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Abstract

We study the solutions of the equation ax ≡ x (mod bn). For some values of b, the
solutions have a particularly rich structure. For example, for b = 10 we find that for
every a that is not a multiple of 10 and for every n ≥ 2, the equation has just one
solution xn(a). Moreover, the solutions for different values of n arise from a sequence
x(a) = {xi}i≥0, in the form xn(a) =

∑n−1
i=0 xi10i. For instance, for a = 8 we obtain

8 56 ≡ 56
(

mod 102
)

, 8 856 ≡ 856
(

mod 103
)

, 8 5856 ≡ 5856
(

mod 104
)

, . . .

In this paper we prove these results and provide sufficient conditions for the base b to
have analogous properties.

1 Introduction

The fact that 7 343 ends in 343 might appear to be a curiosity. However, when this can be
uniquely extended to

7 630680637333853643331265511565172343 = · · · 630680637333853643331265511565172343,

and more, it begins to be interesting. Besides, instead of 7, any other positive integer a (as
long as it is not a multiple of 10) will do. For instance, for a = 12, we find

12 52396359135848584931714421454012416 = · · · 52396359135848584931714421454012416.
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More precisely, we prove below that for any positive integer a, not a multiple of 10, there
exists just one infinite sequence of digits,

x(a) = · · · xi · · ·x2 x1 x0

such that for every n ≥ 2 the number

xn(a) =
n−1
∑

i=0

xi10i = xn−1 · · ·x2x1x0

is the only such number that satisfies

axn(a) ≡ xn(a) (mod 10n) . (1)

Moreover, this result holds not just for base b = 10; an analogous result holds when b is
squarefree and such that for every prime p|b and every prime q|p − 1 we have q|b .

For any positive integer a, not a multiple of b, there exists an infinite sequence of b-digits,

x(a, b) = (· · · xi · · ·x2 x1 x0)b

such that for every n ≥ n(b), which is characterized below, the number

xn(a, b) =
n−1
∑

i=0

xib
i = (xn−1 · · · x2 x1 x0)b

satisfies
axn(a,b) ≡ xn(a, b) (mod bn) . (2)

For instance, for b = 6 and a = 4 we have

x(4, 6) = · · · 32112014504555423255404350553541104531046,

so that when, say, n = 11, we get

x11(4, 6) = 541104531046 = 344639488 and 4344639488 ≡ 344639488
(

mod 611
)

.

When the base b is not squarefree, instead of multiples of b, we must remove any multiple
of s(b), the squarefree part of b, for obvious reasons.

Finally, the conditions described above are suffcient to guarantee the existence of at least
one such sequence x(a, b), but they are not necessary. It might be the case that for some
other base b and some value of a there exist a sequence x(a, b) as above. As an example we
have for b = 9 and a = 4 the sequence x(4, 9) = · · · 44444449.
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2 Main results

We only use elementary number theory and refer to Hardy and Wright [1] or Riesel [2]
for any concept not defined here. We will write the prime factorization of an integer b as
b =

∏

p pvp(b), and denote by e(b) = maxp|b{vp(b)}, the highest power of a prime dividing b.
We will also denote s(b) =

∏

p|b p the squarefree part of b.

Theorem 1. For every pair of integers a, b there exists an integer x ≥ e(b) + 1 such that

ax ≡ x (mod b).

For the proof we will need the following observation.

Lemma 2. Let a, b integers and x ≥ e(b) a solution to the equation

ax ≡ x (mod ϕ(b)).

Then

aax

≡ ax (mod b).

Proof: Let b = b1b2 where gcd(b1, a) = 1 and if p|b2 then p|a. Then ϕ(b1)|ϕ(b) and, hence,
ax ≡ x (mod ϕ(b1)). It is now a simple consequence of Euler´s theorem to get

aax

≡ ax (mod b1) .

On the other hand, we trivially have

aax

≡ ax ≡ 0 (mod b2) .

The result now follows from the Chinese Remainder Theorem.

Proof of Theorem 1: We proceed by induction on b, noting that the result is trivial for
b = 1, 2. Let us suppose we have already proven the theorem for every integer less than b

and we want to prove the result for b. We will also suppose a > 1. Now, noting that ϕ(b) < b

we can apply induction to obtain a solution x ≥ e(ϕ(b)) + 1 to the equation

ax ≡ x (mod ϕ(b)) .

In this case, since e(ϕ(b)) ≥ e(b) − 1 by definition, we can apply Lemma 2 to get

aax

≡ ax (mod b) .

Now, noting that ax = (1 + (a− 1))x =
∑x

j=0

(

x

j

)

(a− 1)j ≥ 1 + x for any integers a > 1 and

x ≥ 0, we get ax ≥ x + 1 ≥ e(b) + 1, as desired.

Definition: We say that an integer b is a valid base if for every prime p|b and every prime
q|p− 1 we have q|b. We will let n(b) be the minimum integer such that (p− 1)|bn(b) for every
p|b.
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Remarks: The existence of such an integer n(b) is clear from the definition of valid base.
It is straightforward to see that a valid base b must be even. It is also easy to see that b =
2, 4, 6, 8, 10, 12, 16, 18, 20, 24, and 30 are the first valid bases while b = 2, 6, 10, 30, 34, 42, 78, 102
and 110 are the first valid squarefree bases. Observe also that when b is squarefree, n(b) =
maxp|b{maxq|b{vq(p − 1)}}. Thus, we have n(10) = 2 and n(34) = 4, while n(100) = 1.

Apart from the bases given in this Remark, one can ask whether there exist other valid
bases and how to find them. The following list provides different ways of constructing new
valid bases. In particular we note the existence of infinitely many valid bases.

• The product of valid bases is a valid base.

• If b is a valid base and p is a prime such that p − 1|br, for some r, then pb is also a
valid base.

• b = m! is a valid base for every m.

• For every integer r, b =
∏

p≤r p is a valid base.

The first two statements are direct consequences of the definition. For the third and fourth
we just have to note that if p|b and q|p − 1, then q ≤ m in the third statement, while q ≤ r

in the last one.

The main result, where we denote the number xn(a, b) by xn for short, follows.

Theorem 3. Let b be a valid base, and s(b) its squarefree part. Then, for every integer a

not a multiple of s(b) there exist a unique sequence {cn}n≥nb
of digits, 0 ≤ cn < b, such that

the integers xn+1 = xn + cnb
n verify

axn ≡ xn (mod bn),

for every n > n(b).

Proof: To clarify the argument, we first present the case when b is a squarefree integer.
In all the cases below, we will proceed by induction on n.

Case I: b is squarefree and gcd(a, b) = 1.
Suppose that for some n ≥ n(b)

axn ≡ xn (mod bn) .

(Observe that we know this is true for n = n(b) by Theorem 1 with bn(b) instead of b). Then,

axn ≡ xn + cnb
n
(

mod bn+1
)

,

for some 0 ≤ cn < b. Now, it is immediate to observe that for a valid base it is always
true that ϕ(pn+1)|bn for every integer n ≥ n(b) and every prime p|b. Hence, since aϕ(pn+1) ≡
1 (mod pn+1), we have, for every integer m

ambn

≡ 1
(

mod bn+1
)

,
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by the Chinese Remainder Theorem. In particular

axn+cnbn

≡ axn
(

mod bn+1
)

≡ xn + cnb
n
(

mod bn+1
)

,

that is
axn+1 ≡ xn+1

(

mod bn+1
)

,

and the selection of cn is unique.

Case II: b is squarefree and gcd(a, b) > 1.
Let b = b1b2 be such that gcd(b1, a) = 1, and b2|a. Again the proof proceeds by induction,

and we suppose
axn ≡ xn (mod bn) ≡ xn + cnb

n
(

mod bn+1
)

, (3)

for n ≥ n(b). In this case, and in the same way as before, we have for every integer m

ambn

≡ 1
(

mod bn+1
1

)

,

since gcd(a, b1) = 1. In particular

axn+cnbn

≡ axn
(

mod bn+1
1

)

≡ xn + cnb
n
(

mod bn+1
1

)

.

On the other hand, it is easy to see that bn+1
2 | gcd(axn+cnbn

, xn + cnb
n). Indeed, if xn ≥ n + 1

then trivially bn+1
2 |axn+cnbn

and bn+1
2 | gcd(axn , bn+1). Hence, bn+1

2 divides xn + cnb
n by (3).

Furthermore, xn > 0 and so, again by (3), we can see that bn
2 |xn and, in particular, xn ≥ n+1.

Hence,
axn+cnbn

≡ xn + cnb
n
(

mod bn+1
2

)

,

and the result follows from the Chinese Remainder Theorem.

Case III: b is not squarefree and gcd(a, b) = 1.
Let b =

∏

pvp(b) = Pα1

1 · · ·Pαr
r where α1 < α2 < · · · < αr and Pi are squarefree for

i = 1, . . . , r. We will also denote Bj =
∏j−1

i=1 Pαi

i , and B1 = 1. Suppose again

axn ≡ xn (mod bn)

for some n ≥ n(b). Then
axn ≡ xn + c1,1,nbn (mod P1b

n) ,

and 0 ≤ c1,1,n < P1. Again, as before, ϕ(pnvp(b)+1)|bn for any n ≥ n(b) and p|P1, so that,
arguing as before, we get that for any integer m

ambn

≡ 1 (mod P1b
n) .

In particular,

axn+c1,1,nbn

≡ axn (mod P1b
n) ≡ xn + c1,1,nbn (mod P1b

n) .

Repeating this process, and noting that ϕ(pnvp(b)+i)|P i−1
1 bn, we get

axn,1 ≡ xn,1 (mod Pα1

1 bn) , (4)
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for a unique

xn,1 = xn +

(

α1−1
∑

i=0

ci,1,nP i
1

)

bn,

where 0 ≤ ci,1,n < P1. Now we just have to note that for any 1 ≤ l ≤ r and any jl < αl we
have ϕ(pnvp(b)+jl)|P jl−1

l Blb
n. By iterating the previous process, we can then build a unique

xn+1 = xn +

(

r
∑

j=1

αj−1
∑

i=0

ci,j,nP i
jBj

)

bn,

where ci,j,n ≤ Pj − 1, such that

axn+1 ≡ xn+1

(

mod bn+1
)

.

Hence, since

r
∑

j=1

αj−1
∑

i=0

ci,j,nP
i
jBj ≤

r
∑

j=1

(Pj − 1)

αj−1
∑

i=0

P i
jBj =

r
∑

j=1

(P
αj

j − 1)Bj =
r
∑

j=1

(Bj+1 − Bj) = b − 1,

the result follows.

Case IV: b is not squarefree and gcd(a, b) > 1.
The proof is now the same as in Case II and we omit it.

Remark: It is very important to notice that, whenever n ≥ n(b), even if the solution
guaranteed by Theorem 1 is x ≥ bn, we can find another one y < bn. Hence, for any integer
n ≥ n(b) the integer xn indeed gives the n first digits in base b of the integer xm for every
m ≥ n. To see this, observe that if

ax ≡ x (mod bn) ,

and x > bn, then x =
∑n−1

i=0 cib
i +
∑k

i=n cib
i = y + bnY for some y 6= 0, since otherwise a is a

multiple of s(b). But then,
y ≡ 0 (mod bn

2 ) ,

since ax ≡ 0 (mod bn
2 ) and ax ≡ y (mod bn

2 ). But then, y ≥ bn
2 ≥ e(b2)n, and we also have

ay ≡ 0 ≡ y (mod bn
2 ) .

Finally, since n ≥ n(b), abn

≡ 1 (mod bn
1 ), and so

ay ≡ y (mod bn
1 ) .

The result is now a consequence of the Chinese Remainder Theorem.
Besides, it is easily verified that when b = 10 there is just one solution y < 10n(10) = 100

for every a (not a multiple of 10), since it suffices to check values of a mod 100. Thus there
is a unique sequence x(a) for every a. Although this seems to be the case for all valid bases
b, it does not follow from Theorem 1.

6



Corollary 4. If b is a valid base, for every integer a, not a multiple of s(b), there exist a

sequence {xn}n≥0 of digits 0 ≤ xn < b such that the integers

xn(a, b) =
n−1
∑

i=0

xib
i = (xn−1 · · · x2 x1 x0)b

verify

axn(a,b) ≡ xn(a, b) (mod bn), (2)

for every n ≥ n(b). When b is squarefree, s(b) = b and this holds for every integer a, not a

multiple of b. For b = 10 there exists just one such sequence x(a).

3 Other bases

As we mentioned in the introduction, Corollary 4 uses sufficient conditions for the base b to
ensure the existence of a sequence x(a, b) for any nontrivial integer a. When b is not a valid
base, however, a sequence x(a, b) can still appear for some integers a. Indeed, as we can see
in the proof of Theorem 3, the only condition needed is that acnbn

≡ 1 (mod bn+1) holds.
This is true for any valid base, but we can build many other examples for invalid bases. For
example, consider an integer b and let m|b− 1 such that mb ≡ −1 (mod b), and let a = mm.
Then it is easy to see by induction that mbr

≡ −1 (mod br) for any r, and so

ma
b−1

m

Pn−1

i=0
bi

= mbn

≡ −1 (mod bn) .

On the other hand

m

(

b − 1

m

) n−1
∑

i=0

bi = bn − 1 ≡ −1 (mod bn) ,

and so x(a, b) =
(

b−1
m

)

b
is the desired sequence which provides a solution to the equation

axn ≡ xn (mod bn) for every n. The example at the end of the introduction, x(4, 9) = 4̄9, is
a particular case of this example with m = 2, b = 9. Also this framework allows us to prove
the following simple example

Corollary 5. Let b > 1 an odd integer and a = (b − 1)b−1. Then

axn ≡ xn (mod bn),

for any n and xn =
∑n−1

i=0 bi. In other words, x(a, b) = 1̄b.
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