Journal of Integer Sequences, Vol. 12 (2009),

Polynomials Associated with Reciprocation

Clark Kimberling
Department of Mathematics
University of Evansville
1800 Lincoln Avenue
Evansville, IN 47722
USA
ck6@evansville.edu

Abstract

Polynomials are defined recursively in various ways associated with reciprocation; e.g., $S_{n+1}(x) / T_{n+1}(x)=S_{n}(x) / T_{n}(x) \pm T_{n}(x) / S_{n}(x)$. Under certain conditions, the zeros of S_{n} interlace those of T_{n}. Identities for S_{n}, T_{n}, and related polynomials are derived, as well as recurrence relations and infinite sums involving roots of polynomials.

1 Introduction

A well-known problem [2] starts with the recurrence

$$
\begin{equation*}
x_{n+1}=x_{n}+1 / x_{n} \tag{1}
\end{equation*}
$$

given that $x_{0}=1$. The sequence $(1,2,5,29, \ldots)$ thus determined is indexed in Sloane's Online Encyclopedia of Integer Sequences [4] as A073833. It is natural to ask what happens if the initial value 1 is replaced by an indeterminate x. The purpose of this paper is to respond to that question and related questions. For example, what if the recurrence is replaced by

$$
\begin{equation*}
x_{n+1}=x_{n}-1 / x_{n}, \tag{2}
\end{equation*}
$$

as in A127814? The recurrence (2) leads to polynomials which are interesting because of the distribution of their zeros, as portended by the following definition: suppose $V=$ $\left(v_{1}, v_{2}, \ldots, v_{m-1}\right)$ and $W=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ are lists of numbers satisfying

$$
w_{1}<v_{1}<w_{2}<v_{2}<\cdots<v_{m-1}<w_{m} ;
$$

then V interlaces W.
Throughout this paper, except where otherwise stipulated, the letter c denotes an arbitrary nonzero complex number.

2 The recurrence $S_{n+1} / T_{n+1}=(1 / c)\left(S_{n} / T_{n}-T_{n} / S_{n}\right)$

Define polynomials $S_{1}=S_{1}(x)=x, T_{1}=T_{1}(x)=1$, and

$$
\begin{equation*}
S_{n+1}=S_{n}^{2}-T_{n}^{2}, \quad T_{n+1}=c S_{n} T_{n} \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
S_{n+1} / T_{n+1}=(1 / c)\left(S_{n} / T_{n}-T_{n} / S_{n}\right), \tag{4}
\end{equation*}
$$

and for $n \geq 2$,

$$
\begin{align*}
T_{n} & =c^{n-1} S_{1} S_{2} \cdots S_{n-1}, \\
S_{n+1} & =\left(S_{n}-c^{n-1} S_{1} S_{2} \cdots S_{n-1}\right)\left(S_{n}+c^{n-1} S_{1} S_{2} \cdots S_{n-1}\right) . \tag{5}
\end{align*}
$$

If $c=1$, then (4) is the recurrence (2) with $x_{n}=S_{n} / T_{n}$. For $c>0$ and $n \geq 1$, let \mathcal{Z}_{n} be the list of zeros of S_{n} in increasing order, so that

$$
\mathcal{Z}_{1}=(0), \quad \mathcal{Z}_{2}=(-1,1)
$$

and \mathcal{Z}_{3} is the ordered list consisting of the numbers $\left(\pm c \pm \sqrt{c^{2}+4}\right) / 2$; e.g., if $c=1$, then $\mathcal{Z}_{3}=(-\varphi,-1 / \varphi, 1 / \varphi, \varphi)$, where $\varphi=(1+\sqrt{5}) / 2$, the golden ratio.

If V and W are ordered lists, we shall employ the set-union symbol \cup for the ordered union of the merged list formed by the numbers in V and W, thus: $V \cup W$. Note that S_{n} has degree 2^{n-1}, that T_{n} has degree $2^{n-1}-1$, and that $\bigcup_{k=1}^{n} \mathcal{Z}_{k}$ lists the zeros of T_{n}.

Theorem 1. Suppose that c is a nonzero real number and $n \geq 1$. Then $\bigcup_{k=1}^{n} \mathcal{Z}_{k}$ interlaces \mathcal{Z}_{n+1}.

Proof. First, suppose that $c>0$. Clearly \mathcal{Z}_{1} interlaces \mathcal{Z}_{2}. It will be helpful to denote the zeros of S_{n} in increasing order by $r_{n, i}$ where $i=1,2, \ldots, 2^{n-1}$. To complete a two-part first induction step, we shall show that $\mathcal{Z}_{1} \cup \mathcal{Z}_{2}$ interlaces \mathcal{Z}_{3}. The function $f_{2}=S_{2} / S_{1}$ is continuous and rises strictly from $-\infty$ to ∞ on each of the intervals $\left(-\infty, r_{11}\right)$ and $\left(r_{11}, \infty\right)$. Therefore there exist unique numbers r_{31}, r_{32} such that

$$
\begin{equation*}
r_{31}<r_{21}<r_{32}<r_{11}, \quad f_{2}\left(r_{31}\right)=-c, \quad f_{2}\left(r_{32}\right)=c \tag{6}
\end{equation*}
$$

and r_{33}, r_{34} such that

$$
\begin{equation*}
r_{11}<r_{33}<r_{22}<r_{34}, \quad f_{2}\left(r_{33}\right)=-c, \quad f_{2}\left(r_{34}\right)=c . \tag{7}
\end{equation*}
$$

Thus, r_{31}, r_{33} are the zeros of $S_{2}+c S_{1}$, and r_{32}, r_{34} are the zeros of $S_{2}-c S_{1}$. Now $S_{3}=$ $\left(S_{2}+c S_{1}\right)\left(S_{2}-c S_{1}\right)$, so that (6) and (7) imply that $\mathcal{Z}_{1} \cup \mathcal{Z}_{2}$ interlaces \mathcal{Z}_{3}. As a general induction hypothesis, assume for $n \geq 3$ that $\bigcup_{k=1}^{n-2} \mathcal{Z}_{k}$ interlaces \mathcal{Z}_{n-1} and that $\bigcup_{k=1}^{n-1} \mathcal{Z}_{k}$ interlaces \mathcal{Z}_{n}. Write

$$
\begin{aligned}
& \bigcup_{k=1}^{n-2} \mathcal{Z}_{k}=\left(\rho_{11}, \rho_{12}, \ldots, \rho_{1 m}\right), \quad \text { where } m=2^{n-2}-1, \\
& \bigcup_{k=1}^{n-1} \mathcal{Z}_{k}=\left(\rho_{21}, \rho_{11}, \rho_{22}, \rho_{12}, \ldots, \rho_{2 m}, \rho_{1 m,}, \rho_{2, m+1}\right) .
\end{aligned}
$$

The function $f_{n}=S_{n} /\left(S_{1} S_{2} \cdots S_{n-1}\right)$ is continuous and strictly increasing on each of the intervals

$$
\begin{equation*}
\left(-\infty, \rho_{11}\right),\left(\rho_{11}, \rho_{12}\right), \ldots,\left(\rho_{1, m-1}, \rho_{1 m}\right) \tag{8}
\end{equation*}
$$

with infinite limits (as in the argument above for f_{2}.) Let ρ_{31}, ρ_{32} be the unique numbers satisfying

$$
\rho_{31}<\rho_{21}<\rho_{32}<\rho_{11}, \quad f_{n}\left(\rho_{31}\right)=-c, \quad f_{2}\left(\rho_{32}\right)=c .
$$

Likewise applying the intermediate value theorem to the remaining intervals in (8), we conclude that $\bigcup_{k=1}^{n} \mathcal{Z}_{k}$ interlaces \mathcal{Z}_{n+1}.

Now suppose that $c<0$. The recurrences (3) show that the only exponents of c that occur in the polynomials S_{n} are even. Therefore, these polynomials and their zeros are identical to those already considered.

Theorem 2. If $n \geq 1$ and $r \in \mathcal{Z}_{n}$, then $\left(c r \pm \sqrt{c^{2} r^{2}+4}\right) / 2 \in \mathcal{Z}_{n+1}$.
Proof. The proposition clearly holds for $n=1$. The zeros of S_{2} are -1 and 1 ; let r_{1} be either of these, and let r_{2} be any number satisfying $r_{1}=(1 / c)\left(r_{2}-1 / r_{2}\right)$, so that

$$
r_{1}=\frac{r_{2}^{2}-1}{c r_{2}}=\frac{S_{2}\left(r_{2}\right)}{T_{2}\left(r_{2}\right)} .
$$

Taking $r_{1}=-1$ gives $S_{2}\left(r_{2}\right)+T_{2}\left(r_{2}\right)=0$ and taking $r_{1}=1$ gives $S_{2}\left(r_{2}\right)-T_{2}\left(r_{2}\right)=0$. Consequently,

$$
S_{3}\left(r_{2}\right)=\left(S_{2}\left(r_{2}\right)+T_{2}\left(r_{2}\right)\right)\left(S_{2}\left(r_{2}\right)-T_{2}\left(r_{2}\right)\right)
$$

which implies that the 4 numbers r_{2} are the zeros of S_{3}. Continuing with arbitrary zeros r_{1}, r_{2} of S_{2}, let r_{3} be any number satisfying $r_{2}=(1 / c)\left(r_{3}-1 / r_{3}\right)$, so that $r_{2}=S_{2}\left(r_{3}\right) / T_{2}\left(r_{3}\right)$. Then

$$
\begin{aligned}
r_{1} & =\frac{1}{c}\left(r_{2}-\frac{1}{r_{2}}\right)=\frac{1}{c}\left(\frac{S_{2}\left(r_{3}\right)}{c r_{3}}-\frac{c r_{3}}{S_{2}\left(r_{3}\right)}\right) \\
& =\frac{S_{2}^{2}\left(r_{3}\right)-c^{2} r_{3}^{2}}{c S_{2}\left(r_{3}\right) T_{2}\left(r_{3}\right)}=\frac{S_{3}\left(r_{3}\right)}{T_{3}\left(r_{3}\right)}
\end{aligned}
$$

Taking $r_{1}=-1$ gives $S_{3}\left(r_{3}\right)+T_{3}\left(r_{3}\right)=0$ and taking $r_{1}=1$ gives $S_{3}\left(r_{2}\right)-T_{3}\left(r_{3}\right)=0$, so that the 8 numbers r_{3} are the zeros of S_{4}. This inductive procedure shows that the zeros ρ of S_{n+1} arise from the zeros r of S_{n} by the rule $r=(1 / c)(\rho-1 / \rho)$, and solving this for ρ finishes the proof.

Theorem 3. If $n \geq 1$, then

$$
\begin{equation*}
S_{n+1}(x)=(c x)^{2^{n-1}} S_{n}\left(\frac{x}{c}-\frac{1}{c x}\right) \tag{9}
\end{equation*}
$$

More generally, if $k=2,3, \ldots, n+1$, then

$$
\begin{equation*}
S_{n+1}=T_{k}^{2^{n-k+1}} S_{n-k+2}\left(\frac{S_{k}}{T_{k}}\right) \tag{10}
\end{equation*}
$$

Proof. First, we prove (9). The assertion clearly holds for $n=1$. Assume that $n>1$ and let $m=2^{n-1}$. Denote the zeros of S_{n} by r_{k} for $k=1,2, \ldots, m$. By Theorem 2 ,

$$
\begin{aligned}
S_{n+1}(x) & =\prod_{h=1}^{m}\left(x-\frac{c r_{h}-\sqrt{c^{2} r_{h}^{2}+4}}{2}\right)\left(x-\frac{c r_{h}+\sqrt{c^{2} r_{h}^{2}+4}}{2}\right) \\
& =\prod_{h=1}^{m}\left(x^{2}-c r_{h} x-1\right) \\
& =\prod_{h=1}^{m} x\left(x-\frac{1}{x}-c r_{h}\right) \\
& =(c x)^{m} S_{n}\left(\frac{x}{c}-\frac{1}{c x}\right)
\end{aligned}
$$

In case $k=2$, equation (10) is essentially a restatement of (9), just proved. For $k>2$, equations (10) will now be proved by induction on k. Assume for arbitrary k satisfying $2 \leq k \leq n$ that

$$
\begin{equation*}
S_{n+1}=T_{k-1}^{2^{n-k+2}} S_{n-k+3}\left(\frac{S_{k-1}}{T_{k-1}}\right) \tag{11}
\end{equation*}
$$

Substitute S_{k} / T_{k} for x in (9) with n replaced by $n-k+3$:

$$
S_{n-k+3}\left(\frac{S_{k-1}}{T_{k-1}}\right)=\left(\frac{c S_{k-1}}{T_{k-1}}\right)^{2^{n-k+1}} S_{n-k+2}\left(\frac{S_{k}}{T_{k}}\right)
$$

so that by (11),

$$
\begin{aligned}
S_{n+1} & =T_{k-1}^{2^{n-k+2}}\left(\frac{c S_{k-1}}{T_{k-1}}\right)^{2^{n-k+1}} S_{n-k+2}\left(\frac{S_{k}}{T_{k}}\right) \\
& =\left(c T_{k-1} S_{k-1}\right)^{2^{n-k+1}} S_{n-k+2}\left(\frac{S_{k}}{T_{k}}\right) \\
& =T_{k}^{2^{n-k+1}} S_{n-k+2}\left(\frac{S_{k}}{T_{k}}\right) .
\end{aligned}
$$

Using Theorems 1-3, it is easy to establish the following properties of the polynomials and zeros:

1. $S_{n}(-x)=S_{n}(x)$ for $n \geq 2$, and if $r \in \mathcal{Z}_{n}$ then $-r \in \mathcal{Z}_{n}$ for $n \geq 1$.
2. $x^{2^{n-1}} S_{n}(1 / x)=S_{n}(x)$ for $n \geq 3$, and if $r \in \mathcal{Z}_{n}$ then $1 / r \in \mathcal{Z}_{n}$ for $n \geq 2$.
3. Suppose that $c>0$, and let r_{n} denote the greatest zero of S_{n}. Then $\left(r_{n}\right)$ is a strictly increasing sequence, and

$$
\lim _{n \rightarrow \infty} r_{n}=\left\{\begin{array}{cl}
(1-c)^{-1 / 2}, & \text { if } 0<c<1 \\
\infty, & \text { if } c \geq 1
\end{array}\right.
$$

An outline of a proof follows. Of course, $r_{n}=\left(c r_{n-1}+\sqrt{c^{2} r_{n-1}^{2}+4}\right) / 2$, so that $\left(r_{n}\right)$ is strictly increasing. If $0<c<1$, then, as is easily proved, $r_{n}<(1-c)^{-1 / 2}$ for all n, so that a limit r
exists; since $r=\left(c r+\sqrt{c^{2} r^{2}+4}\right) / 2$, we have $r=(1-c)^{-1 / 2}$. On the other hand, supposing $c \geq 1$, if $\left(r_{n}\right)$ were bounded above, then the previous argument would give $r=(1-c)^{-1 / 2}$, but this is not a real number. Therefore $r_{n} \rightarrow \infty$.

4 . If $n \geq 3$, then

$$
\begin{equation*}
S_{n}=S_{n-1}^{2}+c^{2} S_{n-1} S_{n-2}^{2}-c^{2} S_{n-2}^{4} \tag{12}
\end{equation*}
$$

To prove this recurrence, from (5) we obtain both

$$
c^{2 n-4}\left(S_{1} S_{2} \cdots S_{n-3}\right)^{2} S_{n-2}^{2}=S_{n-1}^{2}-S_{n}
$$

and

$$
c^{2 n-6}\left(S_{1} S_{2} \cdots S_{n-3}\right)^{2}=S_{n-2}^{2}-S_{n-1}
$$

and (12) follows by eliminating $\left(S_{1} S_{2} \cdots S_{n-3}\right)^{2}$.
In the case $c=1$, the recurrence (12) is used (e.g., [1]) to define the Gorškov-Wirsing polynomials, for which the initial polynomials are $2 x-1$ and $5 x^{2}-5 x+1$ rather than x and $x^{2}-1$.

3 The polynomials $V_{n}=S_{n}-c^{n-1} S_{1} S_{2} \cdots S_{n-1}$

Equation (5) shows that $n \geq 2$, the polynomial S_{n+1} factors. We use one of factors to define a sequence of polynomials

$$
\begin{equation*}
V_{n}=V_{n}(x)=S_{n}-c^{n-1} S_{1} S_{2} \cdots S_{n-1} \tag{13}
\end{equation*}
$$

so that

$$
\begin{align*}
S_{n}(x) & =V_{n-1}(x) V_{n-1}(-x), \tag{14}\\
2 S_{n}(x) & =V_{n}(x)+V_{n}(-x) \tag{15}
\end{align*}
$$

Suppose that $n \geq 3$. Substitute $n-1$ for n in (13) and then multiply both sides of the result by $c S_{n-1}$ to obtain

$$
c V_{n-1} S_{n-1}=c S_{n-1}^{2}-c^{n-1} S_{1} S_{2} \cdots S_{n-1}
$$

so that by (13),

$$
V_{n}=S_{n}-c S_{n-1}^{2}+c V_{n-1} S_{n-1}
$$

and by (14), and (15) with $n-1$ substituted for n,

$$
\begin{aligned}
V_{n}(x)= & V_{n-1}(x) V_{n-1}(-x)-c\left(\frac{V_{n-1}(x)+V_{n-1}(-x)}{2}\right)^{2} \\
& +c V_{n-1}(x) \frac{V_{n-1}(x)+V_{n-1}(-x)}{2}
\end{aligned}
$$

Thus, we have the following recurrence for the polynomials V_{n} :

$$
V_{n}=V_{n-1}(x) V_{n-1}(-x)+\frac{c}{4}\left[V_{n-1}^{2}(x)-V_{n-1}^{2}(-x)\right],
$$

for $n \geq 3$. Another recurrence for these polynomials stems directly from (9) and (14):

$$
V_{n+1}(x)=(c x)^{2^{n-1}} V_{n}\left(\frac{x}{c}-\frac{1}{c x}\right),
$$

for $n \geq 2$.
For the remainder of this section, assume that $c>0$. For $n \geq 2$, let \mathcal{Z}_{n}^{+}denote the ordered list of zeros of V_{n} Since $\mathcal{Z}_{n}^{+} \subset \mathcal{Z}_{n}$, we need only observe that in the rule given by Theorem 2 for forming zeros, the half of the numbers in \mathcal{Z}_{n} that descend from $r=1$ in \mathcal{Z}_{1}^{+} are the numbers that comprise \mathcal{Z}_{n}^{+}. That is, if $n \geq 2$ and $r \in \mathcal{Z}_{n}^{+}$then

$$
\left(c r \pm \sqrt{c^{2} r^{2}+4}\right) / 2 \in \mathcal{Z}_{n+1}^{+} .
$$

For $n \geq 3$, no number in \mathcal{Z}_{n}^{+}is rational, so that V_{n} is irreducible over the rational integers.
Let r_{n} denote the greatest zero of S_{n}, and also of V_{n}. Then

$$
r_{n+1}=\left(c r_{n}+\sqrt{c^{2} r_{n}^{2}+4}\right) / 2,
$$

and from this recurrence easily follows

$$
\begin{equation*}
r_{n+1}-1 / r_{n+1}=c r_{n} \tag{16}
\end{equation*}
$$

of which the left-hand side is the distance from the least positive zero of S_{n+1} to the greatest.

4 The case $c=1$

We turn now to the case that $c=1$; that is, the immediate generalization of (2) to the case that the initial value is $S_{1}(x)=x$. The first four polynomials S_{n} and V_{n} are as shown here:

n	S_{n}	V_{n}
1	x	
2	$x^{2}-1$	$x-1$
3	$x^{4}-3 x^{2}+1$	$x^{2}-x-1$
4	$x^{8}-7 x^{6}+13 x^{4}-7 x^{2}+1$	$x^{4}-x^{3}-3 x^{2}+x+1$

Arrays of coefficients for S_{n} are indexed [4] as A147985 and A147990, and for T_{n} as A147986. The polynomials V_{n} are related by the equation $V_{n}(x)=U_{n}(-x)$ to polynomials U_{n} presented at A147989.

As mentioned in Section 2, the greatest zero r_{n} of S_{n} grows without bound as $n \rightarrow \infty$. In order to discuss r_{n} in some detail, define

$$
z(x)=\left(x+\sqrt{x^{2}+4}\right) / 2
$$

so that $r_{1}=1$ and $r_{n}=z\left(r_{n-1}\right)$ for $n \geq 2$. The sequence $\left(r_{n}\right)$ has some interesting properties arising from (16). For example, if x is the positive number satisfying $1+1 / x=x$, then $x=r_{2}=(1+\sqrt{5}) / 2$, and inductively, if x is the positive number satisfying

$$
\begin{equation*}
\frac{1}{r_{1}}+\frac{1}{r_{2}}+\cdots+\frac{1}{r_{n}}+\frac{1}{x}=x \tag{17}
\end{equation*}
$$

then $x=r_{n+1}$. Equation (17) shows how the numbers r_{n} arise naturally without reference to polynomials. Since

$$
r_{n+1}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\cdots+\frac{1}{r_{n}}+\frac{1}{r_{n+1}},
$$

we have $\sum_{k=1}^{\infty} \frac{1}{r_{k}}=\infty$.
Theorem 4. If $n \geq 1$, and r_{n} is the greatest zero of S_{n}, then

$$
\sqrt{2 n}-1<r_{n+1}<\sqrt{2 n+1}
$$

Proof. Taking $c=1$ in (16) and squaring give

$$
\frac{1}{r_{n+1}^{2}}=r_{n}^{2}-r_{n+1}^{2}+2
$$

whence

$$
\begin{aligned}
\sum_{k=2}^{n+1} \frac{1}{r_{k}^{2}} & =r_{1}^{2}-r_{n+1}^{2}+2 n \\
r_{n+1}^{2} & =1+2 n-\sum_{k=2}^{n+1} \frac{1}{r_{k}^{2}} \\
& <1+2 n
\end{aligned}
$$

so that $r_{n+1}<\sqrt{2 n+1}$.
We turn next to an inductive proof that

$$
\begin{equation*}
\sqrt{2 n}-1<r_{n+1} \tag{18}
\end{equation*}
$$

for all n. This is true for $n=1$, and we assume it true for arbitrary n and wish to prove that $r_{n+2}>\sqrt{2 n+2}-1$. We begin with the easily proved inequality

$$
4 n^{2}+2 n+1+4 n \sqrt{2 n}+4 n+2 \sqrt{2 n}<(2 n+2 \sqrt{2 n}+1)(2 n+2)
$$

Taking the square root of both sides,

$$
2 n+\sqrt{2 n}+1<(\sqrt{2 n}+1)(\sqrt{2 n+2})
$$

so that

$$
2 n<(\sqrt{2 n}+1)(\sqrt{2 n+2}-1)
$$

Expanding and adding appropriate terms to both sides,

$$
2 n-2 \sqrt{2 n+2}+5>4(2 n+2)+2 n+1-4 \sqrt{2 n} \sqrt{2 n+2}-4 \sqrt{2 n+2}+2 \sqrt{2 n}
$$

Taking the square root of both sides,

$$
\sqrt{2 n-2 \sqrt{2 n}+5}>2 \sqrt{2 n+2}-\sqrt{2 n}-1
$$

Equivalently,

$$
\sqrt{2 n}-1+\sqrt{2 n-2 \sqrt{2 n}+5}>2 \sqrt{2 n+2}-2
$$

so that by the induction hypothesis (18),

$$
\begin{equation*}
r_{n+1}+\sqrt{2 n-2 \sqrt{2 n}+5}>2 \sqrt{2 n+2}-2 \tag{19}
\end{equation*}
$$

The inequality (18), after squaring, adding 4, and taking square roots, gives

$$
\sqrt{r_{n+1}^{2}+4}>\sqrt{2 n-2 \sqrt{2 n}+5}
$$

In view of (19), therefore,

$$
r_{n+2}=\frac{r_{n+1}+\sqrt{r_{n+1}^{2}+4}}{2}>\sqrt{2 n+2}-1
$$

Theorem 4 implies that $\lim _{n \rightarrow \infty} r_{n} / \sqrt{n}=\sqrt{2}$ and that

$$
\frac{1}{2 n+1}<\frac{1}{r_{n+1}^{2}}<\frac{1}{(\sqrt{2 n}-1)^{2}}
$$

Consequently,

$$
\sum_{n=1}^{\infty} \frac{1}{r_{n}^{2}}=\infty, \quad \sum_{n=1}^{\infty} \frac{1}{n r_{n}}<\infty, \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{2^{n-1} r_{n}}<\infty
$$

The second and third sums are approximately 2.26383447 and 1.518737247. For more digits of the latter, see A154310.

5 The case $c=2$

It is easy to prove that there is exactly one choice of $c>0$ in (3) for which the resulting polynomial $S_{n}(x)+i T_{n}(x)$ has the form

$$
(x+a+b i)^{2^{n}}
$$

for some real a and b and all $n \geq 2$. The unique values are $c=2$ and $(a, b)=(0,1)$. In this case, the first three polynomials S_{n}, T_{n}, V_{n} are as shown here:

n	S_{n}	T_{n}	V_{n}
1	x	1	
2	$x^{2}-1$	$2 x$	$x^{2}-2 x-1$
3	$x^{4}-6 x^{2}+1$	$4 x^{3}-4 x$	$x^{4}-4 x^{3}-6 x^{2}+4 x+1$

Arrays of coefficients for S_{n} and T_{n} are included as subarrays [4] of arrays closely associated with Pascal's triangle. Specifically, for S_{n} see A096754, A135670, and A141665; for T_{n},
see $\underline{A 095704}$ and A135685. In the same way, coefficients for V_{n} can be read from A108086, modified in accord with the identity $V_{n}(x)=U_{n}(-x)$.

The fact that the zeros of T_{n} interlace those of S_{n} is an example of Theorem 1. However, in this case, one can also appeal to the Hermite-Biehler theorem: if S and T are nonconstant polynomials with real coefficients, then the polynomials S and T have interlacing zeros if and only if all the zeros of the polynomial $S+i T$ lie either in the upper half-plane or the lower half-plane. For a discussion of this theorem and related matters, see Rahman and Schmeisser [3, pp. 196-209].

6 The case $c=2 i$

Suppose that S_{n} is a square for some n, and write $S_{n}(x)=H_{n}^{2}(x)$. Then

$$
S_{n}\left(\frac{x}{c}-\frac{1}{c x}\right)=H_{n}^{2}\left(\frac{x}{c}-\frac{1}{c x}\right) .
$$

By (9),

$$
\begin{equation*}
S_{n+1}(x)=(c x)^{2^{n-1}} H_{n}^{2}\left(\frac{x}{c}-\frac{1}{c x}\right) \tag{20}
\end{equation*}
$$

which implies that S_{n+1} is a square. It is easy to show that the only nonzero choices of c for which S_{3} is a square are $\pm 2 i$. Equation (20) gives the recurrence

$$
H_{n+1}(x)=(2 i x)^{2^{n-2}} H_{n}\left(\frac{i}{2 x}-\frac{i x}{2}\right),
$$

which implies

$$
\left|H_{n+1}\left(e^{i \theta}\right)\right|=2^{\operatorname{deg} H_{n}}\left|H_{n}(\sin \theta)\right|
$$

for all real θ. Another recurrence, which follows readily from (12), is

$$
H_{n}=2 H_{n-2}^{4}-H_{n-1}^{2}
$$

The first four of these polynomials are as follows:

$$
\begin{aligned}
& H_{3}(x)=x^{2}+1 \\
& H_{4}(x)=x^{4}-6 x^{2}+1 \\
& H_{5}(x)=x^{8}+20 x^{6}-26 x^{4}+20 x^{2}+1 \\
& H_{6}(x)=x^{16}-88 x^{14}+92 x^{12}-872 x^{10}+1990 x^{8}-872 x^{6}+92 x^{4}-88 x^{2}+1
\end{aligned}
$$

Coefficients for the polynomials H_{7} and H_{8} are given at A154308.

7 The recurrence $P_{n+1} / Q_{n+1}=(1 / c)\left(P_{n} / Q_{n}+Q_{n} / P_{n}\right)$

We return now to the recurrence (1), with initial value $x_{0}=P_{1}=P_{1}(x)=x$. Taking $Q_{1}=Q_{1}(x)=1$ leads to sequences P_{n} and Q_{n} defined by

$$
P_{n}=P_{n-1}^{2}+c Q_{n-1}^{2} \quad \text { and } \quad Q_{n}=c P_{n-1} Q_{n-1}
$$

The properties of these polynomials are analogous to those of the polynomials S_{n} and T_{n} already discussed. Indeed,

$$
\begin{equation*}
P_{n}(x)=S_{n}(i x) \tag{21}
\end{equation*}
$$

for $n \geq 2$, so that the zeros of P_{n} are $i r$, where r ranges through \mathcal{Z}_{n}, and, if $c>0$, we have interlaced lists of zeros on the imaginary axis. The recurrence (12) holds without change; that is, for $n \geq 3$, we have

$$
P_{n}=P_{n-1}^{2}+P_{n-1} P_{n-2}^{2}-P_{n-2}^{4}
$$

Putting $x=i e^{i \theta}$ in (9) and applying (21) lead to

$$
\left|P_{n+1}\left(e^{i \theta}\right)\right|=|c|^{\operatorname{deg} P_{n}}\left|P_{n}\left(\frac{2}{c} \cos \theta\right)\right|
$$

for all real θ.
For $c=1$, coefficient arrays are given for the polynomials P_{n} and Q_{n} are indexed as A147987 and A147988, respectively.

8 Concluding remarks

The author is grateful to a referee for pointing out various properties associated with polynomials discussed in this paper - properties which may be worth further study. For example, the interlacing of zeros in Theorem 1 implies that for fixed n, the polynomials T_{n} and S_{n} are consecutive members of some sequence of orthogonal polynomials. A consequence of Theorem 2 is that there exists Euclidean straightedge-and-compass constructions for the zeros of T_{n} and S_{n}. The manner in which S_{n+1} arises from the argument of S_{n} in (9) is similar to the Joukowski transform. Indeed (9) can be written as

$$
e^{-i 2^{n-1} \theta} S_{n+1}\left(e^{i \theta}\right)=c^{2^{n-1}} S_{n}\left(\frac{2 i}{c} \sin \theta\right),
$$

so that, apart from a constant, the modulus of S_{n+1} on the unit circle is the modulus of S_{n} on a line segment. This has consequences for estimates, such as the derivative estimates of the Bernstein-Markov type.

References

[1] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, 84. Published for the American Mathematical Society, 1994, page 187.
[2] D. J. Newman, A Problem Seminar. Problem Books in Mathematics, Springer-Verlag, 1982. Problem 60.
[3] Q. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, 2002.
[4] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.

2000 Mathematics Subject Classification: Primary 26C10; Secondary 26C15.
Keywords: polynomial, interlacing zeros.
(Concerned with sequences A073833, A095704, A096754, A108086, A127814, A135670, A135685, $\underline{\mathrm{A} 141665,} \underline{\mathrm{~A} 147985}, \underline{\mathrm{~A} 147986}, \underline{\mathrm{~A} 147987}, \underline{\text { A147988, A154308, A154310.) }}$

Received January 11, 2009; revised version received March 18 2009. Published in Journal of Integer Sequences, March 202009.

Return to Journal of Integer Sequences home page.

