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Abstract
We derive some identities and inequalities concerning the Mobius function. Our
main tool is phi functions for intervals of positive integers and their unions.

Introduction

The Mobius function p is an important arithmetic function in number theory and combina-
torics that appears in various identities. We mention the following identities which are well
known and can be found in books on elementary number theory and arithmetic functions.
Let n be a positive integer. Then

1, ifn=1;
d — ) I
Zu( ) {O, ifn>1.
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If 7(n) is the number of divisors of n, then

> ud)r(n/d) =1.
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If n= H:Zl pf is the prime decomposition of n, then

S uldAd) =2,
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where )\ denotes the Liouville lambda function defined as follows:
Iftm=1][_, pi is the prime decomposition of m, then

Am) = (<15t

For a survey on combinatorial identities we refer to Hall [6] and Riordan [9] and their
references. In this note we shall prove the following two theorems on identities involving the
Mobius mu function.

Theorem 1. Let m and n be positive integers such that n > 1. Then we have
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1, if ged(m,n) > 1 and ged(m + 1,n) > 1;
2, if ged(m,n) =1 and ged(m + 1,n) > 1 or ged(m,n) > 1 and gcd(m + 1,n) = 1;
3, if ged(m,n) = ged(m + 1,n) = 1.

Theorem 2. Let m and n be positive integers such that n > 1. Then we have:

o g2 -

0, if ged(m,n) > 1 and ged(m + 1,n) > 1;
1, if ged(m,n) =1 and gcd(m + 1,n) > 1 or ged(m,n) > 1 and ged(m + 1,n) = 1;
2, if ged(m,n) = ged(m + 1,n) = 1.
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1, if ged(m,n) > 1 and ged(m +1,n) > 1;

2, if ged(m,n) =1 and ged(m + 1,n) > 1 or ged(m,n) > 1 and ged(m + 1,n) = 1;

3, if ged(m,n) = ged(m + 1,n) = 1.

Our proofs are combinatorial with phi functions for integer subsets as a main tool. For
the sake of completeness we include the following result which is a natural extension of

El Bachraoui [3, Theorem 2 (a)] on Mébius inversion for arithmetical functions in several
variables. For simplicity we let

(ma,ﬁb) = (ml,mg, ey Mg, Ny, No,y .. ,nb)

(e [2) - 2 e ) 2] 2]

and



Theorem 3. If F' and G are arithmetical of a + b variables, then
—  — Mg ny
amm = 3 r([d)
d| ged(mi,ma,...,mq)
if and only if

F,m) = > wdG (% {%D .

d| ged(mi,ma,...,maq)

2 Phi functions

Throughout let k, I, m, Iy, I3, my, mo and n be positive integers such that [ < m and
I <my <y < mg, let [[,m] = {l,l+1,...,m}, and let A be a nonempty finite set of
positive integers. The set A is called relatively prime to n if gcd(AU {n}) = ged(A,n) = 1.

Definition 4. Let
O(An)=#{X CA: X #(and ged(X,n) =1}

and
Op(An) =#{X CA: #X =k and ged(X,n) =1}.

Nathanson, among other things, introduced ®(n) and ®(n) (in our terminology ®([1,n|,n)
and @i ([1,n],n) respectively) along with their formulas in Nathanson [7]. Formulas for
®([m, n],n) and ®x([m,n],n) can be found in El Bachraoui [3] and Nathanson and Orosz
8] and formulas for ®([1,m],n) and ®x([1,m],n) are obtained in El Bachraoui [4]. Ayad
and Kihel in [1, 2] considered extensions to sets in arithmetic progression and obtained for-
mulas for ®([l, m],n) and ®x([l, m],n) as consequences. Recently the following formulas for
O ([1,m1] U [la, ma]) and Pk ([1,m1] U [la, msa]) have been found in El Bachraoui [5].

Theorem 5. We have

(a) ®([L,m] U [laymal,n) = Y p(d)2ld R,
dn
my ma | _ | l2—1
(b) @r([Lmi) U lle,ma]in) = 3 uld) (Ldjﬂko LdJ).
din

3 Phi functions for [y, m] U [l3, mo]

We need two lemmas.

Lemma 6. Let
\I/(ll,ml,lg,mQ,n) = #{X Q [ll,ml] U [lg,mg] . 11,12 c X and ng(X, n) = 1},

\I/k(ll,ml,lz,mg,n) = #{X Q [ll,ml] U [lg,mg] . ll,lg - X, |X| = k’, and ng(X, n) = 1}
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Then -
(a) V(ly,my,ly,me,n) = M(d)QLTlH‘LTQJ—ITQ’
d| ged(l1,l2,n)

mi me | _ Litls
(b) Up(my,la,me,n) = Z M(@(LdJ*‘iji d )

d| ged(l1,l2,n)
Proof. (a) Assume first that my < n. Let P(ly,mq,ls,ms) denote the set of subsets of
[l1,m1] U [lo, mso] containing l; and Il and let P(ly,mq,l3, mo,d) be the set of subsets X
of [ly,m1] U [la, ms] such that l,l; € X and ged(X,n) = d. It is clear that the set
P(ly,my,ly,my) of cardinality 2m1Tm2=0~l2 can be partitioned using the equivalence rela-
tion of having the same ged (dividing Iy, l» and n). Moreover, the mapping A — X
is a one-to-one correspondence between P(ly,my,ls, me,d) and the set of subsets Y of
[l1/d, |my/d]] U [la/d, [ma/d]] such that [1/d,ly/d € Y and ged(Y,n/d) = 1. Then
#P(lbml,lg,mg,d) = \I/(ll/d, Lml/dJ,lg/d, LmQ/dJ,n/d)
Thus
grtmehle = N WP (L my by mayd) =Y Wl /d, [ma/d],lb/d, [may/d],n/d),
d|(l1,12,m) d|(l1,12,m)
which by Theorem 3 is equivalent to
W(ly,my,ly, my,n) = Z M(d)QLml/dHLm/dJ7(ll+l2)/d-
d|(l1,12,m)
Assume now that my > n and let a be a positive integer such that my < n® Asged(X,n) =1

if and only if ged(X,n*) = 1 and p(d) = 0 whenever d has a nontrivial square factor, we
have

\11(117 maq, l27 mao, n) - ‘P<l17 may, 127 ma, na)

= Z ,U(d)2tml/dJ+Lm2/dJ*(llJrlz)/d
d|(l1,l2,n®)

= 3 p(dym/amad— (it fd,
d|(l1,l2,n)

(b) For the same reason as before, we may assume that ms < n. Noting that the correspon-
dence X +— éX defined above preserves the cardinality and using an argument similar to
the one in part (a), we obtain the following identity

my+mo — 1l —1
( 1 k2—21 2) - Z i (li/d, [mi/d],ly/d, [ma/d],n/d)
d|(l1,l2,n)
which by Theorem 3 is equivalent to

\I/k(ll,ml,lg,mg,n) = Z

d|(l1,l2,n

M(d) (Lml/dj + Lmlj/_dJQ_ (ll + l?)/d) '
)



By arguments similar to the ones in the proof of Lemma 6 we have:

Lemma 7. Let
Y(l,m,n) =#{X C[l,m]: l € X and ged(X,n) = 1},
Ur(l,m,n) =#{X C[l,m]: | € X, #X =k, and ged(X,n) = 1}.

Then
Y(l,m,n) = Z p(d)2lmdl=t/d
d| ged(l,n)
d| ged(l,n)

We are now ready to prove the main theorem of this section.

Theorem 8. We have

(@) B0t ma] Ul mal,m) = 3 ()2 BRI 5
dln

(b) (I)k([ll,ml] l27m2 Zu (Lm1 L_ _kLI—J - LQJ J)

Proof. (a) Clearly

([l ma] U [la, ma], n) =

l1—1 mo I1—1
(1) O([1,m] U [l2, mo], n ZZ‘I’ (4, m1, j,ma,n) — Z¢(i7m1,”) =
i=1 j=lz i=1
l1—1 mo 1—1
3" p(dy2l R 127 ] >y ¥ p(d)2l LR 3N paptid-,
din i=1 j=l d|(i,j,n) i=1 d(i,n)

where the second identity follows by Theorem 5, Lemma 6, and Lemma 7. Rearranging the
triple summation in identity (1), we get

l1—1 mo l1—1 me o
503 R <3 TNTS ap
i=1 j=la d|(i,j,n) dn Zd|lyd|l‘2
vodlj
2= |=2]
= 2 pd2 0 >
din =12+
11 1

2 —ZM Al R (1 - o) Z 2

—Z“ PP ()~ om L’"2J+L12Tw)(1_2 127,



Similarly the double summation in identity (1) gives

h—1

(3) Y% u(d)2l =i = 3 u(d)2 (1 - 9= LT7 ).

=1 d|(i,n) dn

Combining identities (1), (2), and (3) we find

&([l1, m1] U [l ma], n) = Zu(d)gt%JH% =R =1
dln

This completes the proof of part (a). Part (b) follows by similar ideas. O
Corollary 9. (Ayad and Kihel [2]) We have

([t m],n) =y 2L,

dn
m| _ | l=1
(o, m =3 (H2 ).
din
Proof. Use Theorem 8 with I; =1, m; =m — 1, and I = my = m. O]

4 Proofs of the main results

Proof of Theorem 1. (a) Apply Corollary 9 to [ = m and k = 1.
(b) Apply Corollary 9 to the interval [m,m + 1].

Proof of Theorem 2. (a) Apply Theorem 8(b) to Iy = m, m; = m+ 1, ls = ms = n, and

k =1 and use the fact that »_, p(d) =0 whenever n > 1.
(b) Apply Theorem 8(b) to [y =m, my =m+ 1, ls = my =n, and k = 2.
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