Journal of Integer Sequences, Vol. 13 (2010), Article 10.1.3

Sets with Even Partition Functions and 2-adic Integers, II

N. Baccar ${ }^{1}$
Université de Sousse
ISITCOM Hammam Sousse
Dép. de Math Inf.
5 Bis Rue 1 Juin 1955
4011 Hammam Sousse
Tunisie
naceurbaccar@yahoo.fr
A. Zekraoui
Université de Monastir
F. S. M.
Dép. de Math.
Avenue de l'environnement
5000 Monastir
Tunisie
ahlemzekraoui@yahoo.fr

Abstract

For $P \in \mathbb{F}_{2}[z]$ with $P(0)=1$ and $\operatorname{deg}(P) \geq 1$, let $\mathcal{A}=\mathcal{A}(P)$ be the unique subset of \mathbb{N} such that $\sum_{n \geq 0} p(\mathcal{A}, n) z^{n} \equiv P(z)(\bmod 2)$, where $p(\mathcal{A}, n)$ is the number of partitions of n with parts in \mathcal{A}. Let p be an odd prime number, and let P be irreducible of order p; i.e., p is the smallest positive integer such that P divides $1+z^{p}$ in $\mathbb{F}_{2}[z]$. N. Baccar proved that the elements of $\mathcal{A}(P)$ of the form $2^{k} m$, where $k \geq 0$ and m is odd, are given by the 2 -adic expansion of a zero of some polynomial R_{m} with integer coefficients. Let s_{p} be the order of 2 modulo p, i.e., the smallest positive integer such that $2^{s_{p}} \equiv 1$ $(\bmod p)$. Improving on the method with which R_{m} was obtained explicitly only when

[^0]$s_{p}=\frac{p-1}{2}$, here we make explicit R_{m} when $s_{p}=\frac{p-1}{3}$. For that, we have used the number of points of the elliptic curve $x^{3}+a y^{3}=1$ modulo p.

1 Introduction.

Let \mathbb{N} denote the set of positive integers, and let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ be a non-empty subset of \mathbb{N}. For $n \in \mathbb{N}$, let $p(\mathcal{A}, n)$ be the number of partitions of n with parts in \mathcal{A}, i.e., the number of solutions of the diophantine equation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots=n \tag{1}
\end{equation*}
$$

in non-negative integers x_{1}, x_{2}, \ldots. By convention, $p(\mathcal{A}, 0)=1$ and $p(\mathcal{A}, n)=0$ for all $n<0$. The generating series of $p(\mathcal{A}, n)$ is

$$
\begin{equation*}
F_{\mathcal{A}}(z):=\sum_{n=0}^{\infty} p(\mathcal{A}, n) z^{n}=\prod_{a \in \mathcal{A}} \frac{1}{1-z^{a}} . \tag{2}
\end{equation*}
$$

Let \mathbb{F}_{2} be the field with two elements and $P(z)=1+\epsilon_{1} z+\cdots+\epsilon_{N} z^{N} \in \mathbb{F}_{2}[z], N \geq 1$. J.-L. Nicolas, I. Z. Ruzsa and A. Sárközy [10] proved that there exists a unique set $\mathcal{A}=\mathcal{A}(P)$ satisfying

$$
\begin{equation*}
F_{\mathcal{A}}(z) \equiv P(z) \quad(\bmod 2) \tag{3}
\end{equation*}
$$

which means that

$$
\begin{equation*}
p(\mathcal{A}, n) \equiv \epsilon_{n} \quad(\bmod 2) \text { for } 1 \leq n \leq N \tag{4}
\end{equation*}
$$

and $p(\mathcal{A}, n)$ is even for all $n>N$. Indeed, for $n=1$,

$$
p(\mathcal{A}, 1)= \begin{cases}1, & \text { if } 1 \in \mathcal{A} \\ 0, & \text { if } 1 \notin \mathcal{A} .\end{cases}
$$

and so, by (4),

$$
1 \in \mathcal{A} \Leftrightarrow \epsilon_{1}=1 .
$$

Further, assume that we Know $\mathcal{A}_{n-1}=\mathcal{A} \cap\{1, \ldots, n-1\}$; since there exists only one partition of n containing the part n, then

$$
p(\mathcal{A}, n)=p\left(\mathcal{A}_{n-1}, n\right)+\chi(\mathcal{A}, n)
$$

where $\chi(\mathcal{A},$.$) is the characteristic function of the set \mathcal{A}$, i.e.,

$$
\chi(\mathcal{A}, n)= \begin{cases}1, & \text { if } n \in \mathcal{A} \\ 0, & \text { if } n \notin \mathcal{A}\end{cases}
$$

which with (3) allow one to decide whether n belongs to \mathcal{A}.
Let p be an odd prime number, and let s_{p} be the order of 2 modulo p, i.e., s_{p} is the smallest positive integer such that p divides $2^{s_{p}}-1$. Let $P \in \mathbb{F}_{2}[z]$ be irreducible of order p
$(\operatorname{ord}(P)=p)$; in other words, p is the smallest positive integer such that P divides $1+z^{p}$ in $\mathbb{F}_{2}[z]$. N. Baccar and F. Ben Saïd [2] determined the sets $\mathcal{A}(P)$ for all p such that $s_{p}=\frac{p-1}{2}$. Moreover, they proved that if $k \geq 0$ and m is an odd positive integer, then the elements of $\mathcal{A}(P)$ of the form $2^{k} m$ are given by the 2-adic expansion of some zero of a polynomial R_{m} with integer coefficients. N. Baccar [1] extended this last result to any odd prime number p. Unfortunately, the method used in that paper can make explicit R_{m} only when $s_{p}=\frac{p-1}{2}$. In this paper, we will improve on the method given by N. Baccar [1], by introducing elliptic curves, to make R_{m} explicit when $s_{p}=\frac{p-1}{3}$. In Section 2, some properties of the polynomial R_{m} are exposed. In Section 3, we introduce elliptic curves to compute some cardinalities used in Section 4 to make R_{1} explicit, and in Section 5 to get R_{m} explicitly for any odd integer $m \geq 3$.

Throughout this paper, p is an odd prime number and P is some irreducible polynomial in $\mathbb{F}_{2}[z]$ of order p. We also denote by s_{p} the order of 2 modulo p. For $a \in \mathbb{Z}$ and $b \in \mathbb{N}$, we should write $a \bmod b$ for the remainder of the euclidean division of a by b.

2 Some results on the polynomial R_{m}

Let p be an odd prime. We denote by $(\mathbb{Z} / p \mathbb{Z})^{*}$ the group of invertible elements modulo p and by $<2>$ its subgroup generated by 2 . We consider the action \star of $<2>$ on the set $\mathbb{Z} / p \mathbb{Z}$ given by $a \star n=a n$ for all $a \in<2>$ and all $n \in \mathbb{Z} / p \mathbb{Z}$. The quotient set will be denoted by $(\mathbb{Z} / p \mathbb{Z}) /<2>$ and the orbit of some $n \in \mathbb{Z} / p \mathbb{Z}$ by $O(n)$. So, we can write

$$
\mathbb{Z} / p \mathbb{Z}=O(1) \cup O(g) \cup \cdots \cup O\left(g^{r-1}\right) \cup O(p)
$$

where g is some generator of $(\mathbb{Z} / p \mathbb{Z})^{*}, r=\frac{p-1}{s_{p}}$ is the number of invertible orbits of $\mathbb{Z} / p \mathbb{Z}$,

$$
\begin{gather*}
O\left(g^{i}\right)=\left\{2^{j} g^{i} \bmod p: 0 \leq j \leq s_{p}-1\right\}, \quad 0 \leq i \leq r-1, \tag{5}\\
O(p)=\{0\} .
\end{gather*}
$$

Note that for any integer t,

$$
\begin{equation*}
O\left(g^{t}\right)=O\left(g^{t \bmod r}\right) \tag{6}
\end{equation*}
$$

The orbits $O(n)$ are defined as parts of $\mathbb{Z} / p \mathbb{Z}$; however, by extension, they are also considered as parts of \mathbb{N}.

If ϕ_{p} is the cyclotomic polynomial over \mathbb{F}_{2} of index p, then

$$
1+z^{p}=(1+z) \phi_{p}(z) .
$$

Moreover, one has

$$
\phi_{p}(z)=P_{0}(z) P_{1}(z) \cdots P_{r-1}(z)
$$

where P_{0}, P_{1}, \ldots and P_{r-1} are the only distinct irreducible polynomials in $\mathbb{F}_{2}[z]$ of the same degree s_{p} and all of which are of order p. For all $l, 0 \leq l \leq r-1$, let $\mathcal{A}_{l}=\mathcal{A}\left(P_{l}\right)$ be the set
obtained from (3). If m is an odd positive integer, we define the 2 -adic integer $y_{l}(m)$ by

$$
\begin{equation*}
y_{l}(m)=\chi\left(\mathcal{A}_{l}, m\right)+2 \chi\left(\mathcal{A}_{l}, 2 m\right)+4 \chi\left(\mathcal{A}_{l}, 4 m\right)+\cdots=\sum_{k=0}^{\infty} \chi\left(\mathcal{A}_{l}, 2^{k} m\right) 2^{k} \tag{7}
\end{equation*}
$$

By computing $y_{l}(m) \bmod 2^{k+1}$, one can deduce $\chi\left(\mathcal{A}_{l}, 2^{j} m\right)$ for all $j, 0 \leq j \leq k$, and obtain all the elements of \mathcal{A}_{l} of the form $2^{j} m$. In [3], some necessary conditions on integers to be in \mathcal{A}_{l} were given. For instance:

$$
\begin{equation*}
p^{2} n \notin \mathcal{A}_{l}, \forall n \in \mathbb{N}, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } q \text { is an odd prime in } O(1) \text {, then } q n \notin \mathcal{A}_{l}, \forall n \in \mathbb{N} \text {. } \tag{9}
\end{equation*}
$$

Let \mathbb{K} be some field, and let $u(z)=\sum_{j=0}^{n} u_{j} z^{j}$ and $v(z)=\sum_{j=0}^{t} v_{j} z^{j}$ be polynomials in $\mathbb{K}[z]$. We denote the resultant of u and v with respect to $z \operatorname{by~}^{\operatorname{res}_{z}(u(z), v(z)) \text {, and recall the }}$ following well known result

Lemma 1. (i) The resultant $\operatorname{res}_{z}(u(z), v(z))$ is a homogeneous multivariate polynomial with integer coefficients, of degree $n+t$ in the $n+t+2$ variables u_{i}, v_{j}.
(ii) If $u(z)$ is written as $u(z)=u_{n}\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{n}\right)$ in the splitting field of u over \mathbb{K} then

$$
\begin{equation*}
\operatorname{res}_{z}(u(z), v(z))=u_{n}^{t} \prod_{i=1}^{n} v\left(\alpha_{i}\right) \tag{10}
\end{equation*}
$$

N. Baccar proved [1] that, for all $l, 0 \leq l \leq r-1$, the 2-adic integers $y_{l}(m)$ defined by (7) are the zeros of some polynomial R_{m} with integer coefficients and which can be written as the resultant of two polynomials. We mention here that the expressions given in that paper to R_{m}, for $m=1$ and $m \geq 3$, can be encoded in only one. So that we have

Theorem 2. ([1]) 1) Let m be an odd positive integer such that $m \notin O(p)$ (i.e., $\operatorname{gcd}(m, p)=$ $1)$, and let $\delta=\delta(m)$ be the unique integer in $\{0,1, \ldots, r-1\}$ such that $m \in O\left(g^{\delta}\right)$. We define the polynomial A_{m} by

$$
\begin{equation*}
A_{m}(z)=\sum_{h=0}^{r-1} \alpha_{h}(m) B_{h}(z) \tag{11}
\end{equation*}
$$

where for all $h, 0 \leq h \leq r-1$,

$$
\begin{equation*}
\alpha_{h}(m)=\sum_{d \mid \widetilde{m}, d \in O\left(g^{h}\right)} \mu(d), \tag{12}
\end{equation*}
$$

$\widetilde{m}=\prod_{q \text { prime } q \mid m} q$ is the radical of m with $\widetilde{1}=1, \mu$ is the Möbius function and B_{h} is the polynomial

$$
\begin{equation*}
B_{h}(z)=B_{h, m}(z)=\sum_{j=0}^{s_{p}-1} z^{\left(2^{j} g^{(\delta-h) \bmod r}\right) \bmod p} \tag{13}
\end{equation*}
$$

Then, the 2-adic integers $y_{0}(m), y_{1}(m), \ldots$ and $y_{r-1}(m)$ are the zeros of the polynomial $R_{m}(y)$ of $\mathbb{Z}[y]$ defined by the resultant

$$
\begin{equation*}
R_{m}(y)=\operatorname{res}_{z}\left(\phi_{p}(z), m y+A_{m}(z)\right) \tag{14}
\end{equation*}
$$

and we have

$$
\begin{equation*}
R_{m}(y)=m^{p-1}\left(\left(y-y_{0}(m)\right)\left(y-y_{1}(m)\right) \cdots\left(y-y_{r-1}(m)\right)\right)^{s_{p}} . \tag{15}
\end{equation*}
$$

2) The 2-adic integers $y_{0}(p), y_{1}(p), \ldots$ and $y_{r-1}(p)$ are the zeros of the polynomial $R_{1}(-p y-$ $\left.s_{p}\right)$; while if $m=p m^{\prime}, m^{\prime} \geq 3$ and $\operatorname{gcd}\left(m^{\prime}, p\right)=1$, then $y_{0}(m), y_{1}(m), \ldots$ and $y_{r-1}(m)$ are the zeros of the polynomial $R_{m^{\prime}}(-p y)$ defined by (14).
3) If m is divisible by p^{2} or by some prime q belonging to $O(1)$ then we extend the definition (14) to $R_{m}(y)=m^{p-1} y^{s_{p}}$; so that $y_{0}(m), y_{1}(m), \ldots$ and $y_{r-1}(m)$ remain zeros of R_{m} since, from (8) and (9), they all vanish.

Remark 3. Explicit formulas to the polynomials R_{m} defined by (14), when $s_{p}=\frac{p-1}{2}$, are given in [1]. Moreover in that paper, it is shown that if θ is a certain primitive p-th root of unity over the 2-adic field \mathbb{Q}_{2}, then for all $l, 0 \leq l \leq r-1$,

$$
\begin{equation*}
y_{l}(1)=-T_{l}, \tag{16}
\end{equation*}
$$

where, for all $l \in \mathbb{Z}$,

$$
\begin{equation*}
T_{l}=T_{l \bmod 3}=\sum_{k=0}^{s_{p}-1} \theta^{2^{k} g^{l}}=\sum_{j \in O\left(g^{l}\right)} \theta^{j} . \tag{17}
\end{equation*}
$$

We also mention here that N. Baccar [1] proved that for all $m \in \mathbb{N}$,

$$
\begin{equation*}
R_{m}(y)=\prod_{l=0}^{r-1}\left(m y+A_{m}\left(\theta^{g^{l}}\right)\right)^{s_{p}} \tag{18}
\end{equation*}
$$

3 Orbits and elliptic curves.

From now on, we keep the above notation and assume that the prime number p is such that $s_{p}=\frac{p-1}{3}$ (the first ones up to 1000 are: $p=43,109,157,229,277,283,307,499,643,691,733,739$, $811,997)$. So the number of invertible orbits is $r=3$ and

$$
\begin{equation*}
\mathbb{Z} / p \mathbb{Z}=O(1) \cup O(g) \cup O\left(g^{2}\right) \cup O(p) \tag{19}
\end{equation*}
$$

where g is some generator of the cyclic group $(\mathbb{Z} / p \mathbb{Z})^{*}$. The order of 2 is $s_{p}=\frac{p-1}{3}$; if 2 were a square modulo p, its order should divide $\frac{p-1}{2}$, which is impossible. Hence 2 cannot be a square modulo p, and by Euler criterion, p has to satisfy $p \equiv \pm 3(\bmod 8)$, and, as $p \equiv 1$ $(\bmod 3), p \equiv 13,19(\bmod 24)$.

Lemma 4. For all $i, 0 \leq i \leq 2$, let $O\left(g^{i}\right)$ be the orbit of g^{i} defined by (5). Then

$$
\begin{equation*}
O\left(g^{i}\right)=\left\{-g^{i},-2 g^{i}, \ldots,-2^{s_{p}-1} g^{i}\right\}=\left\{g^{i}, g^{i+3} \ldots, g^{i+3\left(s_{p}-1\right)}\right\} . \tag{20}
\end{equation*}
$$

In particular, 2 is a cube modulo p and the sub-group generated by 2 is the sub-group of cubes (generated by g^{3}) and contains -1 .

Proof. To get the first equality of (20), it suffices to show that $-1 \in O(1)$. This follows from $-1=\left(\frac{2}{p}\right) \equiv 2^{\frac{p-1}{2}}(\bmod p)$.
To prove the second equality of (20), one just use the fact that (cf. (6)) $g^{3} \in O(1)$.
Let us define the integers $\ell_{i, j}, 0 \leq i, j \leq 2$, by

$$
\begin{equation*}
\ell_{i, j}=\left|\left\{t: 0 \leq t \leq s_{p}-1,1+g^{j+3 t} \in O\left(g^{i}\right)\right\}\right| . \tag{21}
\end{equation*}
$$

Remark 5. As shown just above, $-1 \in O(1)$, so that there exists one and only one $t \in\left\{0,1, \ldots, s_{p}-1\right\}$ such that $1+g^{3 t} \in O(p)$. Moreover, for all $t \in\left\{0,1, \ldots, s_{p}-1\right\}$ and $j \in\{1,2\}, 1+g^{j+3 t} \notin O(p)$. Hence the integers $\ell_{i, j}$ defined by (21) satisfy

$$
\begin{equation*}
\sum_{i=0}^{2} \ell_{i, j}=s_{p}-\delta_{0, j} \tag{22}
\end{equation*}
$$

where $\delta_{i, j}$ is the Kronecker symbol given by

$$
\delta_{i, j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

The integers $\ell_{i, j}$ defined above are cardinalities of some curves. Indeed, let us consider the curve over \mathbb{F}_{p},

$$
\mathcal{C}_{i, j}: \quad 1+g^{j} X^{3}=g^{i} Y^{3}
$$

and denote by $c_{i, j}$ its cardinality, $c_{i, j}=\left|\mathcal{C}_{i, j}\right|$. Since -1 is a cube modulo p, it is clear that

$$
c_{j, i}=c_{i, j} .
$$

Using (21) it follows that

$$
\ell_{i, j}=\mid\left\{\left(X^{3}, Y^{3}\right): X \neq 0, Y \neq 0 \text { and }(X, Y) \in \mathcal{C}_{i, j}\right\} \mid .
$$

Therefore,

$$
\begin{equation*}
\ell_{j, i}=\ell_{i, j} . \tag{23}
\end{equation*}
$$

Note that, $\left(X^{3}, Y^{3}\right)=\left(X^{13}, Y^{13}\right)$ if and only if $X^{\prime}=X g^{v s_{p}}$ and $Y^{\prime}=Y g^{w s_{p}}$ for some $v, w \in\{0,1,2\}$. Moreover, if $i \neq 0$ (resp. $j \neq 0$), no point on the curve $\mathcal{C}_{i, j}$ can be of the form $(0, Y)$ (resp. $(X, 0)$). But if $i=0$ (resp. $j=0$), we obtain three points on the curve $\mathcal{C}_{i, j}$ with $X=0$ (resp. $Y=0$). Consequently, we obtain the relation

$$
\begin{equation*}
c_{i, j}=9 \ell_{i, j}+3 \delta_{i, 0}+3 \delta_{0, j} . \tag{24}
\end{equation*}
$$

Now, let us consider the projective plane cubic curve

$$
\mathcal{E}_{i, j}: \quad Z^{3}+g^{j} X^{3}=g^{i} Y^{3}
$$

and $e_{i, j}=\left|\mathcal{E}_{i, j}\right|$ its cardinality. If $i \neq j, \mathcal{E}_{i, j}$ has no points at infinity; whereas if $i=j$, it has three points at infinity. Hence

$$
\begin{equation*}
e_{i, j}=c_{i, j}+3 \delta_{i, j} . \tag{25}
\end{equation*}
$$

By multiplying the equation $Z^{3}+g X^{3}=g Y^{3}$ by g^{2}, we get the curve $g^{2} Z^{3}+X^{\prime 3}=Y^{\prime 3}$. So, by permuting the variables, we deduce that $e_{1,1}=e_{2,0}$. Similarly, we obtain $e_{2,2}=e_{1,0}$. Hence, by (25) and (24) we find that

$$
\begin{align*}
& \ell_{1,1}=\ell_{2,0}, \tag{26}\\
& \ell_{2,2}=\ell_{1,0} . \tag{27}
\end{align*}
$$

Therefore, from (22), it follows that

$$
\begin{equation*}
\ell_{2,1}=\ell_{0,0}+1 \tag{28}
\end{equation*}
$$

Furthermore, from (25) and (24) we have for all $i, 0 \leq i \leq 2$,

$$
\begin{align*}
9 \ell_{i, 0} & =c_{i, 0}-3 \delta_{i, 0}-3 \\
& =e_{i, 0}-6 \delta_{i, 0}-3 . \tag{29}
\end{align*}
$$

Hence, to get all the numbers $\ell_{i, j}, 0 \leq i, j \leq 2$, it suffices to know the values of $e_{i, 0}, 0 \leq i \leq 2$.
Computation of $e_{i, 0}, i \in\{0,1,2\}$.
Here, we are interested with the curve $\mathcal{E}_{i, 0}: \quad Z^{3}+X^{3}=g^{i} Y^{3}$. By setting $X=9 g^{i} z+2 y$, $Y=6 x$ and $Z=9 g^{i} z-2 y$, we get the Weierstrass's form

$$
z y^{2}=x^{3}-(27 / 4) g^{2 i} z^{3},
$$

which, when divided by z^{3}, gives the form

$$
y^{2}=x^{3}-(27 / 4) g^{2 i} .
$$

Let

$$
y^{2}=x^{3}+\alpha x+\beta
$$

be the equation of an elliptic curve \mathcal{E} defined over \mathbb{F}_{p}. It is well known that the number of points of \mathcal{E} is equal to

$$
\begin{equation*}
|\mathcal{E}|=p+1+\sum_{x \in \mathbb{F}_{p}}\left(\frac{x^{3}+\alpha x+\beta}{p}\right) \tag{30}
\end{equation*}
$$

where $(\dot{\bar{p}})$ is the Legendre's symbol. For $\alpha=0$, the sum $\sum_{x \in \mathbb{F}_{p}}\left(\frac{x^{3}+\alpha x+\beta}{p}\right)$ was investigated by S. A. Katre [8]. He obtained:

Lemma 6. Let p be a prime number such that $p \equiv 1(\bmod 3)$. Then there exist a unique L, $L \equiv 1(\bmod 3)$ and a unique M up to a sign such that $4 p=L^{2}+27 M^{2}$. Moreover, if β is an integer $\neq 0$ then

$$
\sum_{x \in \mathbb{F}_{p}}\left(\frac{x^{3}+\beta}{p}\right)= \begin{cases}\left(\frac{\beta}{p}\right) L, & \text { if } 4 \beta \text { is a cube modulo } p \\ -\frac{1}{2}\left(\frac{\beta}{p}\right)(L+9 M), & \text { otherwise, where } M \text { is chosen uniquely } \\ & \text { by }(4 \beta)^{\frac{p-1}{3}} \equiv \frac{L+9 M}{L-9 M}(\bmod p)\end{cases}
$$

Thanks to Lemma 6, we can give the values of $e_{i, 0}$ for $0 \leq i \leq 2$.
Computation of $e_{0,0}$. From (30), since -27 is a cube, by using Lemma 6 with $\beta=-27 / 4$, we obtain

$$
\begin{aligned}
e_{0,0} & =p+1+\left(\frac{-27 / 4}{p}\right) L \\
& =p+1+\left(\frac{-27}{p}\right) L \\
& =p+1+\left(\frac{-3}{p}\right)^{3} L .
\end{aligned}
$$

Since $p \equiv 1(\bmod 3)$ then, by the quadratic reciprocity law, -3 is a quadratic residue modulo p. Hence,

$$
\begin{equation*}
e_{0,0}=p+1+L \tag{31}
\end{equation*}
$$

Computation of $e_{1,0}$. If $\beta=-27 g^{2} / 4$ then $4 \beta=-27 g^{2}$ is not a cube modulo p. Hence, by using Lemma 6 again, it follows that

$$
\begin{align*}
e_{1,0} & =p+1-\frac{1}{2}\left(\frac{-27 g^{2} / 4}{p}\right)(L+9 M) \\
& =p+1-\frac{1}{2}(L+9 M) \tag{32}
\end{align*}
$$

where the sign of M is given by

$$
\begin{aligned}
\left(-27 g^{2}\right)^{(p-1) / 3} & \equiv\left(g^{2}\right)^{(p-1) / 3} \quad(\bmod p) \\
& \equiv \frac{L+9 M}{L-9 M} \quad(\bmod p)
\end{aligned}
$$

Computation of $e_{2,0}$. Let M be fixed by last congruence, and let $\beta=-27 g^{4} / 4$. Since $\left(g^{4}\right)^{(p-1) / 3} \not \equiv\left(g^{2}\right)^{(p-1) / 3}(\bmod p)$, Lemma 6 implies that

$$
\begin{equation*}
e_{2,0}=p+1-\frac{1}{2}(L-9 M) \tag{33}
\end{equation*}
$$

4 The explicit form of R_{1} when $s_{p}=\frac{p-1}{3}$.

First, we remark that the polynomial $R_{1}(y)$ given by (14) can also be defined (cf. (15), (16)) by

$$
\begin{equation*}
\left(R_{1}(y)\right)^{1 / s_{p}}=\prod_{i \in\{0,1,2\}}\left(y+T_{i}\right) \tag{34}
\end{equation*}
$$

where $\theta \neq 1$ is some p-th root of unity.
Theorem 7. Let p be an odd prime such that $s_{p}=\frac{p-1}{3}$. Then the polynomial R_{1} given by (14) or (34) is equal to

$$
R_{1}(y)=\left(y^{3}-y^{2}-s_{p} y+\lambda_{p}\right)^{s_{p}}
$$

with

$$
\lambda_{p}=\frac{p(L+3)-1}{27}
$$

where L is the unique integer satisfying $4 p=L^{2}+27 M^{2}$ and $L \equiv 1(\bmod 3)$.
Remark 8. $\quad p(L+3) \equiv 1(\bmod 27)$ follows easily from the congruences $L \equiv 1(\bmod 3)$ and $p \equiv L^{2}(\bmod 27)$.

Proof of Theorem 7. From (34), we have

$$
R_{1}(y)=\left(\left(y+T_{0}\right)\left(y+T_{1}\right)\left(y+T_{2}\right)\right)^{s_{p}} .
$$

This can be written as

$$
R_{1}(y)=\left(y^{3}+\lambda_{p}^{\prime \prime} y^{2}+\lambda_{p}^{\prime} y+\lambda_{p}\right)^{s_{p}}
$$

with

$$
\begin{gather*}
\lambda_{p}=T_{0} T_{1} T_{2}, \tag{35}\\
\lambda_{p}^{\prime}=T_{0} T_{1}+T_{0} T_{2}+T_{1} T_{2}, \tag{36}\\
\lambda_{p}^{\prime \prime}=T_{0}+T_{1}+T_{2} .
\end{gather*}
$$

We begin by calculating $\lambda_{p}^{\prime \prime}$. It follows immediately from (17) and (19) that

$$
\begin{align*}
\lambda_{p}^{\prime \prime} & =T_{0}+T_{1}+T_{2} \\
& =\sum_{i=0}^{2} \sum_{k=0}^{s_{p}-1} \theta^{2^{k} g^{i}} \\
& =\sum_{j=1}^{p-1} \theta^{j} \\
& =-1, \tag{37}
\end{align*}
$$

since cf. Remark $3, \theta$ is a primitive p-th root of unity.
Now, let us prove that $\lambda_{p}^{\prime}=-s_{p}$. From (36) and (17), we have

$$
\begin{equation*}
\lambda_{p}^{\prime}=\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k} g+2^{k^{\prime}} g^{2}}+\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k} g^{2}+2^{k^{\prime}}}+\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k} g+2^{k^{\prime}}} \tag{38}
\end{equation*}
$$

To treat the last sum in (38), let us fix k and k^{\prime} in $\left\{0,1, \ldots, s_{p}-1\right\}$. We have $\theta^{2^{k} g+2^{k^{\prime}}}=$
 unique $t \in\left\{0,1, \ldots, s_{p}-1\right\}$ such that $2^{k-k^{\prime}} g=g^{1+3 t}$. Hence, the last sum in (38) becomes

$$
\begin{equation*}
\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k} g+2^{k^{\prime}}}=\sum_{0 \leq k^{\prime}, t \leq s_{p}-1} \theta^{2^{k^{\prime}}\left(1+g^{1+3 t}\right)} \tag{39}
\end{equation*}
$$

For the first and second sums in (38), arguing as above, we get

$$
\begin{align*}
\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k} g^{2}+2^{k^{\prime}}} & =\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k^{\prime}}\left(1+2^{k-k^{\prime}} g^{2}\right)} \\
& =\sum_{0 \leq k^{\prime}, t \leq s_{p}-1} \theta^{2^{k^{\prime}}\left(1+g^{2+3 t}\right)} \tag{40}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k} g+2^{k^{\prime}} g^{2}} & =\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}\left(g+2^{k^{\prime}-k} g^{2}\right)} \\
& =\sum_{0 \leq k, t \leq s_{p}-1} \theta^{2^{k}\left(g+g^{2+3 t}\right)} \tag{41}
\end{align*}
$$

Now, from (21), (26), (27), (17) and Remark 5, we obtain

$$
\begin{align*}
\sum_{0 \leq k^{\prime}, t \leq s_{p}-1} \theta^{2^{k^{\prime}}\left(1+g^{1+3 t}\right)} & =\sum_{i=0}^{2} \ell_{i, 1} T_{i} \\
& =\ell_{1,0} T_{0}+\ell_{2,0} T_{1}+\ell_{2,1} T_{2} \tag{42}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{0 \leq k^{\prime}, t \leq s_{p}-1} \theta^{2^{k^{\prime}}\left(1+g^{2+3 t}\right)} & =\sum_{i=0}^{2} \ell_{i, 2} T_{i} \\
& =\ell_{2,0} T_{0}+\ell_{2,1} T_{1}+\ell_{1,0} T_{2} \tag{43}
\end{align*}
$$

On the other hand, since for all $v \geq 0,0 \leq i, j \leq 2$,

$$
1+g^{j+3 t} \in O\left(g^{i}\right) \Longleftrightarrow g^{v}+g^{v+j+3 t} \in O\left(g^{v+i}\right)
$$

again by (21), (26), (17) and Remark 5, we get

$$
\begin{align*}
\sum_{0 \leq k, t \leq s_{p}-1} \theta^{2^{k}\left(g+g^{2+3 t}\right)} & =\sum_{i=0}^{2} \ell_{i, 1} T_{1+i} \\
& =\ell_{2,1} T_{0}+\ell_{1,0} T_{1}+\ell_{2,0} T_{2} . \tag{44}
\end{align*}
$$

Clearly, from (22) and (28), one can deduce that

$$
\begin{equation*}
\ell_{1,0}+\ell_{2,0}+\ell_{2,1}=s_{p} \tag{45}
\end{equation*}
$$

which, by (38)-(44) and (37), gives

$$
\begin{align*}
\lambda_{p}^{\prime} & =s_{p}\left(T_{0}+T_{1}+T_{2}\right) \\
& =s_{p} \sum_{j=1}^{p-1} \theta^{j} \\
& =-s_{p} . \tag{46}
\end{align*}
$$

Finally, let us calculate λ_{p}. From (35) and (17), we have

$$
\begin{align*}
\lambda_{p} & =\sum_{0 \leq k, k^{\prime}, k^{\prime \prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime}} g+2^{k^{\prime \prime}} g^{2}} \\
& =\sum_{0 \leq k \leq s_{p}-1} \theta^{2^{k}}\left(\sum_{0 \leq k^{\prime}, k^{\prime \prime} \leq s_{p}-1} \theta^{2^{k^{\prime}} g+2^{k^{\prime \prime}} g^{2}}\right) . \tag{47}
\end{align*}
$$

Hence, by (41), (44) and (17), we get

$$
\begin{aligned}
\lambda_{p} & =\sum_{0 \leq k \leq s_{p}-1} \theta^{2^{k}}\left(\ell_{2,1} \sum_{j \in O(1)} \theta^{j}+\ell_{1,0} \sum_{j \in O(g)} \theta^{j}+\ell_{2,0} \sum_{j \in O\left(g^{2}\right)} \theta^{j}\right) \\
& =\ell_{2,1} \sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime}}}+\ell_{1,0} \sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime}} g}+\ell_{2,0} \sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime}} g^{2}} .
\end{aligned}
$$

Consequently, from (39), (42), (40) and (43), it happens that

$$
\begin{align*}
\lambda_{p}= & \ell_{2,1} \sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime}}}+\left(\ell_{1,0}^{2}+\ell_{2,0}^{2}\right) T_{0}+\left(\ell_{1,0} \ell_{2,0}+\ell_{2,0} \ell_{2,1}\right) T_{1} \\
& +\left(\ell_{1,0} \ell_{2,1}+\ell_{1,0} \ell_{2,0}\right) T_{2} \tag{48}
\end{align*}
$$

Since $2^{k^{\prime}-k} \in O(1)=O\left(g^{3}\right)$ then, cf. (20), there exists a unique $t \in\left\{0,1, \ldots, s_{p}-1\right\}$ such that $2^{k^{\prime}-k}=g^{3 t}$. Hence

$$
\begin{aligned}
\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime}}} & =\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}\left(1+2^{k^{\prime}-k}\right)} \\
& =\sum_{0 \leq k, t \leq s_{p}-1} \theta^{2^{k}\left(1+g^{3 t}\right)} .
\end{aligned}
$$

Now, we recall that cf. Remark 5 there exists one and only one $t \in\left\{0,1, \ldots, s_{p}-1\right\}$ satisfying $1+g^{3 t} \in O(p)$. Consequently, by (21) and (17), we get

$$
\begin{align*}
\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime}}} & =\sum_{0 \leq k, t \leq s_{p}-1} \theta^{2^{k}\left(1+g^{3 t}\right)} \\
& =\ell_{0,0} T_{0}+\ell_{1,0} T_{1}+\ell_{2,0} T_{2}+s_{p} \tag{49}
\end{align*}
$$

Hence, (48) gives

$$
\begin{align*}
\lambda_{p}= & \left(\ell_{1,0}^{2}+\ell_{2,0}^{2}+\ell_{0,0} \ell_{2,1}\right) T_{0}+\left(\ell_{1,0} \ell_{2,0}+\ell_{2,0} \ell_{2,1}+\ell_{1,0} \ell_{2,1}\right) T_{1} \\
& +\left(\ell_{1,0} \ell_{2,0}+\ell_{1,0} \ell_{2,1}+\ell_{2,0} \ell_{2,1}\right) T_{2}+\ell_{2,1} s_{p} . \tag{50}
\end{align*}
$$

On the other hand, from (47), by changing the order of summation, λ_{p} can be written as

$$
\lambda_{p}=\sum_{0 \leq k^{\prime} \leq s_{p}-1} \theta^{2^{k^{\prime}} g}\left(\sum_{0 \leq k, k^{\prime \prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime \prime}} g^{2}}\right)
$$

and we get in the way as above

$$
\begin{align*}
\lambda_{p}= & \left(\ell_{1,0} \ell_{2,0}+\ell_{1,0} \ell_{2,1}+\ell_{2,0} \ell_{2,1}\right) T_{0}+\left(\ell_{1,0}^{2}+\ell_{2,0}^{2}+\ell_{0,0} \ell_{2,1}\right) T_{1} \\
& +\left(\ell_{1,0} \ell_{2,0}+\ell_{2,0} \ell_{2,1}+\ell_{1,0} \ell_{2,1}\right) T_{2}+\ell_{2,1} s_{p} \tag{51}
\end{align*}
$$

Whereas, if we write λ_{p} in the form

$$
\lambda_{p}=\sum_{0 \leq k^{\prime \prime} \leq s_{p}-1} \theta^{2^{k^{\prime \prime}} g^{2}}\left(\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime}} g}\right),
$$

we get

$$
\begin{align*}
\lambda_{p}= & \left(\ell_{1,0} \ell_{2,0}+\ell_{2,0} \ell_{2,1}+\ell_{1,0} \ell_{2,1}\right) T_{0}+\left(\ell_{1,0} \ell_{2,0}+\ell_{1,0} \ell_{2,1}+\ell_{2,0} \ell_{2,1}\right) T_{1} \\
& +\left(\ell_{1,0}^{2}+\ell_{2,0}^{2}+\ell_{0,0} \ell_{2,1}\right) T_{2}+\ell_{2,1} s_{p} . \tag{52}
\end{align*}
$$

By summing (50), (51) and (52), we obtain

$$
\begin{aligned}
3 \lambda_{p}= & \left(\ell_{1,0}^{2}+\ell_{2,0}^{2}+2 \ell_{1,0} \ell_{2,0}+2 \ell_{1,0} \ell_{2,1}+2 \ell_{2,0} \ell_{2,1}+\ell_{0,0} \ell_{2,1}\right) \times \\
& \left(T_{0}+T_{1}+T_{2}\right)+3 \ell_{2,1} s_{p}
\end{aligned}
$$

But, according to (37), $T_{0}+T_{1}+T_{2}=-1$. Hence,

$$
\begin{aligned}
3 \lambda_{p} & =-\left(\ell_{1,0}^{2}+\ell_{2,0}^{2}+2 \ell_{1,0} \ell_{2,0}+2 \ell_{1,0} \ell_{2,1}+2 \ell_{2,0} \ell_{2,1}+\ell_{0,0} \ell_{2,1}\right)+3 \ell_{2,1} s_{p} \\
& =-\left(\left(\ell_{1,0}+\ell_{2,0}\right)^{2}+\ell_{1,0} \ell_{2,1}+\ell_{2,0} \ell_{2,1}+\ell_{2,1}\left(\ell_{0,0}+\ell_{1,0}+\ell_{2,0}\right)\right)+3 \ell_{2,1} s_{p}
\end{aligned}
$$

So that, from (45) and (22), we obtain

$$
3 \lambda_{p}=-\left(s_{p}-\ell_{2,1}\right)^{2}-\ell_{2,1}\left(s_{p}-\ell_{2,1}\right)-\ell_{2,1}\left(s_{p}-1\right)+3 \ell_{2,1} s_{p}
$$

which gives $\lambda_{p}=\frac{\left(3 s_{p}+1\right) \ell_{2,1}-s_{p}^{2}}{3}=\frac{p \ell_{2,1}-s_{p}^{2}}{3}$. Finally, using the value of $\ell_{2,1}$:

$$
\begin{equation*}
\ell_{2,1}=\frac{1}{9}(p+1+L) \tag{53}
\end{equation*}
$$

which follows from (28), (29) and (31), we complete the proof of Theorem 7.

In the following table we give L, g, M and $R_{1}(y)$ when $p \leq 1000$.

p	L	g	M	$R_{1}(y)$
43	-8	3	-2	$\left(y^{3}-y^{2}-14 y-8\right)^{14}$
109	-2	6	4	$\left(y^{3}-y^{2}-36 y+4\right)^{36}$
157	-14	5	4	$\left(y^{3}-y^{2}-52 y-64\right)^{52}$
229	22	6	4	$\left(y^{3}-y^{2}-76 y+212\right)^{76}$
277	-26	5	-4	$\left(y^{3}-y^{2}-92 y-236\right)^{92}$
283	-32	3	-2	$\left(y^{3}-y^{2}-94 y-304\right)^{94}$
307	16	5	-6	$\left(y^{3}-y^{2}-102 y+216\right)^{102}$
499	-32	7	-6	$\left(y^{3}-y^{2}-166 y-536\right)^{166}$
643	40	11	6	$\left(y^{3}-y^{2}-214 y+1024\right)^{214}$
691	-8	3	10	$\left(y^{3}-y^{2}-230 y-128\right)^{230}$
733	-50	6	4	$\left(y^{3}-y^{2}-244 y-1276\right)^{244}$
739	16	3	10	$\left(y^{3}-y^{2}-246 y+520\right)^{246}$
811	-56	3	-2	$\left(y^{3}-y^{2}-270 y-1592\right)^{270}$
997	10	7	-12	$\left(y^{3}-y^{2}-332 y+480\right)^{332}$

xxxx

5 The explicit form of R_{m} when $s_{p}=\frac{p-1}{3}$ and $m \geq 3$.

We remind that if $m \in O(p)$ or m is divisible by some prime q belonging to $O(1)$, then the polynomial R_{m} is given by Theorem 2, 2) and 3). Let m be an odd integer ≥ 3 such that all its prime divisors are in $O(g) \cup O\left(g^{2}\right)$. For $i \in\{1,2\}$, we denote by ω_{i} the arithmetic function which counts the number of distinct prime divisors belonging to $O\left(g^{i}\right)$ of an integer, i.e.,

$$
\begin{equation*}
\omega_{i}(n)=\sum_{q \text { prime, }}^{q \in O\left(g^{i}\right), q \mid n} 1 . \tag{54}
\end{equation*}
$$

Let the decomposition of m into irreducible factors be

$$
\begin{equation*}
m=q_{1,1}^{\gamma_{1,1}} q_{1,2}^{\gamma_{1,2}} \cdots q_{1, \omega_{1}}^{\gamma_{1, \omega_{1}}} q_{2,1}^{\gamma_{2,2}} q_{2,2}^{\gamma_{2,2}} \cdots q_{2, \omega_{2}}^{\gamma_{2, \omega_{2}}}, \tag{55}
\end{equation*}
$$

where $\omega_{i}=\omega_{i}(m), \omega=\omega(m)=\omega_{1}+\omega_{2}$ and $q_{i, j} \in O\left(g^{i}\right)$.
We shall begin with some result concerning binomial coefficients:
Lemma 9. For all $n \in \mathbb{N}$ and all $j, 0 \leq j \leq 2$,

$$
\begin{equation*}
\sum_{k \geq 0}\binom{n}{3 k+j}(-1)^{k+j}=2.3^{\frac{n}{2}-1} \cos \left(\frac{n \pi}{6}+\frac{2 j \pi}{3}\right) . \tag{56}
\end{equation*}
$$

Proof. Let $z_{1}=e^{(2 i \pi) / 3}$ and $z_{2}=e^{(4 i \pi) / 3}$ be the two cubic primitive roots of unity, and let $f(z)=\sum_{k \geq 0} a_{k} z^{k}$ be some convergent power series. Since for all $j, 0 \leq j \leq 2$,

$$
\frac{1+z_{1}^{n-j}+z_{2}^{n-j}}{3}= \begin{cases}1, & \text { if } n \equiv j \quad(\bmod 3) \\ 0, & \text { otherwise }\end{cases}
$$

it follows that

$$
\frac{f(z)+\frac{1}{z_{1}^{3}} f\left(z_{1} z\right)+\frac{1}{z_{2}^{j}} f\left(z_{2} z\right)}{3}=\sum_{k \geq 0} a_{3 k+j} z^{3 k+j}
$$

Hence, defining $g_{j}(z), 0 \leq j \leq 2$, by

$$
g_{j}(z)=\sum_{k \geq 0}\binom{n}{3 k+j} z^{3 k+j}
$$

and taking $f(z)=(1+z)^{n}$, we get

$$
g_{j}(z)=\frac{f(z)+\frac{1}{z_{1}^{j}} f\left(z_{1} z\right)+\frac{1}{z_{2}^{j}} f\left(z_{2} z\right)}{3}
$$

By making the substitution $z=-1$, we obtain

$$
\begin{aligned}
g_{j}(-1) & =\sum_{k \geq 0}\binom{n}{3 k+j}(-1)^{k+j} \\
& =\frac{\frac{1}{z_{1}^{j}}\left(1-z_{1}\right)^{n}+\frac{1}{z_{2}^{j}}\left(1-z_{2}\right)^{n}}{3} \\
& =\frac{1}{3}\left\{\frac{1}{z_{1}^{j}}\left(\frac{3-i \sqrt{3}}{2}\right)^{n}+\frac{1}{z_{2}^{j}}\left(\frac{3+i \sqrt{3}}{2}\right)^{n}\right\}
\end{aligned}
$$

To get (56), we need only transform the right hand-side of the last equality.
Corollary 10. Let m be an odd integer ≥ 3 of the form (55), and let $\alpha_{h}(m)$ be the quantity defined by (12). For all $h, 0 \leq h \leq 2$, we have

$$
\begin{equation*}
\alpha_{h}(m)=\eta(m) \cos \left(\left(\omega_{2}-\omega_{1}\right) \frac{\pi}{6}+4 h \frac{\pi}{3}\right) \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta(m)=2.3^{\frac{\omega}{2}-1} \tag{58}
\end{equation*}
$$

Proof. From (12), for all $h, 0 \leq h \leq 2$, we have

$$
\alpha_{h}(m)=\sum_{d \mid \tilde{m}, d \in O\left(g^{h}\right)} \mu(d)
$$

First, let us suppose that $\omega_{1} \neq 0$ and $\omega_{2} \neq 0$. By (54) and (55), we obtain that for all h, $0 \leq h \leq 2$,

$$
\alpha_{h}(m)=\sum_{i_{1}=0}^{\omega_{1}}(-1)^{i_{1}}\binom{\omega_{1}}{i_{1}} \sum_{\substack{i_{2}=0 \\ i_{2} \equiv i_{1}+2 h(\bmod 3)}}^{\omega_{2}}(-1)^{i_{2}}\binom{\omega_{2}}{i_{2}} .
$$

So that, by (56), we get

$$
\begin{aligned}
\alpha_{h}(m) & =\sum_{i_{1}=0}^{\omega_{1}}(-1)^{i_{1}}\binom{\omega_{1}}{i_{1}} 2.3^{\frac{\omega_{2}}{2}-1} \cos \left(\frac{\omega_{2} \pi}{6}+\frac{2\left(i_{1}+2 h\right) \pi}{3}\right) \\
& =2.3^{\frac{\omega_{2}}{2}-1} \sum_{j=0}^{2} \cos \left(\frac{\omega_{2} \pi}{6}+\frac{2(j+2 h) \pi}{3}\right) \sum_{\substack{i_{1}=0 \\
i_{1} \equiv j(\bmod 3)}}^{\omega_{1}}(-1)^{i_{1}}\binom{\omega_{1}}{i_{1}}
\end{aligned}
$$

which, by (56) again, gives

$$
\alpha_{h}(m)=4.3^{\frac{\omega}{2}-2} \sum_{j=0}^{2} \cos \left(\frac{\omega_{2} \pi}{6}+\frac{2(j+2 h) \pi}{3}\right) \cos \left(\frac{\omega_{1} \pi}{6}+\frac{2 j \pi}{3}\right) .
$$

Consequently, to get (57), one need only use the elementary trigonometric formulas

$$
\cos a \cos b=\frac{1}{2}(\cos (a+b)+\cos (a-b)) \text { for all } a \text { and } b \text { in } \mathbb{R}
$$

and

$$
\cos c+\cos \left(c+\frac{2 \pi}{3}\right)+\cos \left(c+\frac{4 \pi}{3}\right)=0, \text { for all } c \in \mathbb{R}
$$

In case $\omega_{1}=$ or $\omega_{2}=0$, (57) follows immediately from (56).
Theorem 11. Let m be an odd integer ≥ 3 of the form (55). Let $\eta(m)$ be as defined in (58), and let R_{m} be the polynomial given by (14). Then

$$
\begin{equation*}
R_{m}(y)=\left(m^{3} y^{3}-\frac{3}{4} p m \eta^{2}(m) y+\nu_{p}\right)^{s_{p}} \tag{59}
\end{equation*}
$$

with

$$
\nu_{p}= \begin{cases}\frac{1}{8}(-1)^{\frac{\omega_{2}-\omega_{1}}{2}} p \eta^{3}(m) L, & \text { if } \omega_{2}-\omega_{1} \text { is even } ; \tag{60}\\ \frac{3 \sqrt{3}}{8}(-1)^{\frac{\omega_{2}-\omega_{1}-1}{2}} p \eta^{3}(m) M, & \text { if } \omega_{2}-\omega_{1} \text { is odd },\end{cases}
$$

where L and M are the unique integers satisfying $4 p=L^{2}+27 M^{2}, L \equiv 1(\bmod 3)$ and $\left(g^{2}\right)^{(p-1) / 3} \equiv \frac{L+9 M}{L-9 M}(\bmod p)$.

Proof. From (18), we have

$$
\begin{align*}
R_{m}(y) & =\prod_{l=0}^{2}\left(m y+A_{m}\left(\theta^{g^{l}}\right)\right)^{s_{p}} \\
& =\left(m^{3} y^{3}+m^{2} \nu_{p}^{\prime \prime} y^{2}+m \nu_{p}^{\prime} y+\nu_{p}\right)^{s_{p}} \tag{61}
\end{align*}
$$

where

$$
\begin{equation*}
\nu_{p}^{\prime \prime}=A_{m}(\theta)+A_{m}\left(\theta^{g}\right)+A_{m}\left(\theta^{g^{2}}\right) \tag{62}
\end{equation*}
$$

$$
\begin{equation*}
\nu_{p}^{\prime}=A_{m}(\theta) A_{m}\left(\theta^{g}\right)+A_{m}(\theta) A_{m}\left(\theta^{g^{2}}\right)+A_{m}\left(\theta^{g}\right) A_{m}\left(\theta^{g^{2}}\right) \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{p}=A_{m}(\theta) A_{m}\left(\theta^{g}\right) A_{m}\left(\theta^{g^{2}}\right) . \tag{64}
\end{equation*}
$$

Recall that cf. Theorem $2, \delta$ is the unique integer in $\{0,1,2\}$ such that $m \in O\left(g^{\delta}\right)$. So that from (11)-(13) and (17), we get for $i \in\{0,1,2\}$

$$
\begin{equation*}
A_{m}\left(\theta^{g^{i}}\right)=\sum_{h=0}^{2} \alpha_{h}(m) T_{\delta-h+i} \tag{65}
\end{equation*}
$$

Computation of $\nu_{p}^{\prime \prime}$.
From (65) and (62) we deduce that

$$
\nu_{p}^{\prime \prime}=\left(\alpha_{0}(m)+\alpha_{1}(m)+\alpha_{2}(m)\right)\left(T_{0}+T_{1}+T_{2}\right)
$$

Since $\operatorname{gcd}(m, p)=1$ and $m \neq 1$, it follows immediately from (12) and (19) that

$$
\begin{equation*}
\alpha_{0}(m)+\alpha_{1}(m)+\alpha_{2}(m)=\sum_{d \mid \tilde{m}} \mu(d)=0 \tag{66}
\end{equation*}
$$

and thus $\nu_{p}^{\prime \prime}=0$.
Computation of ν_{p}^{\prime}.
From (61), to prove (59) it suffices to show (60) and that $\nu_{p}^{\prime}=\frac{-3}{4} p \eta^{2}(m)$. By (63) and (65), we have

$$
\nu_{p}^{\prime}=\sum_{k=0}^{2} \sum_{h=0}^{k} \alpha_{h}(m) \alpha_{k}(m) U(h, k)
$$

with

$$
U(h, h)=\sum_{(i, j) \in\{(0,1),(0,2),(1,2)\}} T_{\delta-h+i} T_{\delta-h+j}
$$

and, for $h<k$,

$$
U(h, k)=\sum_{(i, j) \in\{(0,1),(0,2),(1,2)\}}\left(T_{\delta-h+i} T_{\delta-k+j}+T_{\delta-k+i} T_{\delta-h+j}\right) .
$$

Observing that, for $0 \leq \delta, h, k \leq 2, U(h, k)$ does not depend on δ and is equal to $T_{0} T_{1}+$ $T_{0} T_{2}+T_{1} T_{2}$ when $h=k$ and to $T_{0} T_{1}+T_{0} T_{2}+T_{1} T_{2}+T_{0}^{2}+T_{1}^{2}+T_{2}^{2}$ when $h<k$, we obtain

$$
\begin{equation*}
\nu_{p}^{\prime}=\beta(m)\left(T_{0}^{2}+T_{1}^{2}+T_{2}^{2}\right)+\beta^{\prime}(m)\left(T_{0} T_{1}+T_{0} T_{2}+T_{1} T_{2}\right) \tag{67}
\end{equation*}
$$

where

$$
\beta(m)=\alpha_{0}(m) \alpha_{1}(m)+\alpha_{0}(m) \alpha_{2}(m)+\alpha_{1}(m) \alpha_{2}(m)
$$

and

$$
\beta^{\prime}(m)=\alpha_{0}^{2}(m)+\alpha_{1}^{2}(m)+\alpha_{2}^{2}(m)+\beta(m)
$$

From (57), it is easy to check that

$$
\beta(m)=-\frac{3}{4} \eta^{2}(m)
$$

By (66), we find that

$$
\begin{aligned}
\beta^{\prime}(m) & =\left(\sum_{i=0}^{2} \alpha_{i}(m)\right)^{2}-2 \beta(m)+\beta(m) \\
& =-\beta(m) \\
& =\frac{3}{4} \eta^{2}(m) .
\end{aligned}
$$

On the other hand, using (17), we get

$$
T_{0}^{2}+T_{1}^{2}+T_{2}^{2}=\left(\sum_{k=0}^{s_{p}-1} \theta^{2^{k}}\right)^{2}+\left(\sum_{k=0}^{s_{p}-1} \theta^{2^{k} g}\right)^{2}+\left(\sum_{k=0}^{s_{p}-1} \theta^{2^{k} g^{2}}\right)^{2}
$$

The first sum in the last equality is, by (49), equal to

$$
\begin{align*}
T_{0}^{2} & =\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k}+2^{k^{\prime}}} \\
& =\ell_{0,0} T_{0}+\ell_{1,0} T_{1}+\ell_{2,0} T_{2}+s_{p} . \tag{68}
\end{align*}
$$

Similarly, for the second and third sums, we obtain

$$
\begin{align*}
T_{1}^{2} & =\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k} g+2^{k^{\prime}} g} \\
& =\ell_{0,0} T_{1}+\ell_{1,0} T_{2}+\ell_{2,0} T_{0}+s_{p} \tag{69}
\end{align*}
$$

and

$$
\begin{align*}
T_{2}^{2} & =\sum_{0 \leq k, k^{\prime} \leq s_{p}-1} \theta^{2^{k} g^{2}+2^{k^{\prime}} g^{2}} \\
& =\ell_{0,0} T_{2}+\ell_{1,0} T_{0}+\ell_{2,0} T_{1}+s_{p} . \tag{70}
\end{align*}
$$

Consequently,

$$
T_{0}^{2}+T_{1}^{2}+T_{2}^{2}=3 s_{p}+\left(\ell_{0,0}+\ell_{1,0}+\ell_{2,0}\right)\left(T_{0}+T_{1}+T_{2}\right)
$$

So that, by (22) and (37), we get

$$
\begin{align*}
T_{0}^{2}+T_{1}^{2}+T_{2}^{2} & =3 s_{p}-\left(s_{p}-1\right) \\
& =2 s_{p}+1 \tag{71}
\end{align*}
$$

Therefore, with the use of (67), (36) and the fact that $s_{p}=\frac{p-1}{3}$, we obtain

$$
\nu_{p}^{\prime}=-\frac{3}{4} p \eta^{2}(m)
$$

Computation of ν_{p}.

By (64) and (65), we obtain

$$
\nu_{p}=\sum_{h, k, t \in\{0,1,2\}} \alpha_{h}(m) \alpha_{k}(m) \alpha_{t}(m) T_{\delta-h} T_{\delta-k+1} T_{\delta-t+2}
$$

and by observing the 27 terms of the expansion of the above sum, we find that

$$
\begin{align*}
\nu_{p}= & \gamma_{1}(m)\left(T_{0} T_{1}^{2}+T_{1} T_{2}^{2}+T_{2} T_{0}^{2}\right)+\gamma_{2}(m)\left(T_{0} T_{2}^{2}+T_{1} T_{0}^{2}+T_{2} T_{1}^{2}\right) \\
& +\gamma_{3}(m)\left(T_{0}^{3}+T_{1}^{3}+T_{2}^{3}\right)+\gamma_{4}(m) T_{0} T_{1} T_{2} \tag{72}
\end{align*}
$$

where

$$
\begin{gather*}
\gamma_{1}(m)=\alpha_{0}^{2}(m) \alpha_{1}(m)+\alpha_{0}(m) \alpha_{2}^{2}(m)+\alpha_{1}^{2}(m) \alpha_{2}(m), \tag{73}\\
\gamma_{2}(m)=\alpha_{0}^{2}(m) \alpha_{2}(m)+\alpha_{0}(m) \alpha_{1}^{2}(m)+\alpha_{1}(m) \alpha_{2}^{2}(m), \tag{74}\\
\gamma_{3}(m)=\alpha_{0}(m) \alpha_{1}(m) \alpha_{2}(m) \tag{75}
\end{gather*}
$$

and

$$
\begin{equation*}
\gamma_{4}(m)=\alpha_{0}^{3}(m)+\alpha_{1}^{3}(m)+\alpha_{2}^{3}(m)+3 \gamma_{3}(m) . \tag{76}
\end{equation*}
$$

Using (68)-(70), we get

$$
\begin{aligned}
& T_{0}^{3}=\ell_{0,0} T_{0}^{2}+\ell_{1,0} T_{0} T_{1}+\ell_{2,0} T_{0} T_{2}+s_{p} T_{0}, \\
& T_{1}^{3}=\ell_{0,0} T_{1}^{2}+\ell_{1,0} T_{1} T_{2}+\ell_{2,0} T_{0} T_{1}+s_{p} T_{1}
\end{aligned}
$$

and

$$
T_{2}^{3}=\ell_{0,0} T_{2}^{2}+\ell_{1,0} T_{0} T_{2}+\ell_{2,0} T_{1} T_{2}+s_{p} T_{2}
$$

Therefore,

$$
\begin{aligned}
T_{0}^{3}+T_{1}^{3}+ & T_{2}^{3}=s_{p}\left(T_{0}+T_{1}+T_{2}\right)+\ell_{0,0}\left(T_{0}^{2}+T_{1}^{2}+T_{2}^{2}\right) \\
& +\left(\ell_{1,0}+\ell_{2,0}\right)\left(T_{0} T_{1}+T_{0} T_{2}+T_{1} T_{2}\right)
\end{aligned}
$$

So that, from (37), (71) and (36), we get

$$
T_{0}^{3}+T_{1}^{3}+T_{2}^{3}=-s_{p}+\ell_{0,0}\left(2 s_{p}+1\right)-\left(\ell_{1,0}+\ell_{2,0}\right) s_{p}
$$

which, by (22), gives

$$
\begin{align*}
T_{0}^{3}+T_{1}^{3}+T_{2}^{3} & =\ell_{0,0}\left(3 s_{p}+1\right)-s_{p}^{2} \\
& =p \ell_{0,0}-s_{p}^{2} \tag{77}
\end{align*}
$$

Similarly, by again using (68)-(70), we obtain

$$
\begin{equation*}
T_{0}^{2} T_{1}+T_{0} T_{2}^{2}+T_{1}^{2} T_{2}=p \ell_{1,0}-s_{p}^{2} \tag{78}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{0}^{2} T_{2}+T_{0} T_{1}^{2}+T_{1} T_{2}^{2}=p \ell_{2,0}-s_{p}^{2} \tag{79}
\end{equation*}
$$

Using (73)-(75) and (57), it is easy to show that

$$
\begin{aligned}
\gamma_{1}(m) & =\frac{3}{4} \eta^{3}(m) \cos \left(\left(\omega_{2}-\omega_{1}\right) \frac{\pi}{2}+\frac{4 \pi}{3}\right) \\
\gamma_{2}(m) & =\frac{3}{4} \eta^{3}(m) \cos \left(\left(\omega_{2}-\omega_{1}\right) \frac{\pi}{2}+\frac{2 \pi}{3}\right)
\end{aligned}
$$

and

$$
\gamma_{3}(m)=\frac{1}{4} \eta^{3}(m) \cos \left(\left(\omega_{2}-\omega_{1}\right) \frac{\pi}{2}\right)
$$

Since, cf. (66), $\alpha_{0}(m)+\alpha_{1}(m)+\alpha_{2}(m)=0$, from (76) we find that

$$
\gamma_{4}(m)=-\gamma_{1}(m)-\gamma_{2}(m)+3 \gamma_{3}(m)
$$

Therefore,

$$
\gamma_{4}(m)=\frac{3}{2} \eta^{3}(m) \cos \left(\left(\omega_{2}-\omega_{1}\right) \frac{\pi}{2}\right) .
$$

Note that if $w_{2}-w_{1}$ is even then

$$
\gamma_{1}(m)=\gamma_{2}(m)=-\frac{3}{2} \gamma_{3}(m)=-\frac{1}{4} \gamma_{4}(m)=-\frac{3}{8} \eta^{3}(m)(-1)^{\frac{w_{2}-w_{1}}{2}}
$$

while if $w_{2}-w_{1}$ is odd then

$$
\gamma_{1}(m)=-\gamma_{2}(m)=-\frac{3 \sqrt{3}}{8} \eta^{3}(m)(-1)^{\frac{w_{2}-w_{1}+1}{2}}, \quad \gamma_{3}(m)=0, \quad \gamma_{4}(m)=0
$$

For $w_{2}-w_{1}$ even, from (72), (77)-(79) and (28), we get

$$
\nu_{p}=\frac{1}{8}(-1)^{\frac{\omega_{2}-\omega_{1}}{2}} p \eta^{3}(m)\left(9 \ell_{2,1}-p-1\right)
$$

For $w_{2}-w_{1}$ odd, from (72) and (77)-(79), we get

$$
\nu_{p}=\frac{3 \sqrt{3}}{8}(-1)^{\frac{\omega_{2}-\omega_{1}+1}{2}} p \eta^{3}(m)\left(\ell_{1,0}-\ell_{2,0}\right)
$$

By (29), (32) and (33), we have

$$
\ell_{1,0}-\ell_{2,0}=-M
$$

Lastly, for $w_{2}-w_{1}$ even (resp. odd), (60) follows from (53) (resp. the last equality).

Example: $p=43$.
As an explicit example, let us consider the case $p=43$. Then

$$
1+z^{43}=(1+z) P_{1}(z) P_{2}(z) P_{3}(z)
$$

where $P_{1}(z)=z^{14}+z^{12}+z^{10}+z^{7}+z^{4}+z^{2}+1, P_{2}(z)=z^{14}+z^{11}+z^{10}+z^{9}+z^{8}+z^{7}+$ $z^{6}+z^{5}+z^{4}+z^{3}+1$ and $P_{3}(z)=z^{14}+z^{13}+z^{11}+z^{7}+z^{3}+z+1$ are the only irreducible polynomials over $\mathbb{F}_{2}[z]$ of order 43 . For $1 \leq l \leq 3$, let $\mathcal{A}\left(P_{l}\right)$ be the unique set defined by (3). For $m \geq 1$, let $\mathcal{A}\left(P_{l}\right)_{m}$ denote the set of the elements of $\mathcal{A}\left(P_{l}\right)$ of the form $2^{k} m$. We give bellow the description of the sets $\mathcal{A}\left(P_{l}\right)_{1}$ and $\mathcal{A}\left(P_{l}\right)_{3} ; 1 \leq l \leq 3$.
Since $p=43$ then $g=3$ is a generator of the cyclic group $(\mathbb{Z} / 43 \mathbb{Z})^{*}$. Let L and M be the unique integers satisfying $4 p=172=L^{2}+27 M^{2}, L \equiv 1(\bmod 3)$ and $\left(g^{2}\right)^{(p-1) / 3}=$ $\left(3^{2}\right)^{14} \equiv \frac{L+9 M}{L-9 M}(\bmod 43)$. Hence, $L=-8, M=-2, R_{1}(y)=\left(y^{3}-y^{2}-14 y-8\right)^{14}$ and $R_{3}(y)=\left(27 y^{3}-129 y+86\right)^{14}$.
By using the function polrootspadic of PARI, the 2 -adic expansions of the zeros of the polynomial $R_{1}(y)$ are
$2^{2}+2^{3}+2^{6}+2^{10}+2^{13}+2^{17}+2^{18}+2^{20}+2^{22}+2^{25}+2^{27}+2^{29}+2^{30}+2^{32}+2^{33}+2^{36}+\cdots$
$2+2^{4}+2^{6}+2^{7}+2^{10}+2^{15}+2^{16}+2^{19}+2^{20}+2^{23}+2^{26}+2^{27}+2^{31}+2^{34}+2^{35}+\cdots$
$1+2+2^{5}+2^{6}+2^{7}+2^{9}+2^{10}+2^{12}+2^{14}+2^{20}+2^{24}+2^{27}+\cdots$
and the 2 -adic expansions of the zeros of the polynomial $R_{3}(y)$ are
$1+2^{2}+2^{3}+2^{4}+2^{6}+2^{7}+2^{12}+2^{17}+2^{18}+2^{19}+2^{20}+2^{21}+2^{25}+2^{27}+2^{31}+2^{32}+2^{35}+2^{36}+\cdots$
$1+2^{2}+2^{5}+2^{7}+2^{10}+2^{13}+2^{14}+2^{19}+2^{20}+2^{22}+2^{23}+2^{24}+2^{25}+2^{27}+2^{29}+2^{34}+\cdots$
$2+2^{2}+2^{3}+2^{4}+2^{5}+2^{6}+2^{9}+2^{11}+2^{15}+2^{16}+2^{19}+2^{21}+2^{22}+2^{23}+2^{24}+2^{27}+2^{30}+2^{33}+\cdots$.
After computing some first few elements of the sets $\mathcal{A}\left(P_{l}\right)$, we deduce that
$\mathcal{A}\left(P_{1}\right)_{1}=\left\{2,2^{4}, 2^{6}, 2^{7}, 2^{10}, 2^{15}, 2^{16}, 2^{19}, 2^{20}, 2^{23}, 2^{26}, 2^{27}, 2^{31}, 2^{34}, 2^{35}, \ldots\right\}$
$\mathcal{A}\left(P_{2}\right)_{1}=\left\{2^{2}, 2^{3}, 2^{6}, 2^{10}, 2^{13}, 2^{17}, 2^{18}, 2^{20}, 2^{22}, 2^{25}, 2^{27}, 2^{29}, 2^{30}, 2^{32}, 2^{33}, 2^{36}, \ldots\right\}$
$\mathcal{A}\left(P_{3}\right)_{1}=\left\{1,2,2^{5}, 2^{6}, 2^{7}, 2^{9}, 2^{10}, 2^{12}, 2^{14}, 2^{20}, 2^{24}, 2^{27}, \ldots\right\}$.
$\mathcal{A}\left(P_{1}\right)_{3}=\left\{2.3,2^{2} .3,2^{3} .3,2^{4} .3,2^{5} .3,2^{6} .3,2^{9} .3,2^{11} .3,2^{15} .3,2^{16} .3,2^{19} .3,2^{21} .3,2^{22} .3,2^{23} .3,2^{24} .3, \ldots\right\}$
$\mathcal{A}\left(P_{2}\right)_{3}=\left\{3,2^{2} .3,2^{3} .3,2^{4} .3,2^{6} .3,2^{7} .3,2^{12} .3,2^{17} .3,2^{18} .3,2^{19} .3,2^{20} .3,2^{21} .3,2^{25} .3,2^{27} .3,2^{31} .3, \ldots\right\}$
$\mathcal{A}\left(P_{3}\right)_{3}=\left\{3,2^{2} .3,2^{5} .3,2^{7} .3,2^{10} .3,2^{13} .3,2^{14} .3,2^{19} .3,2^{20} .3,2^{22} .3,2^{23} .3,2^{24} .3,2^{25} .3,2^{27} .3,2^{29} .3, \ldots\right\}$.

6 Acknowledgments

We are pleased to thank professors F. Ben Saïd, F. Morain, C. Delaunay and J.- L. Nicolas for valuable comments and helpful discussions. We also would like to thank the referees for their valuable remarks that help to improve the initial version of this paper.

References

[1] N. Baccar, Sets with even partition function and 2-adic integers, Periodica Math. Hungar 55 (2007), 177-193.
[2] N. Baccar and F. Ben Saïd, On sets such that the partition function is even from a certain point on, Internat. J. Number Theory 5 (2009), 1-22.
[3] N. Baccar, F. Ben Saïd and A. Zekraoui, On the divisor function of sets with even partition functions, Acta Math. Hungar 112 (2006), 25-37.
[4] F. Ben Saïd, On some sets with even valued partition function, Ramanujan J. 9 (2005), 63-75.
[5] F. Ben Saïd and J.-L. Nicolas, Even partition functions, Séminaire Lotharingien de Combinatoire (http//www.mat.univie.ac.at/ slc/), 46 (2002), B 46 i.
[6] F. Ben Saïd, J.-L. Nicolas and A. Zekraoui, On the parity of generalised partition function III, to appear in J. Théorie Nombres Bordeaux.
[7] F. Ben Saïd, H. Lahouar and J.-L. Nicolas, On the counting function of the sets of parts such that the partition function takes even values for n large enough, Discrete Math. 306 (2006), 1115-1125.
[8] S. A. Katre, Jacobsthal sums in terms of quadratic partitions of a prime. In K. Alladi, editor, Number Theory, volume 1122 of Lecture Notes in Math., Springer-Verlag, 1985, pp. 153-162.
[9] M. Mignotte, Mathématiques pour le Calcul Formel, Presses Universitaires de France, 1989.
[10] J.-L. Nicolas, I.Z. Ruzsa and A. Sárközy, On the parity of additive representation functions, J. Number Theory 73 (1998), 292-317.
[11] H. S. Wilf, Generatingfunctionology, Academic Press, Second Edition, 1994.

2000 Mathematics Subject Classification: Primary 11P83; Secondary 11B50, 11D88, 11G20. Keywords: Partitions, periodic sequences, order of a polynomial, cyclotomic polynomials, resultant, 2-adic integers, elliptic curves.

Received July 16 2009; revised version received December 23 2009. Published in Journal of Integer Sequences, December 312009.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Research supported DGRST of Tunisia, UR 99/15-18, Faculté des Sciences de Tunis.

