Journal of Integer Sequences, Vol. 12 (2009), Article 09.1.6

# On the Expansion of Fibonacci and Lucas Polynomials 

Helmut Prodinger<br>Department of Mathematics<br>University of Stellenbosch<br>7602 Stellenbosch<br>South Africa<br>hproding@sun.ac.za


#### Abstract

Recently, Belbachir and Bencherif have expanded Fibonacci and Lucas polynomials using bases of Fibonacci- and Lucas-like polynomials. Here, we provide simplified proofs for the expansion formulæthat in essence a computer can do. Furthermore, for 2 of the 5 instances, we find $q$-analogues.


## 1 Introduction

In [2], Belbachir and Bencherif studied the Fibonacci and Lucas polynomials:

$$
\begin{aligned}
U_{0} & =0, \\
V_{0} & =2, \\
& V_{1}
\end{aligned}=x, \quad V_{n}=x U_{n-1}+y U_{n-2}, ~ x V_{n-1}+y V_{n-2} .
$$

We prefer the modified polynomials

$$
\begin{aligned}
u_{0} & =0, \\
v_{1} & =1, u_{n}=u_{n-1}+z u_{n-2}, \\
v_{0} & v_{1}=1, v_{n}=v_{n-1}+z v_{n-2},
\end{aligned}
$$

so that

$$
U_{n}(x, y)=x^{n-1} u_{n}\left(\frac{y}{x^{2}}\right), \quad V_{n}(x, y)=x^{n} v_{n}\left(\frac{y}{x^{2}}\right) .
$$

Then, with

$$
\lambda_{1,2}=\frac{1 \pm \sqrt{1+4 z}}{2}
$$

$$
u_{n}=\frac{1}{\sqrt{1+4 z}}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right), \quad v_{n}=\lambda_{1}^{n}+\lambda_{2}^{n} .
$$

Substituting $z=t /(1-t)^{2}$, these formulæ become particularly nice:

$$
u_{n}=\frac{1-(-t)^{n}}{(1+t)(1-t)^{n-1}}, \quad v_{n}=\frac{1+(-t)^{n}}{(1-t)^{n}}
$$

The main result of [2] are the following 5 formulæ:

$$
\begin{gather*}
2 u_{2 n+1}=\sum_{k=0}^{n} a_{n, k} v_{2 n-k}, \quad a_{n, k}=2 \sum_{j=0}^{n}(-1)^{j+k}\binom{j}{k}-(-1)^{n+k}\binom{n}{k} .  \tag{1}\\
u_{2 n}=\sum_{k=1}^{n} b_{n, k} u_{2 n-k}, \quad b_{n, k}=(-1)^{k+1}\binom{n}{k} .  \tag{2}\\
v_{2 n-1}=\sum_{k=1}^{n} c_{n, k} u_{2 n-k}, \quad c_{n, k}=2(-1)^{k+1}\binom{n}{k}-[k=1]  \tag{3}\\
2 v_{2 n-1}=\sum_{k=1}^{n} d_{n, k} v_{2 n-1-k}, \quad d_{n, k}=(-1)^{k+1} \frac{2 n-k}{n}\binom{n}{k} .  \tag{4}\\
2 u_{2 n}=\sum_{k=1}^{n} e_{n, k} v_{2 n-1-k},  \tag{5}\\
e_{n, k}=(-1)^{k+1} \frac{2 n-k}{2 n}\binom{n}{k}+\sum_{j=0}^{n-1}(-1)^{j+k-1}\binom{j}{k-1}-\frac{1}{2}(-1)^{n+k}\binom{n-1}{k-1} .
\end{gather*}
$$

But the proofs of all these, using the simple forms for $u_{n}$ and $v_{n}$, can be done by a computer! To give the reader an idea, let us do the last one, which seems to be the most complicated:

$$
\begin{aligned}
\sum_{k=1}^{n} e_{n, k} v_{2 n-1-k} & =\sum_{k=1}^{n}(-1)^{k+1} \frac{2 n-k}{2 n}\binom{n}{k} v_{2 n-1-k} \\
& +\sum_{j=0}^{n-1} \sum_{k=1}^{j+1}(-1)^{j+k-1}\binom{j}{k-1} v_{2 n-1-k}-\sum_{k=1}^{n} \frac{1}{2}(-1)^{n+k}\binom{n-1}{k-1} v_{2 n-1-k} \\
& =\frac{1-t^{2 n-1}}{(1-t)^{2 n-1}}+\frac{1+t^{2 n-1}}{(1-t)^{2 n-2}(1+t)}-\frac{(-1)^{n} t^{n-1}}{(1-t)^{2 n-2}}+\frac{(-1)^{n} t^{n-1}}{(1-t)^{2 n-2}} \\
& =\frac{2\left(1-t^{2 n}\right)}{(1-t)^{2 n-1}(1+t)}=2 u_{2 n}
\end{aligned}
$$

The other proofs are similar/easier:

$$
\begin{aligned}
\sum_{k=0}^{n} a_{n, k} v_{2 n-k} & =\frac{2\left[(-t)^{n}(1+t)+1+t^{2 n+1}\right]}{(1-t)^{2 n}(1+t)}-\frac{2(-t)^{n}}{(1-t)^{2 n}} \\
& =\frac{2\left[1+t^{2 n+1}\right]}{(1-t)^{2 n}(1+t)}=2 u_{2 n+1}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{k=1}^{n} c_{n, k} u_{2 n-k} & =\frac{2\left(1-t^{2 n}\right)}{(1-t)^{2 n-1}(1+t)}-\frac{1+t^{2 n-1}}{(1+t)(1-t)^{2 n-2}} \\
& =\frac{1-t^{2 n-1}}{(1-t)^{2 n-1}}=v_{2 n-1}
\end{aligned}
$$

Remark 1. The polynomials $u_{n}(x)$ and $v_{n}(x)$ are essentially Chebyshev polynomials. The authors of [2] have also published a companion paper [3]; according to a remark in [2], the results in [2] are more general than the ones in [3].

## $2 \quad q$-analogues

Now we are interested in $q$-analogues. For this, we replace $u_{n}$ by

$$
\operatorname{Fib}_{n}=\sum_{0 \leq k \leq \frac{n-1}{2}} q^{\binom{k+1}{2}}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]_{q} z^{k}
$$

and $v_{n}$ by

$$
\operatorname{Luc}_{n}=\sum_{0 \leq k \leq \frac{n}{2}} q^{\binom{k}{2}}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]_{q} \frac{[n]_{q}}{[n-k]_{q}} z^{k}
$$

as suggested by Cigler [4]. We use standard $q$-notation here:

$$
[n]_{q}:=1+q+\cdots+q^{n-1}, \quad[n]_{q}!:=[1]_{q}[2]_{q} \ldots[n]_{q}, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!},
$$

compare [1]; the notions of the Introduction are the special instance $q=1$.

## Theorem 2.

$$
\operatorname{Luc}_{2 n-1}=\sum_{k=1}^{n} d_{n, k} \operatorname{Luc}_{2 n-1-k},
$$

with

$$
d_{n, k}=(-1)^{k-1} \frac{q^{\binom{k}{2}}}{1+q^{n-1}}\left(\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+q^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\right)
$$

Proof. We must prove that

$$
\begin{aligned}
& \sum_{0 \leq k \leq n-1} q^{\binom{k}{2}}\left[\begin{array}{c}
2 n-1-k \\
k
\end{array}\right]_{q} \frac{[2 n-1]_{q}}{[2 n-1-k]_{q}} z^{k} \\
&= \sum_{j=1}^{n}(-1)^{j-1} \frac{q^{\left(\frac{j}{2}\right)}}{1+q^{n-1}}\left(\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]_{q}+q^{n-1}\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q}\right) \\
& \times \sum_{0 \leq k \leq \frac{2 n-j-1}{2}} q^{\binom{k}{2}}\left[\begin{array}{c}
2 n-j-1-k \\
k
\end{array}\right]_{q} \frac{[2 n-j-1]_{q}}{[2 n-j-1-k]_{q}} z^{k} .
\end{aligned}
$$

Comparing coefficients, we have to prove that

$$
\begin{aligned}
& q^{\binom{k}{2}}\left[\begin{array}{c}
2 n-1-k \\
k
\end{array}\right]_{q} \frac{[2 n-1]_{q}}{[2 n-1-k]_{q}} \\
& =\sum_{j=1}^{n}(-1)^{j-1} \frac{q^{\binom{j}{2}}}{1+q^{n-1}}\left(\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]_{q}+q^{n-1}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q}\right) q^{\binom{k}{2}}\left[\begin{array}{c}
2 n-j-1-k \\
k
\end{array}\right]_{q} \frac{[2 n-j-1]_{q}}{[2 n-j-1-k]_{q}} .
\end{aligned}
$$

Simplifying, we must prove that

$$
\sum_{j=0}^{n}(-1)^{j} q^{\binom{j}{2}}\left(\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]_{q}+q^{n-1}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q}\right)\left[\begin{array}{c}
2 n-j-2-k \\
k-1
\end{array}\right]_{q}[2 n-j-1]_{q}=0
$$

Another form of this is

$$
\sum_{j=0}^{n}(-1)^{j} q^{\binom{3}{2}}\left(1-q^{2 n-1}-q^{n-j}+q^{n-1}\right)\left(1-q^{2 n-j-1}\right)\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
2 n-j-2-k \\
k-1
\end{array}\right]_{q}=0
$$

Notice that

$$
\sum_{j=0}^{n}(-1)^{j} q^{\binom{j}{2}}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q} q^{-a j}=0
$$

for $0 \leq a \leq n-1$. This follows from Rothe's formula [1, p. 490]

$$
\sum_{j=0}^{n}(-1)^{j} q^{\binom{j}{2}}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q} x^{j}=(1-x)(1-x q) \ldots\left(1-q^{n-1}\right)
$$

We write the desired identity as

$$
\sum_{j=0}^{n}(-1)^{j} q^{\binom{j}{2}}\left(A+B q^{-j}+C q^{-2 j}\right)\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q}\left(D_{0} q^{-0}+\cdots+D_{k-1} q^{-j(k-1)}\right)=0
$$

Therefore, for $k \leq n-2$, the identity holds. For $k=n-1$,

$$
\sum_{j=0}^{1}(-1)^{j} q^{\left(\frac{j}{2}\right)}\left(1-q^{2 n-1}-q^{n-j}+q^{n-1}\right)\left(1-q^{2 n-j-1}\right)\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
n-j-1 \\
n-2
\end{array}\right]_{q}=0
$$

can be shown by inspection, and for $k=n$, the identity holds, since the sum is empty.
Theorem 3.

$$
\operatorname{Fib}_{2 n}=\sum_{k=1}^{n} b_{n, k} \operatorname{Fib}_{2 n-k}
$$

with

$$
b_{n, k}=(-1)^{k-1} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

Proof. We must prove that

$$
\begin{aligned}
\sum_{0 \leq k \leq n-1} q^{\binom{k+1}{2}}\left[\begin{array}{c}
2 n-k-1 \\
k
\end{array}\right]_{q} z^{k} & \\
& =\sum_{j=1}^{n}(-1)^{j-1} q^{\binom{j}{2}}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q} \sum_{0 \leq k \leq \frac{2 n-j-1}{2}} q^{\binom{k+1}{2}}\left[\begin{array}{c}
2 n-j-k-1 \\
k
\end{array}\right]_{q} z^{k} .
\end{aligned}
$$

Comparing coefficients, this means

$$
\sum_{j=0}^{n}(-1)^{j} q^{\left(\frac{j}{2}\right)}\left[\begin{array}{l}
n \\
j
\end{array}\right]_{q}\left[\begin{array}{c}
2 n-j-k-1 \\
k
\end{array}\right]_{q}=0
$$

which follows by a similar but simpler argument than before.

## 3 Conclusion

We found $2 q$-analogues; for the remaining 3 instances we were not successful and leave this as a challenge for anybody who is interested.

## References

[1] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 2000.
[2] H. Belbachir and F. Bencherif, On some properties of bivariate Fibonacci and Lucas polynomials, J. Integer Sequences 11 (2008), Article 08.2.6.
[3] H. Belbachir and F. Bencherif, On some properties of Chebyshev polynomials, Discuss. Math. Gen. Algebra Appl. 28 (2008), 121-133.
[4] J. Cigler, A new class of $q$-Fibonacci polynomials, Electronic J. Combinatorics 10 (2003), Article R19. Text available at http://www.combinatorics.org/Volume_10/Abstracts/v10i1r19.html.

2000 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.
Keywords: Fibonacci polynomials, Lucas polynomials, generating functions, $q$-analogues.
(Concerned with sequences A007318, A029653 and A112468.)

Received October 6 2008; revised version received December 15 2008. Published in Journal of Integer Sequences, December 172008.

Return to Journal of Integer Sequences home page.

