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Abstract

We study families of generalized Catalan numbers, defined by convolution recur-

rence equations. We explore their relations to series reversion, Riordan array trans-

forms, and in a special case, to Somos-4 sequences via the mechanism of the Hankel

transform.

1 Introduction

This note is concerned with the solutions to the following two convolution recurrences:

an =

{

1, if n = 0;

αan−1 + β
∑n−1

k=0 akan−1−k, if n > 0.
(1)

and

an =











1, if n = 0;

α, if n = 1;

αan−1 + βan−2 + γ
∑n−2

k=0 akan−2−k, if n > 1.

(2)

We call the elements of these sequences generalized Catalan numbers, since the Catalan
numbers Cn = 1

n+1

(

2n

n

)

satisfy equation (1) with α = 0 and β = 1:

Cn =

{

1, if n = 0;
∑n−1

k=0 CkCn−1−k, if n > 0.
(3)
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Many of the sequences that we will encounter have interesting Hankel transforms [1, 3, 8],
and many will have generating functions that we can describe using Riordan arrays [2, 11, 14]
and continued fractions [18]. Many interesting examples of sequences and Riordan arrays
can be found in Neil Sloane’s On-Line Encyclopedia of Integer Sequences (OEIS), [12, 13].
Sequences are frequently referred to by their Annnnnn OEIS number.

For instance, the Motzkin numbers Mn A001006 satisfy equation (2) with α = 1, β = 0
and γ = 1:

Mn =











1, if n = 0;

1, if n = 1;

Mn−1 +
∑n−2

k=0 MkMn−2−k, if n > 1.

(4)

To see why this should be so, we translate this equation into the corresponding algebraic
equation for generating functions:

G(x) = 1 + xG(x) + x2G(x)2,

with solution

m(x) = G(x) =
1 − x −

√
1 − 2x − 3x2

2x2
.

Now we can express the g.f. m(x) of the Motzkin numbers in terms of the g.f. of the Catalan
numbers A000108, which is

c(x) =
1 −

√
1 − 4x

2x
.

Thus we have

m(x) =
1

1 − x
c

(

x2

(1 − x)2

)

. (5)

In other words, the generating function of the Motzkin numbers, solution of equation (4),
results from operating on the generating function c(x) of the Catalan numbers by the (gen-
eralized, or stretched) Riordan array

(

1

1 − x
,

x2

(1 − x)2

)

.

We immediately obtain that

Mn =

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck.

Now since the g.f. c(x) of the Catalan numbers may be expressed as the continued fraction

c(x) =
1

1 −
x

1 −
x

1 − · · ·

, (6)
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we can infer from equation (5) that the continued fraction expression for m(x) is given by

m(x) =
1

1 − x −
x2

1 − x −
x2

1 − · · ·

. (7)

Thus m(x) satisfies the relation

m(x) =
1

1 − x − x2m(x)
.

The continued fraction expression in equation (7) shows in particular that the Hankel trans-
form of the Motzkin numbers is given by the all 1’s sequence 1, 1, 1, . . ..

In the next section, we will review known results concerning Riordan arrays and Hankel
transforms that will be useful in the sequel.

2 Preliminaries on integer sequences, Riordan arrays

and Hankel transforms

For an integer sequence an, that is, an element of Z
N, the power series f(x) =

∑∞
k=0 akx

k

is called the ordinary generating function or g.f. of the sequence. an is thus the coefficient
of xn in this series. We denote this by an = [xn]f(x). For instance, Fn = [xn] x

1−x−x2 is

the n-th Fibonacci number A000045, while Cn = [xn]1−
√

1−4x

2x
is the n-th Catalan number

A000108. We use the notation 0n = [xn]1 for the sequence 1, 0, 0, 0, . . . , A000007. Thus
0n = [n = 0] = δn,0 =

(

0
n

)

.
For a power series f(x) =

∑∞
n=0 anx

n with f(0) = 0 and f ′(0) 6= 0 we define the reversion

or compositional inverse of f to be the power series f̄(x) (also written as f [−1](x)) such that
f(f̄(x)) = x. We sometimes write f̄ = Revf .

The aeration of a sequence with g.f. f(x) is the sequence with g.f. f(x2).
For a lower triangular matrix (an,k)n,k≥0 the row sums give the sequence with general

term
∑n

k=0 an,k while the diagonal sums form the sequence with general term

⌊n
2
⌋

∑

k=0

an−k,k.

The Riordan group [11, 14], is a set of infinite lower-triangular integer matrices, where
each matrix is defined by a pair of generating functions g(x) = 1 + g1x + g2x

2 + · · · and
f(x) = f1x + f2x

2 + · · · where f1 6= 0 [14]. The associated matrix is the matrix whose
i-th column is generated by g(x)f(x)i (the first column being indexed by 0). The matrix
corresponding to the pair g, f is denoted by (g, f) or R(g, f). The group law is then given
by

(g, f) · (h, l) = (g, f)(h, l) = (g(h ◦ f), l ◦ f).
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The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .

If M is the matrix (g, f), and a = (a0, a1, . . .)
′ is an integer sequence with ordinary gen-

erating function A(x), then the sequence Ma has ordinary generating function g(x)A(f(x)).
The (infinite) matrix (g, f) can thus be considered to act on the ring of integer sequences
Z

N by multiplication, where a sequence is regarded as a (infinite) column vector. We can
extend this action to the ring of power series Z[[x]] by

(g, f) : A(x) 7→ (g, f) · A(x) = g(x)A(f(x)).

Example 1. The so-called binomial matrix B A007318 is the element ( 1
1−x

, x
1−x

) of the

Riordan group. It has general element
(

n

k

)

, and hence as an array coincides with Pascal’s
triangle. More generally, Bm is the element ( 1

1−mx
, x

1−mx
) of the Riordan group, with general

term
(

n

k

)

mn−k. It is easy to show that the inverse B−m of Bm is given by ( 1
1+mx

, x
1+mx

).

Example 2. If an has generating function g(x), then the generating function of the sequence

bn =

⌊n
2
⌋

∑

k=0

an−2k

is equal to
g(x)

1 − x2
=

(

1

1 − x2
, x

)

· g(x),

while the generating function of the sequence

dn =

⌊n
2
⌋

∑

k=0

(

n − k

k

)

an−2k

is equal to
1

1 − x2
g

(

x

1 − x2

)

=

(

1

1 − x2
,

x

1 − x2

)

· g(x).

The row sums of the matrix (g, f) have generating function

(g, f) · 1

1 − x
=

g(x)

1 − f(x)

while the diagonal sums of (g, f) (sums of left-to-right diagonals in the North East direc-
tion) have generating function g(x)/(1 − xf(x)). These coincide with the row sums of the
“generalized” Riordan array (g, xf):

(g, xf) · 1

1 − x
=

g(x)

1 − xf(x)
.
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For instance the Fibonacci numbers Fn+1 are the diagonal sums of the binomial matrix B

given by
(

1
1−x

, x
1−x

)

:






















1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
1 3 3 1 0 0 · · ·
1 4 6 4 1 0 · · ·
1 5 10 10 5 1 · · ·
...

...
...

...
...

...
. . .























while they are the row sums of the “generalized” or “stretched” (using the nomenclature of

[2] ) Riordan array
(

1
1−x

, x2

1−x

)

:























1 0 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 2 0 0 0 0 · · ·
1 3 1 0 0 0 · · ·
1 4 3 0 0 0 · · ·
...

...
...

...
...

...
. . .























.

It is often the case that we work with “generalized” Riordan arrays, where we relax some of
the defining conditions above. Thus for instance [2] discusses the notion of the “stretched”
Riordan array. In this note, we shall encounter “vertically stretched” arrays of the form
(g, h) where now f0 = f1 = 0 with f2 6= 0. Such arrays are not invertible, but we may
explore their left inversion. In this context, standard Riordan arrays as described above are
called “proper” Riordan arrays. We note for instance that for any proper Riordan array
(g, f), its diagonal sums are just the row sums of the vertically stretched array (g, xf) and
hence have g.f. g/(1 − xf).

The Hankel transform of a given sequence A = {a0, a1, a2, ...} is the sequence of Hankel
determinants {h0, h1, h2, . . .} where hn = |ai+j|ni,j=0, i.e

A = {an}n∈N0
→ h = {hn}n∈N0

: hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 · · · an

a1 a2 an+1
...

. . .

an an+1 a2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (8)

The Hankel transform of a sequence an and that of its binomial transform are equal.
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In the case that an has g.f. g(x) expressible in the form

g(x) =
a0

1 − α0x −
β1x

2

1 − α1x −
β2x

2

1 − α2x −
β3x

2

1 − α3x − · · ·
then we have [7, 6, 18]

hn = an
0β

n−1
1 βn−2

2 · · · β2
n−1βn = an

0

n
∏

k=1

βn−k
k . (9)

Note that this independent from αn.

We note that αn and βn are in general not integers. Now let H

(

u1 · · · uk

v1 · · · vk

)

be the

determinant of Hankel type with (i, j)-th term µui+vj
[5, 17]. Let

∆n = H

(

0 1 · · · n
0 1 · · · n

)

, ∆′ = H

(

0 1 · · · n − 1 n
0 1 · · · n − 1 n + 1

)

.

Then we have

αn =
∆′

n

∆n

− ∆′
n−1

∆n−1

, βn =
∆n−2∆n

∆2
n−1

. (10)

An integer sequence tn is said to have the generalized Somos-4 property if there exists a
pair of integers (r, s) such that

tn =
rtn−1tn−3 + st2n−2

tn−4

, n ≥ 4. (11)

Alternatively (to avoid division by zero), we require that

tntn−4 = rtn−1tn−3 + st2n−2, n ≥ 4. (12)

Note that it is sometimes useful to relax the integer condition on the pair (r, s) and to allow
them to be rational integers. Somos-4 sequences are most commonly associated with the x-
coordinate of rational points on an elliptic curve [4, 15, 16]. The link between these sequences
and Hankel transforms is made explicit in Theorem 7.1.1 of [15], for instance. Letting [n]P
denote the n-fold sum P + · · · + P of points on an elliptic curve E, this result implies the
following: if P = (x̄, ȳ) and Q = (x0, y0) are two distinct non-singular rational points on
an elliptic curve E, denote, for all n ∈ Z such that Q + [n]P 6= O (the point at infinity on
E), by (xn, yn) the coordinates of the point Q + [n]P . Then under these circumstances the
numbers determined by

sn = (−1)(
n+1

2 )(xn−1 − x̄)(xn−2 − x̄)2 · · · (x1 − x̄)n−1(x0 − x̄)ns0

(

s0

s−1

)n

are elements of a Somos 4 sequence (given appropriate s0, s−1 6= 0). We can re-write this as

sn = s0

(

s0

s−1

)n n−1
∏

k=0

(x̄ − xk)
n−k.
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3 The equation an = αan−1 + β
∑n−1

k=0 akan−1−k, n > 0, a0 = 1

In this section, we look in more detail at the solution to the equation (1):

an =

{

1, if n = 0;

αan−1 + β
∑n−1

k=0 akan−1−k, if n > 0.

We have the following proposition:

Proposition 3. We let an be a solution of the convolution recurrence

an =

{

1, if n = 0;

αan−1 + β
∑n−1

k=0 akan−1−k, if n > 0.

Then the g.f. of an is given by

g(x) =
1

1 − αx
c

(

βx

(1 − αx)2

)

. (13)

The g.f. g(x) may be expressed in continued fraction form as follows:

g(x) =
1

1 −
(α + β)x

1 −
βx

1 −
(α + β)x

1 −
βx

1 − · · ·

=
1

1 − αx −
βx

1 − αx −
βx

1 − · · ·

=
1

1 − (α + β)x −
β(α + β)x2

1 − (α + 2β)x −
β(α + β)x2

1 − (α + 2β)x −
β(α + β)x2

1 − · · ·

.
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We have the following expressions for an:

an =
n

∑

k=0

(

n + k

2k

)

Ckα
n−kβk

=
n

∑

k=0

(

2n − k

k

)

Cn−kα
kβn−k

=
1

n

n
∑

k=0

(

n

k

)(

n

k − 1

)

βn−k(α + β)k, n > 0, a0 = 1

=
1

n

n
∑

k=0

(

n

k

)(

n

k + 1

)

βk(α + β)n−k, n > 0, a0 = 1.

In addition, we have

an = [xn+1]Rev
x(1 − βx)

1 + αx
. (14)

Proof. The g.f. g(x) of the solution an of equation (1) satisfies the equation

g(x) = 1 + αxg(x) + βxg(x)2.

Hence

g(x) =
1 − αx −

√

1 − 2x(α + 2β) + α2x2

2βx
. (15)

Thus

g(x) =
1

1 − αx
c

(

βx

(1 − αx)2

)

.

Now the reversion of the expression x(1−βx)
1+αx

is the solution u = u(x) of the equation

u(1 − βu)

1 + αu
= x.

We find that

u(x) =
1 − αx −

√

1 − 2x(α + 2β) + α2x2

2β
= xg(x). (16)

Thus

an = [xn+1]Rev
x(1 − βx)

1 + αx
.

We deduce from the fact that

g(x) =
1

1 − αx
c

(

βx

(1 − αx)2

)

=

(

1

1 − αx
,

βx

(1 − αx)2

)

· c(x)
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that

an =
n

∑

k=0

(

n + k

2k

)

Ckα
n−kβk

and the other expressions follow. From the fact that g(x) = 1
1−αx

c
(

βx

(1−αx)2

)

we can infer

that

g(x) =
1

1 − αx −
βx

1 − αx −
βx

1 − · · ·

.

The expression

g(x) =
1

1 −
(α + β)x

1 −
βx

1 −
(α + β)x

1 −
βx

1 − · · ·
follows from the fact that the equation

v =
1

1 −
(α + β)x

1 − βxv

has solution v = g(x). Finally standard contraction techniques [10] for continued fractions
allow us to transform this last expression to

g(x) =
1

1 − (α + β)x −
β(α + β)x2

1 − (α + 2β)x −
β(α + β)x2

1 − (α + 2β)x −
β(α + β)x2

1 − · · ·

.

Corollary 4. The Hankel transform of an is given by (β(α + β))(
n+1

2 ).

Corollary 5. The Hankel transform of an is a (β3(α + β)3, 0) Somos-4 sequence, and a

(0, β4(α + β)4) Somos 4 sequence.

Notable examples of these sequences are the little Schröder numbers A001003 (α = −1,
β = 2), the Catalan numbers A000108 (α = 0, β = 1), and the large Schröder numbers
A006318 (α = 1, β = 1).
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4 The equation an = αan−1 + βan−2 + γ
∑n−2

k=0 akan−2−k.

In this section, we shall consider solutions to the equation

an =











1, if n = 0;

α, if n = 1;

αan−1 + βan−2 + γ
∑n−2

k=0 akan−2−k, if n > 1.

Example 6. We take the example of α = β = γ = 1. In this case, we find that the solution
to

an =











1, if n = 0;

1, if n = 1;

an−1 + an−2 +
∑n−2

k=0 akan−2−k, if n > 1;

is given by

an = [xn]
1

1 − x − x2
c

(

x2

(1 − x − x2)2

)

= [xn]
1

1 − x2
m

(

x

1 − x2

)

.

Thus

an =

⌊n
2
⌋

∑

k=0

(

n − k

k

)

Mn−2k.

This is A128720. We now observe the following. We have

1

1 − x − x2
c

(

x2

(1 − x − x2)2

)

=
1 − x − x2 −

√
1 − 2x − 5x2 + 2x3 + x4

2x2

from which we can deduce the following integral representation (using the Stieltjes transform)
for an:

an =
1

π

∫ 3

2
+

√

13

2

√

5

2
− 1

2

xn

√
−1 − 2x + 5x2 + 2x3 − x4

2x
dx− 1

π

∫ 3

2
−

√

13

2

−

√

5

2
− 1

2

xn

√
−1 − 2x + 5x2 + 2x3 − x4

2x
dx

or

an =
1

π

∫ 3

2
+

√

13

2

√

5

2
− 1

2

xn

√

−(1 + 3x − x2)(1 − x − x2)

2x
dx− 1

π

∫ 3

2
−

√

13

2

−

√

5

2
− 1

2

xn

√

−(1 + 3x − x2)(1 − x − x2)

2x
dx.

We now observe that the Hankel transform hn of an satisfies a (1, 3) Somos-4 relation:

hn =
hn−1hn−3 + 3h2

n−2

hn−4

.

In this case, we obtain the sequence hn that starts

1, 2, 5, 17, 109, 706, 9529, 149057, 3464585, 141172802, . . . ,

which is A174168.
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In the general case, we have the following proposition:

Proposition 7. We let an be the solution of the convolution recurrence

an =











1, if n = 0;

α, if n = 1;

αan−1 + βan−2 + γ
∑n−2

k=0 akan−2−k, if n > 1.

Then the g.f. g(x) of an is given by

g(x) =
1

1 − αx − βx2
c

(

γx2

(1 − αx − βx2)2

)

.

The general term of the sequence an is given by

an =

⌊n
2
⌋

∑

k=0

n−2k
∑

j=0

(

2k + j

j

)(

j

n − 2k − j

)

α2k+2j−nβn−2k−jγkCk. (17)

The g.f. g(x) of an has the continued fraction expansion

g(x) =
1

1 − αx − βx2 −
γx2

1 − αx − βx2 −
γx2

1 − · · ·

. (18)

Proof. The g.f. g(x) of the solution an of equation (2) satisfies the equation

g(x) = 1 + αxg(x) + βx2g(x) + γx2g(x)2.

Solving this equation for g(x) we find that

g(x) =
1 − αx − βx2 −

√

1 − 2αx + (α2 − 2β − 4γ)x2 + 2αβx3 + β2x4

2γx2
,

which is equal to
1

1 − αx − βx2
c

(

γx2

(1 − αx − βx2)2

)

.

Now

1

1 − αx − βx2
c

(

γx2

(1 − αx − βx2)2

)

=

(

1

1 − αx − βx2
,

γx2

(1 − αx − βx2)2

)

· c(x),

where the general term of the stretched Riordan array
(

1
1−αx−βx2 ,

γx2

(1−αx−βx2)2

)

is given by

n−2k
∑

j=0

(

2k + j

j

)(

j

n − 2k − j

)

α2k+2j−nβn−2k−jγk.
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The second assertion follows from this. The continued fraction expansion follows directly
from

g(x) =
1

1 − αx − βx2
c

(

γx2

(1 − αx − βx2)2

)

and the form of the continued fraction expansion (Eq. (6)) for c(x).

Corollary 8. If β = 0, then we have

an =

⌊n
2
⌋

∑

k=0

(

n

2k

)

αn−2kγkCk.

Proof. This follows since in this case, we have

g(x) =
1

1 − αx
c

(

γx2

(1 − αx)2

)

and the fact that the general element of the Riordan array
(

1
1−αx

, x
(1−αx)2

)

is
(

n+k

2k

)

αn−k.

Note that in this case, the Hankel transform of an is γ(n+1

2 ). We also have, in this case,

an = [xn+1]Rev
x

1 + αx + γx2
.

Corollary 9. If α = 0, then we have

an =

⌊n
2
⌋

∑

k=0

(

n+2k
2

2k

)

1 + (−1)n−2k

2
β

n−2k
2 γkCk.

Proof. In this case, we have

an =

⌊n
2
⌋

∑

k=0

n−2k
∑

j=0

(

2k + j

j

)(

j

n − 2k − j

)

02k+2j−nβn−2k−jγkCk.

Thus the surviving element of the j-summation occurs when j = n−2k
2

.

Note that when α = 0, we have

g(x) =
1

1 − βx2
c

(

γx2

(1 − βx2)2

)

.

Thus an in this case is an aerated sequence.
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5 A Somos-4 conjecture

We can now state the following conjecture.

Conjecture 10. Let an be the solution to the second order convolution recurrence

an =











1, if n = 0;

α, if n = 1;

αan−1 + βan−2 + γ
∑n−2

k=0 akan−2−k, if n > 1;

and let hn be the Hankel transform of an. Then hn is a (α2γ2, γ2(γ2 + γ(2β − α2) + β2))
Somos-4 sequence.

Example 11. We return to the Example 6, where α = β = γ = 1. A simple calculation
shows that then α2γ2 = 1 and γ2(γ2 + γ(2β − α2) + β2))=3.

Example 12. We take α = 1, β = 0 and γ = −1. an then begins

1, 1, 0,−2,−3, 1, 11, 15,−13,−77,−86, . . .

which is a variant of the sequence A007440, derived from the series reversion of the g.f. of the

Fibonacci numbers. Then the Hankel transform of an is hn = (−1)(
n+1

2 ), which is a (trivial)
(1, 2) Somos-4 sequence.

Example 13. We take α = 1, β = 2 and γ = −1. Then the sequence an begins

1, 1, 2, 2, 1,−3,−11,−21,−23, 7, 104, . . . ,

and has a Hankel transform hn which begins

1, 1,−3,−1, 17,−49,−209,−1249, 8739,−26399,−888577, . . .

By the conjecture, hn is a (1, 2) Somos-4 sequence.

The following table gives a small sample of (α, β, γ) values and corresponding Somos-4
(r, s) values.
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α β γ (r, s)
2 −2 −1 (4, 13)
−1 −2 −1 (1, 10)
−1 0 −1 (1, 2)
1 2 −1 (1, 2)
3 −3 −1 (9, 25)
3 3 1 (9, 7)
−2 −2 1 (4,−3)
1 −1 1 (1,−1)
1 1 −1 (1, 1)
1 3 −1 (1, 5)
1 2 −2 (4, 8)
1 0 2 (4, 8)
1 2 1 (1, 8)
−1 −3 1 (1, 3)
−1 1 1 (1, 3)
1 −1 1 (1,−1)
1 −1 1 (1,−1)

An approach to the proof of this conjecture would be to employ the methods of [1, 3]. As
indicated by the form of the density functions in Example 6, this would lead to an excursion
into the area of elliptic orthogonal polynomials. This is outside the scope of the current
study. An alternative approach would be to characterize the Hankel transforms of sequences
with generating functions of the form given in Eq. (18).
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