

Polynomials Associated with Reciprocation

Clark Kimberling Department of Mathematics University of Evansville 1800 Lincoln Avenue Evansville, IN 47722 USA ck6@evansville.edu

Abstract

Polynomials are defined recursively in various ways associated with reciprocation; e.g., $S_{n+1}(x)/T_{n+1}(x) = S_n(x)/T_n(x) \pm T_n(x)/S_n(x)$. Under certain conditions, the zeros of S_n interlace those of T_n . Identities for S_n , T_n , and related polynomials are derived, as well as recurrence relations and infinite sums involving roots of polynomials.

1 Introduction

A well-known problem [2] starts with the recurrence

$$x_{n+1} = x_n + 1/x_n,$$
 (1)

given that $x_0 = 1$. The sequence (1, 2, 5, 29, ...) thus determined is indexed in Sloane's Online Encyclopedia of Integer Sequences [4] as A073833. It is natural to ask what happens if the initial value 1 is replaced by an indeterminate x. The purpose of this paper is to respond to that question and related questions. For example, what if the recurrence is replaced by

$$x_{n+1} = x_n - 1/x_n, (2)$$

as in <u>A127814</u>? The recurrence (2) leads to polynomials which are interesting because of the distribution of their zeros, as portended by the following definition: suppose $V = (v_1, v_2, \ldots, v_{m-1})$ and $W = (w_1, w_2, \ldots, w_m)$ are lists of numbers satisfying

$$w_1 < v_1 < w_2 < v_2 < \dots < v_{m-1} < w_m;$$

then V interlaces W.

Throughout this paper, except where otherwise stipulated, the letter c denotes an arbitrary nonzero complex number.

2 The recurrence $S_{n+1}/T_{n+1} = (1/c)(S_n/T_n - T_n/S_n)$

Define polynomials $S_1 = S_1(x) = x$, $T_1 = T_1(x) = 1$, and

$$S_{n+1} = S_n^2 - T_n^2, \quad T_{n+1} = cS_n T_n, \tag{3}$$

so that

$$S_{n+1}/T_{n+1} = (1/c)(S_n/T_n - T_n/S_n),$$
(4)

and for $n \geq 2$,

$$T_n = c^{n-1} S_1 S_2 \cdots S_{n-1},$$

$$S_{n+1} = (S_n - c^{n-1} S_1 S_2 \cdots S_{n-1}) (S_n + c^{n-1} S_1 S_2 \cdots S_{n-1}).$$
(5)

If c = 1, then (4) is the recurrence (2) with $x_n = S_n/T_n$. For c > 0 and $n \ge 1$, let \mathcal{Z}_n be the list of zeros of S_n in increasing order, so that

$$\mathcal{Z}_1 = (0), \quad \mathcal{Z}_2 = (-1, 1),$$

and \mathcal{Z}_3 is the ordered list consisting of the numbers $(\pm c \pm \sqrt{c^2 + 4})/2$; e.g., if c = 1, then $\mathcal{Z}_3 = (-\varphi, -1/\varphi, 1/\varphi, \varphi)$, where $\varphi = (1 + \sqrt{5})/2$, the golden ratio.

If V and W are ordered lists, we shall employ the set-union symbol \cup for the *ordered* union of the merged list formed by the numbers in V and W, thus: $V \cup W$. Note that S_n has degree 2^{n-1} , that T_n has degree $2^{n-1} - 1$, and that $\bigcup_{k=1}^n \mathbb{Z}_k$ lists the zeros of T_n .

Theorem 1. Suppose that c is a nonzero real number and $n \ge 1$. Then $\bigcup_{k=1}^{n} \mathcal{Z}_k$ interlaces \mathcal{Z}_{n+1} .

Proof. First, suppose that c > 0. Clearly \mathcal{Z}_1 interlaces \mathcal{Z}_2 . It will be helpful to denote the zeros of S_n in increasing order by $r_{n,i}$ where $i = 1, 2, \ldots, 2^{n-1}$. To complete a two-part first induction step, we shall show that $\mathcal{Z}_1 \cup \mathcal{Z}_2$ interlaces \mathcal{Z}_3 . The function $f_2 = S_2/S_1$ is continuous and rises strictly from $-\infty$ to ∞ on each of the intervals $(-\infty, r_{11})$ and (r_{11}, ∞) . Therefore there exist unique numbers r_{31}, r_{32} such that

$$r_{31} < r_{21} < r_{32} < r_{11}, \quad f_2(r_{31}) = -c, \quad f_2(r_{32}) = c$$
 (6)

and r_{33}, r_{34} such that

$$r_{11} < r_{33} < r_{22} < r_{34}, \quad f_2(r_{33}) = -c, \quad f_2(r_{34}) = c.$$
 (7)

Thus, r_{31}, r_{33} are the zeros of $S_2 + cS_1$, and r_{32}, r_{34} are the zeros of $S_2 - cS_1$. Now $S_3 = (S_2 + cS_1)(S_2 - cS_1)$, so that (6) and (7) imply that $\mathcal{Z}_1 \cup \mathcal{Z}_2$ interlaces \mathcal{Z}_3 . As a general induction hypothesis, assume for $n \geq 3$ that $\bigcup_{k=1}^{n-2} \mathcal{Z}_k$ interlaces \mathcal{Z}_{n-1} and that $\bigcup_{k=1}^{n-1} \mathcal{Z}_k$ interlaces \mathcal{Z}_n . Write

$$\bigcup_{k=1}^{n-2} Z_k = (\rho_{11}, \rho_{12}, \dots, \rho_{1m}), \text{ where } m = 2^{n-2} - 1,$$

$$\bigcup_{k=1}^{n-1} Z_k = (\rho_{21}, \rho_{11}, \rho_{22}, \rho_{12}, \dots, \rho_{2m}, \rho_{1m}, \rho_{2,m+1}).$$

The function $f_n = S_n/(S_1S_2\cdots S_{n-1})$ is continuous and strictly increasing on each of the intervals

$$(-\infty, \rho_{11}), (\rho_{11}, \rho_{12}), \dots, (\rho_{1,m-1}, \rho_{1m}),$$
 (8)

with infinite limits (as in the argument above for $f_{2.}$) Let ρ_{31}, ρ_{32} be the unique numbers satisfying

$$\rho_{31} < \rho_{21} < \rho_{32} < \rho_{11}, \quad f_n(\rho_{31}) = -c, \quad f_2(\rho_{32}) = c.$$

Likewise applying the intermediate value theorem to the remaining intervals in (8), we conclude that $\bigcup_{k=1}^{n} \mathcal{Z}_k$ interlaces \mathcal{Z}_{n+1} .

Now suppose that c < 0. The recurrences (3) show that the only exponents of c that occur in the polynomials S_n are even. Therefore, these polynomials and their zeros are identical to those already considered.

Theorem 2. If $n \ge 1$ and $r \in \mathbb{Z}_n$, then $(cr \pm \sqrt{c^2r^2 + 4})/2 \in \mathbb{Z}_{n+1}$.

Proof. The proposition clearly holds for n = 1. The zeros of S_2 are -1 and 1; let r_1 be either of these, and let r_2 be any number satisfying $r_1 = (1/c)(r_2 - 1/r_2)$, so that

$$r_1 = \frac{r_2^2 - 1}{cr_2} = \frac{S_2(r_2)}{T_2(r_2)}$$

Taking $r_1 = -1$ gives $S_2(r_2) + T_2(r_2) = 0$ and taking $r_1 = 1$ gives $S_2(r_2) - T_2(r_2) = 0$. Consequently,

$$S_3(r_2) = (S_2(r_2) + T_2(r_2))(S_2(r_2) - T_2(r_2)),$$

which implies that the 4 numbers r_2 are the zeros of S_3 . Continuing with arbitrary zeros r_1, r_2 of S_2 , let r_3 be any number satisfying $r_2 = (1/c)(r_3 - 1/r_3)$, so that $r_2 = S_2(r_3)/T_2(r_3)$. Then

$$r_1 = \frac{1}{c}(r_2 - \frac{1}{r_2}) = \frac{1}{c}(\frac{S_2(r_3)}{cr_3} - \frac{cr_3}{S_2(r_3)})$$
$$= \frac{S_2^2(r_3) - c^2r_3^2}{cS_2(r_3)T_2(r_3)} = \frac{S_3(r_3)}{T_3(r_3)}.$$

Taking $r_1 = -1$ gives $S_3(r_3) + T_3(r_3) = 0$ and taking $r_1 = 1$ gives $S_3(r_2) - T_3(r_3) = 0$, so that the 8 numbers r_3 are the zeros of S_4 . This inductive procedure shows that the zeros ρ of S_{n+1} arise from the zeros r of S_n by the rule $r = (1/c)(\rho - 1/\rho)$, and solving this for ρ finishes the proof.

Theorem 3. If $n \ge 1$, then

$$S_{n+1}(x) = (cx)^{2^{n-1}} S_n(\frac{x}{c} - \frac{1}{cx}).$$
(9)

More generally, if $k = 2, 3, \ldots, n+1$, then

$$S_{n+1} = T_k^{2^{n-k+1}} S_{n-k+2} \left(\frac{S_k}{T_k}\right).$$
(10)

Proof. First, we prove (9). The assertion clearly holds for n = 1. Assume that n > 1 and let $m = 2^{n-1}$. Denote the zeros of S_n by r_k for k = 1, 2, ..., m. By Theorem 2,

$$S_{n+1}(x) = \prod_{h=1}^{m} \left(x - \frac{cr_h - \sqrt{c^2 r_h^2 + 4}}{2}\right) \left(x - \frac{cr_h + \sqrt{c^2 r_h^2 + 4}}{2}\right)$$
$$= \prod_{h=1}^{m} \left(x^2 - cr_h x - 1\right)$$
$$= \prod_{h=1}^{m} x \left(x - \frac{1}{x} - cr_h\right)$$
$$= (cx)^m S_n \left(\frac{x}{c} - \frac{1}{cx}\right).$$

In case k = 2, equation (10) is essentially a restatement of (9), just proved. For k > 2, equations (10) will now be proved by induction on k. Assume for arbitrary k satisfying $2 \le k \le n$ that

$$S_{n+1} = T_{k-1}^{2^{n-k+2}} S_{n-k+3} \left(\frac{S_{k-1}}{T_{k-1}}\right).$$
(11)

Substitute S_k/T_k for x in (9) with n replaced by n - k + 3:

$$S_{n-k+3}(\frac{S_{k-1}}{T_{k-1}}) = (\frac{cS_{k-1}}{T_{k-1}})^{2^{n-k+1}}S_{n-k+2}(\frac{S_k}{T_k}),$$

so that by (11),

$$S_{n+1} = T_{k-1}^{2^{n-k+2}} \left(\frac{cS_{k-1}}{T_{k-1}}\right)^{2^{n-k+1}} S_{n-k+2} \left(\frac{S_k}{T_k}\right)$$
$$= (cT_{k-1}S_{k-1})^{2^{n-k+1}} S_{n-k+2} \left(\frac{S_k}{T_k}\right)$$
$$= T_k^{2^{n-k+1}} S_{n-k+2} \left(\frac{S_k}{T_k}\right).$$

Using Theorems 1-3, it is easy to establish the following properties of the polynomials and zeros:

- 1. $S_n(-x) = S_n(x)$ for $n \ge 2$, and if $r \in \mathbb{Z}_n$ then $-r \in \mathbb{Z}_n$ for $n \ge 1$.
- 2. $x^{2^{n-1}}S_n(1/x) = S_n(x)$ for $n \ge 3$, and if $r \in \mathbb{Z}_n$ then $1/r \in \mathbb{Z}_n$ for $n \ge 2$.

3. Suppose that c > 0, and let r_n denote the greatest zero of S_n . Then (r_n) is a strictly increasing sequence, and

$$\lim_{n \to \infty} r_n = \begin{cases} (1-c)^{-1/2}, & \text{if } 0 < c < 1; \\ \infty, & \text{if } c \ge 1. \end{cases}$$

An outline of a proof follows. Of course, $r_n = (cr_{n-1} + \sqrt{c^2r_{n-1}^2 + 4})/2$, so that (r_n) is strictly increasing. If 0 < c < 1, then, as is easily proved, $r_n < (1-c)^{-1/2}$ for all n, so that a limit r

exists; since $r = (cr + \sqrt{c^2r^2 + 4})/2$, we have $r = (1 - c)^{-1/2}$. On the other hand, supposing $c \ge 1$, if (r_n) were bounded above, then the previous argument would give $r = (1 - c)^{-1/2}$, but this is not a real number. Therefore $r_n \to \infty$.

4. If $n \geq 3$, then

$$S_n = S_{n-1}^2 + c^2 S_{n-1} S_{n-2}^2 - c^2 S_{n-2}^4.$$
(12)

To prove this recurrence, from (5) we obtain both

$$c^{2n-4}(S_1S_2\cdots S_{n-3})^2S_{n-2}^2 = S_{n-1}^2 - S_n$$

and

$$c^{2n-6}(S_1S_2\cdots S_{n-3})^2 = S_{n-2}^2 - S_{n-1},$$

and (12) follows by eliminating $(S_1 S_2 \cdots S_{n-3})^2$.

In the case c = 1, the recurrence (12) is used (e.g., [1]) to define the Gorškov-Wirsing polynomials, for which the initial polynomials are 2x - 1 and $5x^2 - 5x + 1$ rather than x and $x^2 - 1$.

3 The polynomials $V_n = S_n - c^{n-1}S_1S_2\cdots S_{n-1}$

Equation (5) shows that $n \ge 2$, the polynomial S_{n+1} factors. We use one of factors to define a sequence of polynomials

$$V_n = V_n(x) = S_n - c^{n-1} S_1 S_2 \cdots S_{n-1},$$
(13)

so that

$$S_n(x) = V_{n-1}(x)V_{n-1}(-x), (14)$$

$$2S_n(x) = V_n(x) + V_n(-x).$$
(15)

Suppose that $n \ge 3$. Substitute n-1 for n in (13) and then multiply both sides of the result by cS_{n-1} to obtain

$$cV_{n-1}S_{n-1} = cS_{n-1}^2 - c^{n-1}S_1S_2 \cdots S_{n-1},$$

so that by (13),

$$V_n = S_n - cS_{n-1}^2 + cV_{n-1}S_{n-1},$$

and by (14), and (15) with n-1 substituted for n,

$$V_{n}(x) = V_{n-1}(x)V_{n-1}(-x) - c(\frac{V_{n-1}(x) + V_{n-1}(-x)}{2})^{2} + cV_{n-1}(x)\frac{V_{n-1}(x) + V_{n-1}(-x)}{2}.$$

Thus, we have the following recurrence for the polynomials V_n :

$$V_n = V_{n-1}(x)V_{n-1}(-x) + \frac{c}{4}[V_{n-1}^2(x) - V_{n-1}^2(-x)],$$

for $n \ge 3$. Another recurrence for these polynomials stems directly from (9) and (14):

$$V_{n+1}(x) = (cx)^{2^{n-1}} V_n(\frac{x}{c} - \frac{1}{cx}),$$

for $n \geq 2$.

For the remainder of this section, assume that c > 0. For $n \ge 2$, let \mathcal{Z}_n^+ denote the ordered list of zeros of V_n Since $\mathcal{Z}_n^+ \subset \mathcal{Z}_n$, we need only observe that in the rule given by Theorem 2 for forming zeros, the half of the numbers in \mathcal{Z}_n that descend from r = 1 in \mathcal{Z}_1^+ are the numbers that comprise \mathcal{Z}_n^+ . That is, if $n \ge 2$ and $r \in \mathcal{Z}_n^+$ then

$$(cr\pm\sqrt{c^2r^2+4})/2\in\mathcal{Z}_{n+1}^+$$

For $n \geq 3$, no number in \mathcal{Z}_n^+ is rational, so that V_n is irreducible over the rational integers.

Let r_n denote the greatest zero of S_n , and also of V_n . Then

$$r_{n+1} = (cr_n + \sqrt{c^2 r_n^2 + 4})/2,$$

and from this recurrence easily follows

$$r_{n+1} - 1/r_{n+1} = cr_n, (16)$$

of which the left-hand side is the distance from the least positive zero of S_{n+1} to the greatest.

4 The case c = 1

We turn now to the case that c = 1; that is, the immediate generalization of (2) to the case that the initial value is $S_1(x) = x$. The first four polynomials S_n and V_n are as shown here:

n	S_n	V_n
1	x	
2	$x^2 - 1$	x-1
3	$x^4 - 3x^2 + 1$	$x^2 - x - 1$
4	$x^8 - 7x^6 + 13x^4 - 7x^2 + 1$	$x^4 - x^3 - 3x^2 + x + 1$

Arrays of coefficients for S_n are indexed [4] as <u>A147985</u> and <u>A147990</u>, and for T_n as <u>A147986</u>. The polynomials V_n are related by the equation $V_n(x) = U_n(-x)$ to polynomials U_n presented at A147989.

As mentioned in Section 2, the greatest zero r_n of S_n grows without bound as $n \to \infty$. In order to discuss r_n in some detail, define

$$z(x) = (x + \sqrt{x^2 + 4})/2,$$

so that $r_1 = 1$ and $r_n = z(r_{n-1})$ for $n \ge 2$. The sequence (r_n) has some interesting properties arising from (16). For example, if x is the positive number satisfying 1 + 1/x = x, then $x = r_2 = (1 + \sqrt{5})/2$, and inductively, if x is the positive number satisfying

$$\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n} + \frac{1}{x} = x,$$
(17)

then $x = r_{n+1}$. Equation (17) shows how the numbers r_n arise naturally without reference to polynomials. Since

$$r_{n+1} = \frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n} + \frac{1}{r_{n+1}},$$

we have $\sum_{k=1}^{\infty} \frac{1}{r_k} = \infty$.

Theorem 4. If $n \ge 1$, and r_n is the greatest zero of S_n , then

$$\sqrt{2n} - 1 < r_{n+1} < \sqrt{2n+1}.$$

Proof. Taking c = 1 in (16) and squaring give

$$\frac{1}{r_{n+1}^2} = r_n^2 - r_{n+1}^2 + 2,$$

whence

$$\begin{split} \sum_{k=2}^{n+1} \frac{1}{r_k^2} &= r_1^2 - r_{n+1}^2 + 2n, \\ r_{n+1}^2 &= 1 + 2n - \sum_{k=2}^{n+1} \frac{1}{r_k^2} \\ &< 1 + 2n, \end{split}$$

so that $r_{n+1} < \sqrt{2n+1}$.

We turn next to an inductive proof that

$$\sqrt{2n - 1} < r_{n+1} \tag{18}$$

for all n. This is true for n = 1, and we assume it true for arbitrary n and wish to prove that $r_{n+2} > \sqrt{2n+2} - 1$. We begin with the easily proved inequality

$$4n^{2} + 2n + 1 + 4n\sqrt{2n} + 4n + 2\sqrt{2n} < (2n + 2\sqrt{2n} + 1)(2n + 2).$$

Taking the square root of both sides,

$$2n + \sqrt{2n} + 1 < (\sqrt{2n} + 1)(\sqrt{2n + 2}),$$

so that

$$2n < (\sqrt{2n} + 1)(\sqrt{2n + 2} - 1).$$

Expanding and adding appropriate terms to both sides,

$$2n - 2\sqrt{2n+2} + 5 > 4(2n+2) + 2n + 1 - 4\sqrt{2n}\sqrt{2n+2} - 4\sqrt{2n+2} + 2\sqrt{2n}.$$

Taking the square root of both sides,

$$\sqrt{2n - 2\sqrt{2n} + 5} > 2\sqrt{2n + 2} - \sqrt{2n} - 1.$$

Equivalently,

$$\sqrt{2n} - 1 + \sqrt{2n - 2\sqrt{2n} + 5} > 2\sqrt{2n + 2} - 2,$$

so that by the induction hypothesis (18),

$$r_{n+1} + \sqrt{2n - 2\sqrt{2n} + 5} > 2\sqrt{2n + 2} - 2.$$
(19)

The inequality (18), after squaring, adding 4, and taking square roots, gives

$$\sqrt{r_{n+1}^2 + 4} > \sqrt{2n - 2\sqrt{2n}} + 5.$$

In view of (19), therefore,

$$r_{n+2} = \frac{r_{n+1} + \sqrt{r_{n+1}^2 + 4}}{2} > \sqrt{2n+2} - 1.$$

Theorem 4 implies that $\lim_{n\to\infty}r_n/\sqrt{n}=\sqrt{2}$ and that

$$\frac{1}{2n+1} < \frac{1}{r_{n+1}^2} < \frac{1}{(\sqrt{2n}-1)^2}.$$

Consequently,

$$\sum_{n=1}^{\infty} \frac{1}{r_n^2} = \infty, \quad \sum_{n=1}^{\infty} \frac{1}{nr_n} < \infty, \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{2^{n-1}r_n} < \infty.$$

The second and third sums are approximately 2.26383447 and 1.518737247. For more digits of the latter, see <u>A154310</u>.

5 The case c = 2

It is easy to prove that there is exactly one choice of c > 0 in (3) for which the resulting polynomial $S_n(x) + iT_n(x)$ has the form

$$(x+a+bi)^{2^n}$$

for some real a and b and all $n \ge 2$. The unique values are c = 2 and (a, b) = (0, 1). In this case, the first three polynomials S_n , T_n , V_n are as shown here:

n	S_n	T_n	V_n
1	x	1	
2	$x^2 - 1$	2x	$x^2 - 2x - 1$
3	$x^4 - 6x^2 + 1$	$4x^3 - 4x$	$x^4 - 4x^3 - 6x^2 + 4x + 1$

Arrays of coefficients for S_n and T_n are included as subarrays [4] of arrays closely associated with Pascal's triangle. Specifically, for S_n see <u>A096754</u>, <u>A135670</u>, and <u>A141665</u>; for T_n ,

see <u>A095704</u> and <u>A135685</u>. In the same way, coefficients for V_n can be read from A108086, modified in accord with the identity $V_n(x) = U_n(-x)$.

The fact that the zeros of T_n interlace those of S_n is an example of Theorem 1. However, in this case, one can also appeal to the Hermite-Biehler theorem: if S and T are nonconstant polynomials with real coefficients, then the polynomials S and T have interlacing zeros if and only if all the zeros of the polynomial S + iT lie either in the upper half-plane or the lower half-plane. For a discussion of this theorem and related matters, see Rahman and Schmeisser [3, pp. 196–209].

6 The case c = 2i

Suppose that S_n is a square for some n, and write $S_n(x) = H_n^2(x)$. Then

$$S_n(\frac{x}{c} - \frac{1}{cx}) = H_n^2(\frac{x}{c} - \frac{1}{cx})$$

By (9),

$$S_{n+1}(x) = (cx)^{2^{n-1}} H_n^2(\frac{x}{c} - \frac{1}{cx}),$$
(20)

which implies that S_{n+1} is a square. It is easy to show that the only nonzero choices of c for which S_3 is a square are $\pm 2i$. Equation (20) gives the recurrence

$$H_{n+1}(x) = (2ix)^{2^{n-2}} H_n(\frac{i}{2x} - \frac{ix}{2}),$$

which implies

$$\left|H_{n+1}(e^{i\theta})\right| = 2^{\deg H_n} \left|H_n(\sin\theta)\right|$$

for all real θ . Another recurrence, which follows readily from (12), is

$$H_n = 2H_{n-2}^4 - H_{n-1}^2.$$

The first four of these polynomials are as follows:

$$\begin{split} H_3(x) &= x^2 + 1 \\ H_4(x) &= x^4 - 6x^2 + 1 \\ H_5(x) &= x^8 + 20x^6 - 26x^4 + 20x^2 + 1 \\ H_6(x) &= x^{16} - 88x^{14} + 92x^{12} - 872x^{10} + 1990x^8 - 872x^6 + 92x^4 - 88x^2 + 1 \end{split}$$

Coefficients for the polynomials H_7 and H_8 are given at <u>A154308</u>.

7 The recurrence $P_{n+1}/Q_{n+1} = (1/c)(P_n/Q_n + Q_n/P_n)$

We return now to the recurrence (1), with initial value $x_0 = P_1 = P_1(x) = x$. Taking $Q_1 = Q_1(x) = 1$ leads to sequences P_n and Q_n defined by

$$P_n = P_{n-1}^2 + cQ_{n-1}^2$$
 and $Q_n = cP_{n-1}Q_{n-1}$.

The properties of these polynomials are analogous to those of the polynomials S_n and T_n already discussed. Indeed,

$$P_n(x) = S_n(ix) \tag{21}$$

for $n \ge 2$, so that the zeros of P_n are *ir*, where *r* ranges through \mathcal{Z}_n , and, if c > 0, we have interlaced lists of zeros on the imaginary axis. The recurrence (12) holds without change; that is, for $n \ge 3$, we have

$$P_n = P_{n-1}^2 + P_{n-1}P_{n-2}^2 - P_{n-2}^4.$$

Putting $x = ie^{i\theta}$ in (9) and applying (21) lead to

$$\left|P_{n+1}(e^{i\theta})\right| = \left|c\right|^{\deg P_n} \left|P_n(\frac{2}{c}\cos\theta)\right|$$

for all real θ .

For c = 1, coefficient arrays are given for the polynomials P_n and Q_n are indexed as <u>A147987</u> and <u>A147988</u>, respectively.

8 Concluding remarks

The author is grateful to a referee for pointing out various properties associated with polynomials discussed in this paper — properties which may be worth further study. For example, the interlacing of zeros in Theorem 1 implies that for fixed n, the polynomials T_n and S_n are consecutive members of some sequence of orthogonal polynomials. A consequence of Theorem 2 is that there exists Euclidean straightedge-and-compass constructions for the zeros of T_n and S_n . The manner in which S_{n+1} arises from the argument of S_n in (9) is similar to the Joukowski transform. Indeed (9) can be written as

$$e^{-i2^{n-1}\theta}S_{n+1}(e^{i\theta}) = c^{2^{n-1}}S_n(\frac{2i}{c}\sin\theta),$$

so that, apart from a constant, the modulus of S_{n+1} on the unit circle is the modulus of S_n on a line segment. This has consequences for estimates, such as the derivative estimates of the Bernstein-Markov type.

References

- H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, 84. Published for the American Mathematical Society, 1994, page 187.
- [2] D. J. Newman, A Problem Seminar. Problem Books in Mathematics, Springer-Verlag, 1982. Problem 60.
- [3] Q. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, 2002.

[4] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.

2000 Mathematics Subject Classification: Primary 26C10; Secondary 26C15. Keywords: polynomial, interlacing zeros.

(Concerned with sequences <u>A073833</u>, <u>A095704</u>, <u>A096754</u>, <u>A108086</u>, <u>A127814</u>, <u>A135670</u>, <u>A135685</u>, <u>A141665</u>, <u>A147985</u>, <u>A147986</u>, <u>A147987</u>, <u>A147988</u>, <u>A154308</u>, <u>A154310</u>.)

Received January 11, 2009; revised version received March 18 2009. Published in *Journal of Integer Sequences*, March 20 2009.

Return to Journal of Integer Sequences home page.