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Abstract

Polynomials are defined recursively in various ways associated with reciprocation;
e.g., Sn+1(x)/Tn+1(x) = Sn(x)/Tn(x) ± Tn(x)/Sn(x). Under certain conditions, the
zeros of Sn interlace those of Tn. Identities for Sn, Tn, and related polynomials are
derived, as well as recurrence relations and infinite sums involving roots of polynomials.

1 Introduction

A well-known problem [2] starts with the recurrence

xn+1 = xn + 1/xn, (1)

given that x0 = 1. The sequence (1, 2, 5, 29, . . .) thus determined is indexed in Sloane’s Online

Encyclopedia of Integer Sequences [4] as A073833. It is natural to ask what happens if the
initial value 1 is replaced by an indeterminate x. The purpose of this paper is to respond to
that question and related questions. For example, what if the recurrence is replaced by

xn+1 = xn − 1/xn, (2)

as in A127814? The recurrence (2) leads to polynomials which are interesting because
of the distribution of their zeros, as portended by the following definition: suppose V =
(v1, v2, . . . , vm−1) and W = (w1, w2, . . . , wm) are lists of numbers satisfying

w1 < v1 < w2 < v2 < · · · < vm−1 < wm;

then V interlaces W .
Throughout this paper, except where otherwise stipulated, the letter c denotes an arbi-

trary nonzero complex number.
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2 The recurrence Sn+1/Tn+1 = (1/c)(Sn/Tn − Tn/Sn)

Define polynomials S1 = S1(x) = x, T1 = T1(x) = 1, and

Sn+1 = S2
n − T 2

n , Tn+1 = cSnTn, (3)

so that
Sn+1/Tn+1 = (1/c)(Sn/Tn − Tn/Sn), (4)

and for n ≥ 2,

Tn = cn−1S1S2 · · ·Sn−1,

Sn+1 = (Sn − cn−1S1S2 · · ·Sn−1)(Sn + cn−1S1S2 · · ·Sn−1). (5)

If c = 1, then (4) is the recurrence (2) with xn = Sn/Tn. For c > 0 and n ≥ 1, let Zn be the
list of zeros of Sn in increasing order, so that

Z1 = (0), Z2 = (−1, 1),

and Z3 is the ordered list consisting of the numbers (±c ±
√

c2 + 4)/2; e.g., if c = 1, then
Z3 = (−ϕ,−1/ϕ, 1/ϕ, ϕ), where ϕ = (1 +

√
5)/2, the golden ratio.

If V and W are ordered lists, we shall employ the set-union symbol ∪ for the ordered

union of the merged list formed by the numbers in V and W, thus: V ∪ W. Note that Sn

has degree 2n−1, that Tn has degree 2n−1 − 1, and that
n
⋃

k=1

Zk lists the zeros of Tn.

Theorem 1. Suppose that c is a nonzero real number and n ≥ 1. Then
n
∪

k=1
Zk interlaces

Zn+1.

Proof. First, suppose that c > 0. Clearly Z1 interlaces Z2. It will be helpful to denote
the zeros of Sn in increasing order by rn,i where i = 1, 2, . . . , 2n−1. To complete a two-part
first induction step, we shall show that Z1 ∪ Z2 interlaces Z3. The function f2 = S2/S1 is
continuous and rises strictly from −∞ to ∞ on each of the intervals (−∞, r11) and (r11,∞).
Therefore there exist unique numbers r31, r32 such that

r31 < r21 < r32 < r11, f2(r31) = −c, f2(r32) = c (6)

and r33, r34 such that

r11 < r33 < r22 < r34, f2(r33) = −c, f2(r34) = c. (7)

Thus, r31, r33 are the zeros of S2 + cS1, and r32, r34 are the zeros of S2 − cS1. Now S3 =
(S2 + cS1)(S2 − cS1), so that (6) and (7) imply that Z1 ∪ Z2 interlaces Z3. As a general

induction hypothesis, assume for n ≥ 3 that
n−2

∪
k=1

Zk interlaces Zn−1 and that
n−1

∪
k=1

Zk interlaces

Zn. Write

n−2

∪
k=1

Zk = (ρ11, ρ12, . . . , ρ1m), where m = 2n−2 − 1,

n−1

∪
k=1

Zk = (ρ21, ρ11, ρ22, ρ12, . . . , ρ2m, ρ1m,ρ2,m+1).
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The function fn = Sn/(S1S2 · · ·Sn−1) is continuous and strictly increasing on each of the
intervals

(−∞, ρ11), (ρ11, ρ12), . . . , (ρ1,m−1, ρ1m), (8)

with infinite limits (as in the argument above for f2.) Let ρ31, ρ32 be the unique numbers
satisfying

ρ31 < ρ21 < ρ32 < ρ11, fn(ρ31) = −c, f2(ρ32) = c.

Likewise applying the intermediate value theorem to the remaining intervals in (8), we con-

clude that
n
∪

k=1
Zk interlaces Zn+1.

Now suppose that c < 0. The recurrences (3) show that the only exponents of c that occur
in the polynomials Sn are even. Therefore, these polynomials and their zeros are identical
to those already considered.

Theorem 2. If n ≥ 1 and r ∈ Zn, then (cr ±
√

c2r2 + 4)/2 ∈ Zn+1.

Proof. The proposition clearly holds for n = 1. The zeros of S2 are −1 and 1; let r1 be either
of these, and let r2 be any number satisfying r1 = (1/c)(r2 − 1/r2), so that

r1 =
r2
2 − 1

cr2

=
S2(r2)

T2(r2)
.

Taking r1 = −1 gives S2(r2) + T2(r2) = 0 and taking r1 = 1 gives S2(r2) − T2(r2) = 0.
Consequently,

S3(r2) = (S2(r2) + T2(r2))(S2(r2) − T2(r2)),

which implies that the 4 numbers r2 are the zeros of S3. Continuing with arbitrary zeros
r1, r2 of S2, let r3 be any number satisfying r2 = (1/c)(r3−1/r3), so that r2 = S2(r3)/T2(r3).
Then

r1 =
1

c
(r2 −

1

r2

) =
1

c
(
S2(r3)

cr3

− cr3

S2(r3)
)

=
S2

2(r3) − c2r2
3

cS2(r3)T2(r3)
=

S3(r3)

T3(r3)
.

Taking r1 = −1 gives S3(r3) + T3(r3) = 0 and taking r1 = 1 gives S3(r2) − T3(r3) = 0, so
that the 8 numbers r3 are the zeros of S4. This inductive procedure shows that the zeros ρ
of Sn+1 arise from the zeros r of Sn by the rule r = (1/c)(ρ − 1/ρ), and solving this for ρ
finishes the proof.

Theorem 3. If n ≥ 1, then

Sn+1(x) = (cx)2n−1

Sn(
x

c
− 1

cx
). (9)

More generally, if k = 2, 3, . . . , n + 1, then

Sn+1 = T 2n−k+1

k Sn−k+2(
Sk

Tk

). (10)
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Proof. First, we prove (9). The assertion clearly holds for n = 1. Assume that n > 1 and
let m = 2n−1. Denote the zeros of Sn by rk for k = 1, 2, . . . ,m. By Theorem 2,

Sn+1(x) =
m
∏

h=1

(x − crh −
√

c2r2
h + 4

2
)(x − crh +

√

c2r2
h + 4

2
)

=
m
∏

h=1

(x2 − crhx − 1)

=
m
∏

h=1

x(x − 1

x
− crh)

= (cx)mSn(
x

c
− 1

cx
).

In case k = 2, equation (10) is essentially a restatement of (9), just proved. For k > 2,
equations (10) will now be proved by induction on k. Assume for arbitrary k satisfying
2 ≤ k ≤ n that

Sn+1 = T 2n−k+2

k−1 Sn−k+3(
Sk−1

Tk−1

). (11)

Substitute Sk/Tk for x in (9) with n replaced by n − k + 3 :

Sn−k+3(
Sk−1

Tk−1

) = (
cSk−1

Tk−1

)2n−k+1

Sn−k+2(
Sk

Tk

),

so that by (11),

Sn+1 = T 2n−k+2

k−1 (
cSk−1

Tk−1

)2n−k+1

Sn−k+2(
Sk

Tk

)

= (cTk−1Sk−1)
2n−k+1

Sn−k+2(
Sk

Tk

)

= Tk
2n−k+1

Sn−k+2(
Sk

Tk

).

Using Theorems 1-3, it is easy to establish the following properties of the polynomials
and zeros:

1. Sn(−x) = Sn(x) for n ≥ 2, and if r ∈ Zn then −r ∈ Zn for n ≥ 1.
2. x2n−1

Sn(1/x) = Sn(x) for n ≥ 3, and if r ∈ Zn then 1/r ∈ Zn for n ≥ 2.
3. Suppose that c > 0, and let rn denote the greatest zero of Sn. Then (rn) is a strictly

increasing sequence, and

lim
n→∞

rn =

{

(1 − c)−1/2, if 0 < c < 1;
∞, if c ≥ 1.

An outline of a proof follows. Of course, rn = (crn−1+
√

c2r2
n−1 + 4)/2, so that (rn) is strictly

increasing. If 0 < c < 1, then, as is easily proved, rn < (1− c)−1/2 for all n, so that a limit r
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exists; since r = (cr +
√

c2r2 + 4)/2, we have r = (1 − c)−1/2. On the other hand, supposing
c ≥ 1, if (rn) were bounded above, then the previous argument would give r = (1 − c)−1/2,
but this is not a real number. Therefore rn → ∞.

4. If n ≥ 3, then
Sn = S2

n−1 + c2Sn−1S
2
n−2 − c2S4

n−2. (12)

To prove this recurrence, from (5) we obtain both

c2n−4(S1S2 · · ·Sn−3)
2S2

n−2 = S2
n−1 − Sn

and
c2n−6(S1S2 · · ·Sn−3)

2 = S2
n−2 − Sn−1,

and (12) follows by eliminating (S1S2 · · ·Sn−3)
2.

In the case c = 1, the recurrence (12) is used (e.g., [1]) to define the Gorškov-Wirsing
polynomials, for which the initial polynomials are 2x− 1 and 5x2 − 5x+1 rather than x and
x2 − 1.

3 The polynomials Vn = Sn − cn−1S1S2 · · ·Sn−1

Equation (5) shows that n ≥ 2, the polynomial Sn+1 factors. We use one of factors to define
a sequence of polynomials

Vn = Vn(x) = Sn − cn−1S1S2 · · ·Sn−1, (13)

so that

Sn(x) = Vn−1(x)Vn−1(−x), (14)

2Sn(x) = Vn(x) + Vn(−x). (15)

Suppose that n ≥ 3. Substitute n− 1 for n in (13) and then multiply both sides of the result
by cSn−1 to obtain

cVn−1Sn−1 = cS2
n−1 − cn−1S1S2 · · ·Sn−1,

so that by (13),
Vn = Sn − cS2

n−1 + cVn−1Sn−1,

and by (14), and (15) with n − 1 substituted for n,

Vn(x) = Vn−1(x)Vn−1(−x) − c(
Vn−1(x) + Vn−1(−x)

2
)2

+cVn−1(x)
Vn−1(x) + Vn−1(−x)

2
.

Thus, we have the following recurrence for the polynomials Vn :

Vn = Vn−1(x)Vn−1(−x) +
c

4
[V 2

n−1(x) − V 2
n−1(−x)],

5



for n ≥ 3. Another recurrence for these polynomials stems directly from (9) and (14):

Vn+1(x) = (cx)2n−1

Vn(
x

c
− 1

cx
),

for n ≥ 2.
For the remainder of this section, assume that c > 0. For n ≥ 2, let Z+

n denote the
ordered list of zeros of Vn Since Z+

n ⊂ Zn, we need only observe that in the rule given by
Theorem 2 for forming zeros, the half of the numbers in Zn that descend from r = 1 in Z+

1

are the numbers that comprise Z+
n . That is, if n ≥ 2and r ∈ Z+

n then

(cr ±
√

c2r2 + 4)/2 ∈ Z+
n+1.

For n ≥ 3, no number in Z+
n is rational, so that Vn is irreducible over the rational integers.

Let rn denote the greatest zero of Sn, and also of Vn. Then

rn+1 = (crn +
√

c2r2
n + 4)/2,

and from this recurrence easily follows

rn+1 − 1/rn+1 = crn, (16)

of which the left-hand side is the distance from the least positive zero of Sn+1 to the greatest.

4 The case c = 1

We turn now to the case that c = 1; that is, the immediate generalization of (2) to the case
that the initial value is S1(x) = x. The first four polynomials Sn and Vn are as shown here:

n Sn Vn

1 x
2 x2 − 1 x − 1
3 x4 − 3x2 + 1 x2 − x − 1
4 x8 − 7x6 + 13x4 − 7x2 + 1 x4 − x3 − 3x2 + x + 1

Arrays of coefficients for Sn are indexed [4] as A147985 and A147990, and for Tn as A147986.
The polynomials Vn are related by the equation Vn(x) = Un(−x) to polynomials Un presented
at A147989.

As mentioned in Section 2, the greatest zero rn of Sn grows without bound as n → ∞.
In order to discuss rn in some detail, define

z(x) = (x +
√

x2 + 4)/2,

so that r1 = 1 and rn = z(rn−1) for n ≥ 2. The sequence (rn) has some interesting properties
arising from (16). For example, if x is the positive number satisfying 1 + 1/x = x, then
x = r2 = (1 +

√
5)/2, and inductively, if x is the positive number satisfying

1

r1

+
1

r2

+ · · · + 1

rn

+
1

x
= x, (17)
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then x = rn+1. Equation (17) shows how the numbers rn arise naturally without reference
to polynomials. Since

rn+1 =
1

r1

+
1

r2

+ · · · + 1

rn

+
1

rn+1

,

we have
∞
∑

k=1

1

rk

= ∞.

Theorem 4. If n ≥ 1, and rn is the greatest zero of Sn, then

√
2n − 1 < rn+1 <

√
2n + 1.

Proof. Taking c = 1 in (16) and squaring give

1

r2
n+1

= r2
n − r2

n+1 + 2,

whence

n+1
∑

k=2

1

r2
k

= r2
1 − r2

n+1 + 2n,

r2
n+1 = 1 + 2n −

n+1
∑

k=2

1

r2
k

< 1 + 2n,

so that rn+1 <
√

2n + 1.
We turn next to an inductive proof that

√
2n − 1 < rn+1 (18)

for all n. This is true for n = 1, and we assume it true for arbitrary n and wish to prove
that rn+2 >

√
2n + 2 − 1. We begin with the easily proved inequality

4n2 + 2n + 1 + 4n
√

2n + 4n + 2
√

2n < (2n + 2
√

2n + 1)(2n + 2).

Taking the square root of both sides,

2n +
√

2n + 1 < (
√

2n + 1)(
√

2n + 2),

so that
2n < (

√
2n + 1)(

√
2n + 2 − 1).

Expanding and adding appropriate terms to both sides,

2n − 2
√

2n + 2 + 5 > 4(2n + 2) + 2n + 1 − 4
√

2n
√

2n + 2 − 4
√

2n + 2 + 2
√

2n.

Taking the square root of both sides,
√

2n − 2
√

2n + 5 > 2
√

2n + 2 −
√

2n − 1.
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Equivalently,
√

2n − 1 +

√

2n − 2
√

2n + 5 > 2
√

2n + 2 − 2,

so that by the induction hypothesis (18),

rn+1 +

√

2n − 2
√

2n + 5 > 2
√

2n + 2 − 2. (19)

The inequality (18), after squaring, adding 4, and taking square roots, gives

√

r2
n+1 + 4 >

√

2n − 2
√

2n + 5.

In view of (19), therefore,

rn+2 =
rn+1 +

√

r2
n+1 + 4

2
>

√
2n + 2 − 1.

Theorem 4 implies that lim
n→∞

rn/
√

n =
√

2 and that

1

2n + 1
<

1

r2
n+1

<
1

(
√

2n − 1)2
.

Consequently,
∞

∑

n=1

1

r2
n

= ∞,
∞

∑

n=1

1

nrn

< ∞, and
∞

∑

n=1

1

2n−1rn

< ∞.

The second and third sums are approximately 2.26383447 and 1.518737247. For more digits
of the latter, see A154310.

5 The case c = 2

It is easy to prove that there is exactly one choice of c > 0 in (3) for which the resulting
polynomial Sn(x) + iTn(x) has the form

(x + a + bi)2n

for some real a and b and all n ≥ 2. The unique values are c = 2 and (a, b) = (0, 1). In this
case, the first three polynomials Sn, Tn, Vn are as shown here:

n Sn Tn Vn

1 x 1
2 x2 − 1 2x x2 − 2x − 1
3 x4 − 6x2 + 1 4x3 − 4x x4 − 4x3 − 6x2 + 4x + 1

Arrays of coefficients for Sn and Tn are included as subarrays [4] of arrays closely associated
with Pascal’s triangle. Specifically, for Sn see A096754, A135670, and A141665; for Tn,
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see A095704 and A135685. In the same way, coefficients for Vn can be read from A108086,
modified in accord with the identity Vn(x) = Un(−x).

The fact that the zeros of Tn interlace those of Sn is an example of Theorem 1. However,
in this case, one can also appeal to the Hermite-Biehler theorem: if S and T are nonconstant

polynomials with real coefficients, then the polynomials S and T have interlacing zeros if and

only if all the zeros of the polynomial S + iT lie either in the upper half-plane or the lower

half-plane. For a discussion of this theorem and related matters, see Rahman and Schmeisser
[3, pp. 196–209].

6 The case c = 2i

Suppose that Sn is a square for some n, and write Sn(x) = H2
n(x). Then

Sn(
x

c
− 1

cx
) = H2

n(
x

c
− 1

cx
).

By (9),

Sn+1(x) = (cx)2n−1

H2
n(

x

c
− 1

cx
), (20)

which implies that Sn+1 is a square. It is easy to show that the only nonzero choices of c for
which S3 is a square are ±2i. Equation (20) gives the recurrence

Hn+1(x) = (2ix)2n−2

Hn(
i

2x
− ix

2
),

which implies
∣

∣Hn+1(e
iθ)

∣

∣ = 2deg Hn |Hn(sin θ)|
for all real θ. Another recurrence, which follows readily from (12), is

Hn = 2H4
n−2 − H2

n−1.

The first four of these polynomials are as follows:

H3(x) = x2 + 1
H4(x) = x4 − 6x2 + 1
H5(x) = x8 + 20x6 − 26x4 + 20x2 + 1
H6(x) = x16 − 88x14 + 92x12 − 872x10 + 1990x8 − 872x6 + 92x4 − 88x2 + 1

Coefficients for the polynomials H7 and H8 are given at A154308.

7 The recurrence Pn+1/Qn+1 = (1/c)(Pn/Qn + Qn/Pn)

We return now to the recurrence (1), with initial value x0 = P1 = P1(x) = x. Taking
Q1 = Q1(x) = 1 leads to sequences Pn and Qn defined by

Pn = P 2
n−1 + cQ2

n−1 and Qn = cPn−1Qn−1.
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The properties of these polynomials are analogous to those of the polynomials Sn and Tn

already discussed. Indeed,
Pn(x) = Sn(ix) (21)

for n ≥ 2, so that the zeros of Pn are ir, where r ranges through Zn, and, if c > 0, we have
interlaced lists of zeros on the imaginary axis. The recurrence (12) holds without change;
that is, for n ≥ 3, we have

Pn = P 2
n−1 + Pn−1P

2
n−2 − P 4

n−2.

Putting x = ieiθ in (9) and applying (21) lead to

∣

∣Pn+1(e
iθ)

∣

∣ = |c|deg Pn

∣

∣

∣

∣

Pn(
2

c
cos θ)

∣

∣

∣

∣

for all real θ.
For c = 1, coefficient arrays are given for the polynomials Pn and Qn are indexed as

A147987 and A147988, respectively.

8 Concluding remarks

The author is grateful to a referee for pointing out various properties associated with polyno-
mials discussed in this paper — properties which may be worth further study. For example,
the interlacing of zeros in Theorem 1 implies that for fixed n, the polynomials Tn and Sn are
consecutive members of some sequence of orthogonal polynomials. A consequence of Theo-
rem 2 is that there exists Euclidean straightedge-and-compass constructions for the zeros of
Tn and Sn. The manner in which Sn+1 arises from the argument of Sn in (9) is similar to the
Joukowski transform. Indeed (9) can be written as

e−i2n−1θSn+1(e
iθ) = c2n−1

Sn(
2i

c
sin θ),

so that, apart from a constant, the modulus of Sn+1 on the unit circle is the modulus of Sn

on a line segment. This has consequences for estimates, such as the derivative estimates of
the Bernstein-Markov type.
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