a2)x
a2j dj

dxj
(f ◦ f1)(u), (u = xa2).

Applying (6) once more yields

xn dn

dxn
(f ◦ f1)(x

a2) =
n
∑

j=1

j
∑

k=1

C(n, j, a2)C(j, k, a1)x
a2ju−jvk dk

dxk
f(v), (v = ua1).
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Changing the order of summation and taking into account that v = ua2 = xa1a2 = t we
obtain

xn dn

dxn
(f ◦ f1)(x

a2) =
n
∑

k=1

(

n
∑

j=k

C(n, j, a2)C(j, k, a1)

)

xa1a2k dk

dxk
f(t).

Comparing (15) and the preceding equation shows that Proposition 21 is true.

From Proposition 21 we derive an orthogonality relation between coefficients of Hermite
and Bessel polynomials.

Proposition 22. If h(n, k) and b(n, k) are the coefficients of Hermite and Bessel polynomials
respectively, then

n
∑

k=1

b(n, k)h(n, 2k − n) = 0.

Proof. Since C(n, k, 1) = 0 for k < n the result follows from (11) and (12).

Remark 23. The results of this section are related to the following sequences in [6]:
A000369, A001497, A001801, A004747, A008297, A013988, A035342, A035469, A049029,
A049385, A059343, A092082, A105278, A111596, A122850, A132056, A132062, A136656.

4 Gould-Hopper numbers

In the first result of this section we prove that Gould-Hopper numbers are coefficients in
the expansion of the nth derivative of xaf(xb), where a, b are arbitrary real numbers, and
f ∈ C∞(0, +∞) is arbitrary function.

Theorem 24. Let n be a positive integer, and let a, b be real numbers. Then

dn

dxn
[xaf(xb)] = xa−n

n
∑

k=0

p(n, k, b, a)xbk dk

dxk
f(t), (16)

where t = xb, and p(n, k, b, a) are polynomials of a and b with integer coefficients, which do
not depend on f.

Proof. Using Leibnitz rule and (6) we easily obtain

dn

dxn
[xaf(xb)] = xa−n

[

(a)nf(xb) +
n
∑

j=1

j
∑

k=1

(

n

j

)

C(j, k, b)
dk

dxk
f(t)(a)n−jx

bk

]

.

Changing the order of summation implies

dn

dxn
[xaf(xb)] = xa−n

[

(a)nf(xb) +
n
∑

k=1

[

n
∑

j=k

(

n

j

)

C(j, k, b)(a)n−j

]

dk

dxk
f(t)xbk

]

.

10

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000369
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001497
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001801
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A004747
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A008297
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A013988
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A035342
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A035469
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A049029
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A049385
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A059343
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A092082
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A105278
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A111596
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A122850
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A132056
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A132062
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A136656


Theorem 24 is true if we define

p(n, 0, b, a) = (a)n, p(n, k, b, a) =
n
∑

j=k

(

n

j

)

C(j, k, b)(a)n−j, (k = 1, . . . , n).

Remark 25. According to [4, p. 318] we see that p(n, k, b, a) are Gould-Hopper numbers
or non-central generalized factorial coefficients and will be dented by C(n, k; b, a).

Gould-Hopper numbers generalize coefficients of associated Laguerre polynomials Lk
n(x),

[1, p. 726].
Namely, Lk

n(x) are defined to be

Lk
n(x) =

exx−k

n!

dn

dxn
(e−xxn+k), L0

n(x) = Ln(x).

Take a = n + k, b = 1, f(x) = e−x in (16) to obtain

Proposition 26. Let Lk
n(x), (n = 0, 1, . . . , k = 0, 1, . . .) be associated Laguerre polynomials.

Then

Lk
n(x) =

1

n!

n
∑

i=0

(−1)iC(n, i, 1, n + k)xi.

Proposition 27. Let n be a nonnegative integer, and let a, b, c be nonzero real numbers.
Then

(a + bc)n =
n
∑

k=0

C(n, k; b, a)(c)k.

Proof. Take f(t) = tc in (16) to obtain xaf(xb) = xa+bc, and the resul follows.

Remark 28. The equation from the preceding proposition serves as the definition of
Gould-Hopper numbers in [4, p. 317].

The following result shows that Gould-Hopper numbers, with a suitable chosen sign, are
coefficients in the expression of falling factorial of a in terms rising factorial of b.

Proposition 29. Let n be a positive integer, and let a, b be nonzero real numbers. Then

(a)n =
n
∑

k=1

(−1)k−1C
(

n, k;
a

b
, a
)

· b · (b + 1) · · · (b + k − 1).

Proof. Take f(t) = t−
a

c , where c 6= 0. Then xaf(xc) = 1, hence dn

dxn (xaf(xc)) = 0, (n > 0).
Applying (16) we obtain

n
∑

k=0

C

(

n, k,
a

b
, a

)

(−b)k = 0,

where b = a
c
, and the result holds.
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The next result is an explicit formula for C(n, k; b, a) in terms of generalized factorial
coefficients.

Proposition 30. Let m ≤ n be nonnegative integers, and let a, b be nonzero real numbers.
Then

C(n,m; b, a) =
n
∑

k=m

C

(

k,m,
b

a

)[

C(n, k, a) + (k + 1)C(n, k + 1, a)

]

.

Proof. Let us choose f1(t) = t, f2(t) = f(t
b

a ), where f is arbitrary function. Then

f1(x
a)f2(x

a) = xaf(xb).

Using (8) and Leibnitz rule we obtain

dn

dxn
[xaf(xb)] = x−n

n
∑

j=0

j
∑

k=0

C(n, k, a)

(

m

j

)

dj

dtj
t
dk−j

dtk−j

[

f(t
b

a )
]

xak,

where t = xa. On the right side of this equation only terms obtained for j = 0 and j = 1
remain. It follows that

dn

dxn
[xaf(xb)] = x−n

n
∑

k=0

C(n, k, a)
dk

dtk
[

f(t
b

a )
]

x(k+1)a +
n
∑

k=1

kC(n, k, a)
dk−1

dtk−1

[

f(t
b

a )
]

xak =

=
n
∑

k=0

[C(n, k, a) + (k + 1)C(n, k + 1, a)]
dk

dtk
[

f(t
b

a )
]

x(k+1)a.

According to (8) we have

dn

dxn
[xaf(xb)] = xa−n

n
∑

k=0

k
∑

m=0

C

(

k,m,
b

a

)

[

C(n, k, a) + (k + 1)C(n, k + 1, a)
]

f (m)(u)xbm,

where u = t
b

a = xb.
Interchanging the order of summation gives

[

xaf(xb)
](n)

= xa−n

n
∑

m=0

[

n
∑

k=m

C

(

k,m,
b

a

)

[

C(n, k, a) + (k + 1)C(n, k + 1, a)
]

]

f (m)(t)xbm.

Comparing this equation with (16) implies

C(n,m, b, a) =
n
∑

k=m

C

(

k,m,
b

a

)

[

C(n, k, a) + (k + 1)C(n, k + 1, a)
]

, (m = 0, 1, . . . , n)],

and Proposition 30 is proved.

We finish with a result connecting Gould-Hopper numbers, Stirling numbers of the first
kind, powers, binomial coefficients, and falling factorials.
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Proposition 31. Let j ≤ n be nonnegative integers and let a, b be nonzero real numbers.
Then

n
∑

k=j

C(n, k, b, a)s(k, j) = bj

n
∑

k=j

(

n

k

)

(a)n−ks(k, j).

Proof. Take f(t) = lnc t, where c is a real number such that (c)i 6= 0, (i = 1, 2, . . .). It follows
that xaf(xb) = xabc lnc x. From (1) and (3) we conclude that

bc dn

dxn
(xa lnc x) = bc(a)nx

a−n ln x + bxa−n

n
∑

k=1

k
∑

j=1

(

n

k

)

(a)n−ks(k, j)(c)j lnc−j x.

Using (16) yields

bc [xa lnc x](n) = bc(a)nx
a−n lnc x + xa−nbc

n
∑

k=1

k
∑

j=1

C(n, k, b, a)s(k, j)b−j(c)j lnc−j x.

Changing the order of summation in both sums leads to the following equation:

n
∑

j=1

[

n
∑

k=j

(

n

k

)

(a)n−ks(k, j)

]

(c)j lnc−j x =

=
n
∑

j=1

[

n
∑

k=j

C(n, k, b, a)s(k, j)b−j

]

(c)j lnc−j x.

Comparing terms by the same lnc−j x, and then dividing by (c)j 6= 0 proves the result.

Remark 32. The results of this section are concerned with the following sequences in [6]:
A000522, A021009, A035342, A035469, A049029, A049385, A072019, A072020, A084358,
A092082, A094587, A105278, A111596, A132013, A132014, A132056, A132159, A132681,
A132710, A132792, A136215, A136656.
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