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Abstract

We say a number is flat if it can be written as a non-trivial power of 2 times an odd

squarefree number. The power is the “exponent” and the number of odd primes the

“length”. Let N be flat and 4-perfect with exponent a and length m. If a 6≡ 1 mod 12,

then a is even. If a is even and 3 ∤ N then m is also even. If a ≡ 1 mod 12 then 3 | N

and m is even. If N is flat and 3-perfect and 3 ∤ N , then if a 6≡ 1 mod 12, a is even. If

a ≡ 1 mod 12 then m is odd. If N is flat and 3 or 4-perfect then it is divisible by at

least one Mersenne prime, but not all odd prime divisors are Mersenne. We also give

some conditions for the divisibility by 3 of an arbitrary even 4-perfect number.

1 Introduction

We say a natural number N is multiperfect of abundancy k (or k-perfect) if σ(N) = kN, (k ≥
2), where σ(N) denotes the sum of all of the divisors of N . A perfect number is a multiperfect
number of abundancy 2.

A number of writers have taken an interest in the presence or absence of divisibility by 3
for classes of multiperfect numbers. Carmichael [3] showed that an even multiperfect number
with exactly 4 primes must be divisible by 3, and that there are only two of these numbers,
one with abundancy 3 and the other with abundancy 4. If the abundancy is 3 then the
number is c3 := 29 · 3 · 11 · 31, and if the abundancy is 4 then the number is d1 := 25 · 33 · 5 · 7.
Kishore [5, 6] and also Hagis [4] showed that any odd perfect number not divisible by 3 must
have at least 11 different prime factors. We also have the immediate relationship that if
3 ∤ N , N is 3-perfect if and only if 3N is 4-perfect.
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Now consider the table of all known multiperfect numbers of abundancy 3:

c1 = 23 · 3 · 5,

c2 = 25 · 3 · 7,

c3 = 29 · 3 · 11 · 31,

c4 = 28 · 5 · 7 · 19 · 37 · 73,

c5 = 213 · 3 · 11 · 43 · 127,

c6 = 214 · 5 · 7 · 19 · 31 · 151.

Definition 1. We say a number N is flat if its odd part is square free, i.e. if N can be
written in the form N = 2a · p1 · · · pm where a ≥ 0, m ≥ 0 and p1 < p2 < · · · < pm, where
the pi are odd primes. If N is flat then the value of a is called its exponent and the value
of m its length.

All the known 3-perfect numbers are flat and divisibility of the numbers in this table by
3 is precisely correlated with the parity of the exponent.

Similarly one could consider 4-perfect numbers with the flat shape, for example d7 and
d10 in the partial listing of 4-perfect numbers below:

d1 = 25 · 33 · 5 · 7,

d2 = 23 · 32 · 5 · 7 · 13,

d3 = 22 · 32 · 5 · 72 · 13 · 19,

d4 = 29 · 33 · 5 · 11 · 31,

d5 = 27 · 33 · 52 · 17 · 31,

d6 = 29 · 32 · 7 · 11 · 13 · 31,

d7 = 28 · 3 · 5 · 7 · 19 · 37 · 73,

d8 = 210 · 33 · 52 · 23 · 31 · 89,

d9 = 213 · 33 · 5 · 11 · 43 · 127,

d10 = 214 · 3 · 5 · 7 · 19 · 31 · 151.

There are 36 known examples of 4-perfect numbers, of any shape, and they are all even
and all divisible by 3. (None of the other over 2000 known multiperfect numbers other than
the six 3-perfect and two 4-perfect numbers given above, as of the year this is being written,
are flat.) We are able to demonstrate in part the apparent relationships between flatness,
the divisibility of the number by 3, the parity of the exponent, and its length.

Theorem 2. Let N be flat and 4-perfect with exponent a and length m. If a 6≡ 1 mod 12,
then a is even. If a is even and 3 ∤ N then m is also even. If a ≡ 1 mod 12 then 3 | N and
m is even.

2



Theorem 3. Let N be flat and 3-perfect with exponent a and length m and with 3 ∤ N . If
a 6≡ 1 mod 12 then a is even. If a ≡ 1 mod 12 then m is odd and every odd prime divisor of
N is congruent to 1 modulo 3.

Although the table of examples suggests that all even multiperfect numbers of abundancy
4 are divisible by 3, we are not able to show this completely, but have the following conditions:

Theorem 4. Let N be 4-perfect and even and let N = 2apα1

1 · · · pαm

m be its standard prime
factorization. Then in the following three cases N is divisible by 3:

(A) If a is odd,
(B) If there exists an i with αi odd and pi ≡ 2 mod 3,
(C) If there exists an i with αi ≡ 2 mod 3 and pi ≡ 1 mod 3.
If 3 | N with a even then necessarily at least one of (A) or (B) or (C) hold.

It is also of some interest to observe the existence of Mersenne primes in the factor-
izations of the multiperfect numbers. Of course every 2-perfect number must be divisible
by a Mersenne prime. We are able to show this persists for flat multiperfect numbers of
multiplicities 3 and 4, but that non-Mersenne primes must always be present:

Theorem 5. Let N be even, flat and multiperfect. (A) If the multiplicity is not greater than
4 then N is divisible by at least one Mersenne prime. (B) If all odd prime divisors of N are
Mersenne primes then N is perfect.

2 Proofs of Theorems 2 and 3

In order to prove Theorem 2, we need a number of lemmas. First an elementary divisibility
result:

Lemma 6. Let d and n be positive integers and p be a prime. Then d+1 | n+1 if and only
if σ(pd) | σ(pn).

Lemma 7. If N is a flat 4-perfect number with exponent a, then a 6≡ 3 mod 4 and a 6≡
5 mod 6.

Proof. (1) Let a ≡ 3 mod 4 and N = 2a · p1 · · · pm. Since 4 | a + 1 we have, by Lemma 6,
15 = 24 − 1 | 2a+1 − 1 so we can write

(2a+1 − 1)(p1 + 1) · · · (pm + 1) = 2a+2p1 · · · pm,

15 ·
2a+1 − 1

15
(p1 + 1) · · · (pm + 1) = 2a+23 · 5 · p3 · · · pm,

15 ·
2a+1 − 1

15
· 22 · 2 · 3 · (p3 + 1) · · · (pm + 1) = 2a+23 · 5 · p3 · · · pm,

and therefore 32 divides the right hand side, a contradiction, showing that a 6≡ 3 mod 4.
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(2) Let a ≡ 5 mod 6 and N = 2a · p1 · · · pm. Then

(2a+1 − 1)(p1 + 1) · · · (pm + 1) = 2a+2p1 · · · pm.

Since a + 1 ≡ 0 mod 6, so 5 + 1 | a + 1, so 63 = 32 · 7 = σ(25) | σ(2a) = 2a+1 − 1. So,
32 | p1 · · · pm, which is a contradiction. Therefore, a 6≡ 5 mod 6.

Lemma 8. If N is a flat 4-perfect number with exponent a then a 6≡ 9 mod 12.

Proof. Let σ(N) = 4N and a = 12b + 9 with b ≥ 0, then

σ(N) = σ(2a)σ(p1) · · · σ(pm)

= (2a+1 − 1)(p1 + 1) · · · (pm + 1)

= (26b+5 + 1)(26b+5 − 1)(p1 + 1) · · · (pm + 1)

= 212b+11p1p2 · · · pm.

Note that 3 | 26b+5 + 1. If for any i, (2 ≤ i ≤ m), pi ≡ 2 mod 3, then 3 | pi + 1, which
implies N has too many 3’s. So we can say pi ≡ 1 mod 3, for all i, (2 ≤ i ≤ m).

Since
26b+5 + 1 = 3(21x + 11) = 3(3y + 2),

where x = 26b−1 + 26b−7 + · · · + 25 and y = 7x + 3, then p1 = 3, and 3y + 2 is the product
of some odd prime factors of N . So 3y + 2 =

∏

i∈I pi, where I ⊆ {2, 3, · · · ,m}. Since
3y + 2 ≡ 2 mod 3, but

∏

i∈I pi ≡ 1 mod 3, we reach a contradiction.
Therefore, N is not a 4-perfect number, if a ≡ 9 mod 12.

Lemma 9. Let N be flat, 4-perfect with exponent a, N = 2ap1 · · · pm. If a ≡ 1 mod 12 then
3 | N , for 2 ≤ i ≤ m, pi ≡ 1 mod 3, and m is even.

Proof. Suppose a = 12b + 1, b ≥ 0. We can assume b ≥ 1. Because σ(N) = 4N we have

σ(N) = (212b+2 − 1)(p1 + 1)(p2 + 1) · · · (pm + 1)

= 212b+3p1p2 · · · pm, and

σ(2a) = 212b+2 − 1

= 3(21x + 1)

= 3(3y + 1),

where x = 212b−4 + 212b−10 + · · · + 22 and y = 7x.
So, p1 = 3, and

(212b+2 − 1)

3
(p2 + 1) · · · (pm + 1) = 212b+1p2 · · · pm (1)

If any pi ≡ 2 mod 3, with 2 ≤ i ≤ m, then pi +1 ≡ 0 mod 3, implying there would be too
many 3’s, so for all i with 2 ≤ i ≤ m, we must have pi ≡ 1 mod 3. Now taking the equation
(1) modulo 3, we get

m
∏

i=2

(pi + 1) ≡ 2m−1 ≡ 2a ≡ 2 mod 3

and therefore 2m ≡ 1 mod 3 so m must be even.
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Lemma 10. Let N be flat and 4-perfect with even exponent and suppose also 3 ∤ N . Then
the length of N is even.

Proof. Let N = 2ap1 · · · pm and a = 2b. Since 3 ∤ N , for 1 ≤ i ≤ m each pi ≡ 1 mod 3, and
if 2βi‖pi + 1, since (pi + 1)2−βi is a product of primes congruent to 1 modulo 3, it must also
be congruent to 1 modulo 3. Thus each βi is odd. Since β1 + · · · + βm = 2b + 2, m must be
even.

Now, we can provide the proof of Theorem 2 as follows:

Proof. Suppose N = 2ap1p2 · · · pm is a 4-perfect number. By Lemma 7, we know a 6≡
5 mod 6, which implies a 6≡ 5 mod 12 and a 6≡ 11 mod 12. By Lemma 8 a 6≡ 9 mod 12. By
Lemma 7 again, since a 6≡ 3 mod 4, we have a 6≡ 3 mod 12 and a 6≡ 7 mod 12. Therefore,
since by hypothesis a 6≡ 1 mod 12, a must be even. By Lemma 10 if a is even and 3 ∤ N ,
then m is even. By Lemma 9 if a ≡ 1 mod 12 then 3 | N and m is even.

Lemma 11. If N is a flat 3-perfect number with odd exponent and 3 ∤ N then every odd
prime divisor of N is congruent to 1 modulo 3.

Proof. Let N be flat and 3-perfect with N = 2a · p1 · · · pm, where the exponent a is odd, and
suppose that 3 ∤ N . Then

3 · 2a · p1 · · · pm = σ(2a) · (p1 + 1) · · · (pm + 1). (2)

Since a is odd and 22 ≡ 1 mod 3, then σ(2a) = 2a+1 − 1 ≡ 0 mod 3. Therefore

2a · p1 · · · pm =
σ(2a)

3
(p1 + 1) · · · (pm + 1). (3)

Since 3 ∤ N , then for all i = 1, 2, · · · ,m, pi 6= 3.

If there exists a prime factor pi of N with pi ≡ 2 mod 3, for some i ∈ {1, 2, · · · ,m}, then
in the right hand side of equation (3), (pi + 1) ≡ 0 mod 3, giving 3 | N , a contradiction.

Theorem 3 is a corollary of Theorem 2:

Proof. Let M = 3N . Then M is a flat 4-perfect number with the same exponent a as N .
By Theorem 2, when a 6≡ 1 mod 12, a is even. When a ≡ 1 mod 12, again by Theorem 2 the
length of M is even so the length of N is odd and, by Lemma 11, every odd prime divisor
of N is congruent to 1 modulo 3.

3 Proof of Theorem 4

Definition 12. Let p and q be distinct primes. The exponent of q modulo p, expp q,
is the minimum natural number l such that p | ql − 1, [1, Chapter 10].

For example exp2 q = 1 for all odd primes q. If q 6= 3, exp3 q = q mod 3 = 3−(q|3)
2

, where
we have used the least positive residue and (a|b) is the Legendre symbol. If p > q then
expp q > 1. If expp q > 1 and α > 1 then expp q | α if and only if p | qα − 1.
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Definition 13. If p is a prime and N a natural number let vp(N) be the exponent of the
highest power of p dividing N , or 0 if p does not divide N .

We are able to get the following result from Theorems 94 and 95 in Nagell [7, pp. 164–166]
or Pomerance [8, p. 269]:

Lemma 14. If p is an odd prime and x > 1 an integer with p | x − 1 then for every e ≥ 1

vp

(

xe − 1

x − 1

)

= vp(e).

Lemma 15. (Prime factorization of σ(qe))
Let i ≥ 1 and p be any odd prime, q a prime with q ≥ 2 such that p 6= q. Then
(1) if expp q = 1 then p | σ(qe) if and only if p | e + 1, and
(2) if expp q > 1 then p | σ(qe) if and only if expp q | e + 1.

Proof. (1) Now expp q = 1 if and only if p | q − 1. By Lemma 14

vp(σ(qe)) = vp(
qe+1 − 1

q − 1
) = vp(e + 1)

and both implications of this part follow directly.
(2) If expp q > 1 we have p ∤ q − 1 so q − 1 6≡ 0 mod p. Hence p | σ(qe) ⇔ p | qe+1 − 1 ⇔

expp q | e + 1.

Now we are able to prove Theorem 4.

Proof. (A) If N = 2a · pα1

1 · · · pαm

m and a is odd, then since

(2a+1 − 1)σ(pα1

1 ) · · · σ(pαm

m ) = 2a+2pα1

1 · · · pαm

m

and 3 | 2a+1 − 1, one of the pi must be 3, so 3 | N .
(B) If one of the αi is odd and the corresponding pi ≡ 2 mod 3, then, since 2 | αi + 1, by

Lemma 6, 1 + pi | σ(pαi

i ), so again 3 | N .
(C) Let us suppose that 3 does not divide N . Let b = pα1

1 · · · pαm

m so 3 ∤ b. And, because
of point (A) we may assume that a is even. Then the hypothesis σ(N) = 4N gives

(2a+1 − 1)σ(b) = 2a+2b

which implies

σ(b) = 2b +
2b

2a+1 − 1
.

Suppose b ≡ 2 mod 3. Then since each divisor d of b satisfies 3 ∤ d, each sum b/d + d ≡
0 mod 3. But from the equation above, σ(b) ≡ 0 mod 2, so, since each divisor of b is odd,
b has an even number of divisors. Arrange them in pairs {b/d, d} and add to show that
3 | σ(b) leading to 3 | b, a contradiction.

Since 3 ∤ b, by what we have just shown this means b ≡ 1 mod 3. Then by the given
hypothesis and definition of b, there is a pi ≡ 1 mod 3 and, by (B) if any of the pi ≡ 2 mod 3,
then its corresponding αi is even (otherwise 3 | b).
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Now consider the equation σ(N) = 4N :

(2a+1 − 1)σ(pα1

1 ) · · · σ(pαm

m ) = 2a+2 · b

with a even, and take this equation modulo 3. This leads to

(1 + α1) · · · (1 + αl) ≡ 1 mod 3,

where, if needed, we have reordered the αi to place the non-empty set of those with pi ≡
1 mod 3 first, and l is the number of primes congruent to 1 modulo 3. But given an αi ≡
2 mod 3 we obtain 0 ≡ 1 mod 3, a contradiction which implies therefore 3 | b, so finally
3 | N .

For the necessary condition assume N = 22a · pα1

1 · · · pαm

m and 3 | N . Because 22a+1 − 1 ≡
1 mod 3 we must have an i with 3 | σ(pαi

i ). If exp3 pi = 1 ⇔ pi ≡ 1 mod 3, we must have, by
Lemma 15, 3 | αi + 1 so αi ≡ 2 mod 3 which is (C). If however exp3 pi = 2 then 3 ∤ pi − 1
and 3 | p2

i − 1, so we must have 2 | αi + 1 so αi is odd and pi ≡ 2 mod 3, which is (B).

Lemma 16. Let N be a flat 3-perfect integer, not divisible by 3 and whose exponent a is
even. Let N = 2ap1p2 · · · pm be its standard prime factorization.

(A) There exists an unique j ∈ {1, 2, · · · ,m} such that 3 divides pj + 1.
(B) For each i, 1 ≤ i < j, pi + 1 divides N .

Proof. (A) We have (2a+1−1)(p1 +1)(p2 +1) · · · (pm +1) = 3N . Since a is even, 3 ∤ 2a+1−1.
Since 3 ∤ N , there is an unique j ∈ {1, 2, · · · ,m} such that 3 | pj + 1.

(B) By point (A), pi + 1 is coprime with 3 and pi + 1 divides σ(N) = 3N . Thus
pi + 1 | N .

4 Mersenne Prime Divisors

Recall the statement of Theorem 5: Let N be even, flat and multiperfect. (A) If the multi-
plicity is not greater than 4 then N is divisible by at least one Mersenne prime. (B) If all
odd prime divisors of N are Mersenne primes then N is perfect.

Proof. Let N = 2ap1 · · · pm with m ≥ 1.
(A) We can assume that 3 ∤ N . If the multiplicity k = 2 then N = 2p−1Mp where p is

prime and Mp is a Mersenne prime.
Let k = 4. Write

(2a+1 − 1)(p1 + 1) · · · (pm + 1) = 2a+2p1 · · · pm.

If p1 is not Mersenne, the least odd divisor of p1 + 1 is an odd prime q < p1 which divides
p1 · · · pm and, therefore, divides N . This contradicts the fact that p1 is the least odd divisor
of N . Thus p1 is Mersenne.

Now let k = 3. If a is odd, write
(

2a+1 − 1

3

)

(p1 + 1) · · · (pm + 1) = 2ap1 · · · pm.
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Like in the case k = 4, we deduce from this equation that p1 is Mersenne.
If a is even, by Lemma 16, there exists an unique j such that 3 divides pj + 1. Then

either 3 is the unique odd prime divisor of pj + 1, either there is an odd prime q1 > 3 which
divides pj + 1.

In the latter case let us suppose that no prime factor of N less than pj is Mersenne.
Then there exists an odd prime factor q2 of q1 + 1. By Lemma 16, q2 | q1 + 1 | N . Thus,
q2 < q1 is an another odd prime factor of N less than pj. Repeating this construction we get
a decreasing sequence (qn) of odd prime divisors of N . This is absurd.

In the former case, since p1 < p2 · · · < pm and pm ∤ pi + 1 for 1 ≤ i ≤ m, we must have
pm | 2a+1 − 1, so, assuming jo < m, we can write

(

2a+1 − 1

pm

)(

p1 + 1

2α1

)

· · ·

(

pjo
+ 1

3 · 2αo

)

· · ·

(

pm + 1

2αm

)

= p1 · · · pm−1,

where each αi = v2(pi+1), so that each term on the left is odd. Each of the terms (pi+1)/2αi

for i 6= jo on the left hand side can be written as a non-empty product of distinct primes
from {p1, · · · , pm−1} and there are exactly m − 1 such terms. Therefore we can cancel each
from both sides to derive 2a+1 − 1 = pm, so pm is Mersenne. Also, we note that (p1 + 1)/2α1

must be 1, meaning that p1 is a Mersenne prime.
If however jo = m, then since there are at least two odd prime divisors [2] then the

smallest odd prime divisor of N is Mersenne: canceling the 3’s in the expression

σ(2a)(p1 + 1) · · · 3 · 2αo = 3 · 2ap1 · · · pm

shows that all potential odd prime divisors of p1 + 1 are too large to actually occur so p1

must be Mersenne.

(B) Let σ(N) = kN for some k ≥ 2 and suppose that all of the pi are Mersenne. Then

σ(2a)(p1 + 1) · · · (pm + 1) = k · 2a · p1 · · · pm.

There exist primes qi such that pi = 2qi − 1. Therefore

(2a+1 − 1) · 2q1 · · · 2qm = k · 2a · (2q1 − 1) · · · (2qm − 1)

so a ≤ q1 + · · · + qm and for each i, 2qi − 1 | 2a+1 − 1. But then Lemma 6 implies qi | a + 1,
and, since necessarily these qi’s are distinct primes, q1 · · · qm | a + 1 giving

q1 · · · qm ≤ a + 1 ≤ q1 + q2 + · · · qm + 1.

It follows (say by induction on m) that m = 1, therefore N = 2a · p1. Then

(2a+1 − 1)(p1 + 1) = k2ap1

implies p1 | 2a+1 − 1 and 2a | p1 + 1, so 2a ≤ p1 + 1 ≤ 2a+1 or

1 ≤
p1 + 1

2a
≤ 2.

If (p1 +1)/2a = 1 then p1 +1 = 2a, so p1 = 2a − 1 and 2a − 1 | 2a+1 − 1, which implies a = 1.
It leads to the perfect number 6. If (p1 + 1)/2a = 2, then p1 = 2a+1 − 1 giving k = 2, so N
is perfect.
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5 Comments

The six flat 3-perfect numbers given in the introduction have been known for over 100 years.
There are no flat multiperfect numbers known of abundancy 5 or more, so in addition to
the conjecture that all even 4-perfect numbers, flat or otherwise, are divisible by 3, an
additional problem in this area is to find an upper bound for the possible multiplicities of
flat multiperfect numbers. We have not been able to do this.
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