Journal of Integer Sequences, Vol. 13 (2010), Article 10.3.4

A Generalization of the Question of Sierpiński on Geometric Progressions

Jiagui Luo ${ }^{1}$
College of Mathematics and Information Science
Zhaoqing University
Zhaoqing 526061
P. R. China
Luojg62@yahoo.com.cn
Pingzhi Yuan ${ }^{1}$
School of Mathematics
South China Normal University
Guangzhou 510631
P. R. China
mcsypz@zsu.edu.cn

Abstract

In this paper we prove that there is no geometric progression that contains four distinct integers of the form $D m^{2}+C, D, m \in \mathbb{N}, C= \pm 1, \pm 2, \pm 4$.

1 Introduction

The integers of the form $T_{n}=n(n+1) / 2, n \in \mathbb{N}$, are called triangular numbers. Sierpiński [7, D23] asked whether or not there exist four (distinct) triangular numbers in geometric progression. Szymiczek [10] conjectured that the answer is negative. The problem of finding three such triangular numbers is readily reduced to finding solutions to a Pell equation (by an old result of Gérardin [6]; see also [9, 4]). This implies that there are infinitely many

[^0]such triples, the smallest of which is $\left(T_{1}, T_{3}, T_{8}\right)$. In fact, an easy calculation shows that if $T_{n}=m^{2}$ then
$$
\left(T_{n}, T_{n+2 m}=m(2 n+3 m+1), T_{3 n+4 m+1}=(2 n+3 m+1)^{2}\right)
$$
forms a geometric progression.
Recently M. Bennett [1] proved that there do not exist four distinct triangular numbers in geometric progression with the ratio being a positive integer. Chen and Fang [3] extended Bennett's result to the rational ratio and proved that there do not exist four distinct triangular numbers in geometric progression. Using the theory of Pell equations and a result of Bilu-Hanrot-Voutier [2] on primitive divisors of Lucas and Lehmer numbers, Yang-He [15] and Yang [14] claimed that there is no geometric progression that contains four distinct triangular numbers. But their proof is under the assumption that the geometric progression has an integral common ratio. Fang [5], using only the Störmer theorem on Pell's equation, showed that there is no geometric progression which contains four distinct triangular numbers.

Note that if $T_{n}=n(n+1) / 2, n \in \mathbb{N}$ is a triangular number, then $8 T_{n}=m^{2}-1$, where $m=2 n+1$. Thus the Sierpiński problem is equivalent to whether or not there exist four distinct integers of the form $m^{2}-1$ in geometric progression. In this paper, we consider the more general question whether or not there exists a geometric progression which contains four distinct integers of the form $D m^{2}+C$ with $D, m \in \mathbb{N}, C= \pm 1, \pm 2, \pm 4$. We use Störmer theory on Pell equations to prove the following results:

Theorem 1. Let D be a positive integer. Then there is no geometric progression which contains four distinct integers of the form $D m^{2}+C, m \in \mathbb{N}, C \in\{-4,4\}$.

By Theorem 1, we have the following two Corollaries immediately.
Corollary 2. Let D be a positive integer. Then there is no geometric progression which contains four distinct integers of the form $D m^{2}+C, m \in \mathbb{N}, C \in\{-1,1\}$.
Corollary 3. Let D be a positive integer. Then there is no geometric progression which contains four distinct integers of the form $D m^{2}+C, m \in \mathbb{N}, C \in\{-2,2\}$.

2 Some Lemmas

To prove the above theorem, we need the following lemmas. Throughout this paper, we assume that k, l are coprime positive integers and $k l$ nonsquare; and let $2 \nmid k l$ when $C=2$ or 4 . We need some results on the solutions of the diophantine equations

$$
\begin{equation*}
k x^{2}-l y^{2}=C, C=1,2,4 \tag{1}
\end{equation*}
$$

We recall that the minimal positive solution of Diophantine equation (1) is the positive integer solution (x, y) of equation (1) such that $x \sqrt{k}+y \sqrt{l}$ is the smallest. One can easily see that this is equivalent to determining a positive integer solution (x, y) of equation (1) such that x and y are the smallest. By abuse of language, we shall also refer to $x \sqrt{k}+y \sqrt{l}$ instead of the pair (x, y) as a solution to (1) and call $x \sqrt{k}+y \sqrt{l}$ the minimal positive solution.

If $x_{1} \sqrt{k}+y_{1} \sqrt{l}$ is the minimal positive solution of (1), then we have the following result.

Lemma 4. ([11]) All positive integer solutions of (1) are given by

$$
\frac{x \sqrt{k}+y \sqrt{l}}{\sqrt{C}}=\left(\frac{x_{1} \sqrt{k}+y_{1} \sqrt{l}}{\sqrt{C}}\right)^{n}, n \in \mathbb{N} .
$$

Moreover, we have $2 \nmid n$ when $k>1$ or $C=2$.
Störmer (see [4, p. 391]) proved a result on divisibility properties of solutions of Pell equations. More new results extending Störmer theory had been obtained over the years. We will list some known results that will be used in the proofs in this paper.

Lemma 5. (Störmer's theorem [4, p. 391]) Let D be a positive nonsquare integer. Let $\left(x_{1}, y_{1}\right)$ be a positive integer solution of Pell equation

$$
x^{2}-D y^{2}=C, C \in\{-1,1\}
$$

If every prime divisor of y_{1} divides D, then $x_{1}+y_{1} \sqrt{D}$ is the minimal positive solution.
Considering the Diophantine equation

$$
\begin{equation*}
k x^{2}-l y^{2}=1, \quad k>1 \tag{2}
\end{equation*}
$$

D. T. Walker [12] obtained a result similar to Störmer's theorem. See also Q. Sun and P. Yuan [11].

Lemma 6. ([12, 11]) Let (x, y) be a positive integer solution of (2).
(i) If every prime divisor of x divides k, then either

$$
x \sqrt{k}+y \sqrt{l}=\varepsilon
$$

or

$$
x \sqrt{k}+y \sqrt{l}=\varepsilon^{3}, \quad \text { and } \quad x=3^{s} x_{1}, 3 \nmid x_{1}, 3^{s}+3=4 k x_{1}^{2},
$$

where in both cases $\varepsilon=x_{1} \sqrt{k}+y_{1} \sqrt{l}$ is the minimal positive solution of (2), $s \in \mathbb{N}$.
(ii) If every prime divisor of y divides l, then either

$$
x \sqrt{k}+y \sqrt{l}=\varepsilon
$$

or

$$
x \sqrt{k}+y \sqrt{l}=\varepsilon^{3}, \quad \text { and } \quad y=3^{s} y_{1}, 3 \nmid y_{1}, 3^{s}-3=4 l y_{1}^{2}, \quad s \geq 2 .
$$

Using the method in [11], the first author proved the following results.
Lemma 7. ([8]) Let k, l be coprime positive odd integers and $k l$ nonsquare. Suppose that (x, y) is a positive integer solution of the Diophantine equation

$$
\begin{equation*}
k x^{2}-l y^{2}=2 \tag{3}
\end{equation*}
$$

(i) If every prime divisor of x divides k, then either

$$
x \sqrt{k}+y \sqrt{l}=\varepsilon
$$

or

$$
\frac{x \sqrt{k}+y \sqrt{l}}{\sqrt{2}}=\left(\frac{\varepsilon}{\sqrt{2}}\right)^{3}, \quad \text { and } \quad x=3^{s} x_{1}, 3^{s}+3=2 k x_{1}^{2}
$$

where in both cases $\varepsilon=x_{1} \sqrt{k}+y_{1} \sqrt{l}$ is the minimal positive solution of (3), $s \in \mathbb{N}$.
(ii) If every prime divisor of y divides l, then either

$$
x \sqrt{k}+y \sqrt{l}=\varepsilon
$$

or

$$
\frac{x \sqrt{k}+y \sqrt{l}}{\sqrt{2}}=\left(\frac{\varepsilon}{\sqrt{2}}\right)^{3}, \quad \text { and } \quad y=3^{s} y_{1}, 3^{s}-3=2 l y_{1}^{2}, \quad s \geq 2
$$

Lemma 8. ([8]) Let k, l be coprime positive odd integers and $k l$ nonsquare. Suppose that (x, y) is a positive integer solution of the Diophantine equation

$$
\begin{equation*}
k x^{2}-l y^{2}=4 \tag{4}
\end{equation*}
$$

(i) If every prime divisor of x divides k, then $x \sqrt{k}+y \sqrt{l}=\varepsilon$ is the minimal positive solution of equation (4) except for the case $(k, l, x, y)=(5,1,5,11)$.
(ii) If every prime divisor of y divides l, then $x \sqrt{k}+y \sqrt{l}=\varepsilon$ is the minimal positive solution of equation (4).

Lemma 9. Let $k, l=a_{0} a^{m}$ be coprime positive integers and $k l$ nonsquare with $m>1$ an integer. If $\left(x, a^{r}\right)$ is a positive integer solution of the Diophantine equation

$$
\begin{equation*}
k x^{2}-l y^{2}=C, \quad C \in\{-1,1,-2,2,-4,4\} \tag{5}
\end{equation*}
$$

where r is a non-negative integer. Then $x \sqrt{k}+a^{r} \sqrt{l}=\varepsilon$ is the minimal positive solution of equation (5).

Proof. We only consider the case of $C=1$ (the proofs of the other cases are similar). If $x \sqrt{k}+a^{r} \sqrt{l}$ is not the minimal positive solution of equation (5), then by Lemma 6(ii) and since $u \sqrt{k}+v \sqrt{l}$ is the minimal positive solution, we have $a^{r}=3^{s} v$ and $3 \nmid v$. Therefore, $3 \mid a$. Since $m \geq 2,3^{s}-3=4 a_{0} a^{m} v^{2}$ is also divisible by 9 . Hence $9 \mid 3$, which is a contradiction. This completes the proof of Lemma 9.

Remark 10. Lemma 9 is also true for $l=a_{0} a^{m} / 2^{t}, C= \pm 1$ with $t \leq m$ is a nonnegative integer and $2 \mid l$.

Lemma 11. ([13]) Let $x_{1} \sqrt{k}+y_{1} \sqrt{l}$ be the minimal positive solution of (1) such that $2 \nmid x_{1} y_{1}$ when $C=2$ or 4 . If $x \sqrt{k}+y \sqrt{l}$ is a positive integer solution of (1), then $y_{1} \mid y$. And if $k>1$ or $C=2$, then $x_{1} \mid x$.

Lemma 12. Let $k, l, a, b, r_{2}, r_{3}, r_{4}$ be positive integers such that $\operatorname{gcd}(k, l a b)=1, \operatorname{gcd}(a, b)=$ $1, a>b, r_{2}<r_{3}<r_{4}$. If $2 \mid a b$ but $2 \nmid l$, then following system of Diophantine equations

$$
\begin{gather*}
k x_{1}^{2}-l a^{r_{4}}=C, \tag{6}\\
k x_{2}^{2}-l a^{r_{4}-r_{2}} b^{r_{2}}=C, \tag{7}\\
k x_{3}^{2}-l a^{r_{4}-r_{3}} b^{r_{3}}=C, \tag{8}\\
k x_{4}^{2}-l b^{r_{4}}=C, \tag{9}
\end{gather*}
$$

where $C \in\{-4,4\}$, has no positive integer solutions $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with $x_{1}>x_{2}>x_{3}>x_{4}$. Proof. We now suppose that $2 \mid a$ but $2 \nmid b$.

Case 1: $2 \mid r_{4}$.
If $2 \mid r_{2}$, then we get $k \equiv l \equiv C / 4(\bmod 4)$ by considering the equations $k\left(\frac{x_{1}}{2}\right)^{2}-$ $l\left(\frac{a^{r_{4} / 2}}{2}\right)^{2}=C / 4$ and (9) mod 4. And so by taking $\bmod 4$ for $k\left(\frac{x_{2}}{2}\right)^{2}-l\left(\frac{a^{\left(r_{4}-r_{2}\right) / 2}}{2}\right)^{2}=C / 4$, we have $\left(\frac{x_{2}}{2}\right)^{2}-\left(\frac{a^{\left(r_{4}-r_{2}\right) / 2}}{2}\right)^{2} \equiv 1(\bmod 4)$. This follows that $2 \left\lvert\, \frac{a^{r_{4}-r_{2}}}{4}\right.$. Thus by (6) and Remark 10 of Lemma 9, we know that $\left(\frac{x_{1}}{2}, a^{\frac{r_{2}}{2}}\right)$ is the minimal positive solution of the Diophantine equation

$$
\begin{equation*}
k x^{2}-\frac{l a^{r_{4}-r_{2}}}{4} y^{2}=C / 4 \tag{10}
\end{equation*}
$$

By (7), $\left(\frac{x_{2}}{2}, b^{\frac{r_{2}}{2}}\right)$ is a positive integer solution of (10). By Lemma 11, we obtain $\left.a^{\frac{r_{2}}{2}} \right\rvert\, b^{\frac{r_{2}}{2}}$, which contradicts the assumption that $a>b$.

Similarly we have that $2 \nmid r_{3}$ from (8).
We now suppose that $2 \nmid r_{2}$ and $2 \nmid r_{3}$. Then, by (7), (8), both ($\left.\frac{x_{2}}{2}, a^{\frac{r_{3}-r_{2}}{2}} b^{\frac{r_{2}-1}{2}}\right)$ and $\left(\frac{x_{3}}{2}, b^{\frac{r_{3}-1}{2}}\right)$ are positive integer solutions of the Diophantine equation

$$
k x^{2}-\frac{l a^{r_{4}-r_{3}} b}{4} y^{2}=C / 4 .
$$

Noting that $x_{2}>x_{3}$, by Lemmas 6 and $7, \frac{x_{3}}{2} \sqrt{k}+b^{\frac{r_{3}-1}{2}} \sqrt{\frac{l a^{r_{4}-r_{3} b}}{4}}=\varepsilon$ must be the minimal positive solution. Therefore again by Lemmas 6 and $7, \frac{x_{3}}{2} \sqrt{k}+a^{\frac{r_{3}-r_{2}}{2}} b^{\frac{r_{2}-1}{2}} \sqrt{\frac{l a^{r_{4}-r_{3} b}}{4}}=\varepsilon^{3}$ and $a^{\frac{r_{3}-r_{2}}{2}} b^{\frac{r_{2}-1}{2}}=3^{s} b^{\frac{r_{3}-1}{2}}, 3^{s} \mp 3=l a^{r_{4}-r_{3}} b^{r_{3}}$. It follows that $a^{\left(r_{3}-r_{2}\right) / 2}=3^{s} b^{\left(r_{3}-r_{2}\right) / 2}$, and thus $b=1, a=3$, which contradicts the assumption that $2 \mid a$. This concludes the analysis of Case 1.

Case 2: $2 \nmid r_{4}$. We can prove that $2 \nmid r_{2} r_{3}$ is impossible by using the same method of proving Case 1.

If $2 \mid r_{2}$, then, since $r_{4}-r_{2}>2$, we have $2 \left\lvert\, \frac{a^{r}-r_{2}}{4}\right.$. Therefor by (6) and Remark 10 of Lemma 9, we know that $\left(\frac{x_{1}}{2}, a^{\frac{r_{2}}{2}}\right)$ is the minimal positive solution of the Diophantine equation

$$
\begin{equation*}
k x^{2}-\frac{l a^{r_{4}-r_{2}}}{4} y^{2}=C / 4 \tag{11}
\end{equation*}
$$

By (7), $\left(\frac{x_{2}}{2}, b^{\frac{r_{2}}{2}}\right)$ is a positive integer solution of (11). So by Lemma 11, we obtain $\left.a^{\frac{r_{2}}{2}} \right\rvert\, b^{\frac{r_{2}}{2}}$, which contradicts the assumption that $a>b$.

If $2 \nmid r_{2}$, then $2 \mid r_{3}$, noting that $b^{\frac{r_{4}-1}{2}} \neq 5$, by (9) and Lemma 2.5, $\left(x_{4}, b^{\frac{r_{4}-1}{2}}\right)$ is the minimal positive solution of the Diophantine equation $k x^{2}-l b y^{2}=C$. By $(7),\left(x_{2}, a^{\frac{r_{4}-r_{2}}{2}} b^{\frac{r_{2}-1}{2}}\right)$ is a positive integer solution of $k x^{2}-l b y^{2}=C$. Thus by Lemma 11, we obtain $b^{\frac{r_{4}-1}{2}} \left\lvert\, a^{\frac{r_{4}-r_{2}}{2}} b^{\frac{r_{2}-1}{2}}\right.$. This follows that $\left.b^{\frac{r_{4}-r_{2}}{2}} \right\rvert\, a^{\frac{r_{4}-r_{2}}{2}}$, and so, since $\operatorname{gcd}(a, b)=1, b=1$. We have $2 \left\lvert\, \frac{a^{r_{4}-r_{3}}}{4}\right.$ as shown at the beginning of Case 1. Proceeding as before, we can prove $2 \nmid r_{3}$, which is a contradiction. This concludes the analysis of Case 2. The proof of $2 \nmid a$ and $2 \mid b$ is similar. This completes the proof of Lemma 12.

3 Proof of Theorem 1

Proof. Suppose that there is a geometric progression $\left\{a_{n}\right\}$ which contains four distinct integers $D m_{1}^{2}+C=a_{1} q^{t_{1}}, D m_{2}^{2}+C=a_{1} q^{t_{2}}, D m_{3}^{2}+C=a_{1} q^{t_{3}}, D m_{4}^{2}+C=a_{1} q^{t_{4}}$ with $0 \leq t_{1}<t_{2}<t_{3}<t_{4}$, where $q=b / a$ is the common ratio such that $a \geq 1$ and $\operatorname{gcd}(a, b)=1$. It is easy to see that both a_{1} and q are not zero and that $|q| \neq 1$. Without loss of generality, we may assume that $0<|q|<1$, so $a>|b|>0$. Let $D m_{1}^{2}+C=A, t_{2}-t_{1}=r_{2}, t_{3}-t_{1}=r_{3}, t_{4}-t_{1}=r_{4}$, then $A \neq 0$ and $0<r_{2}<r_{3}<r_{4}$ satisfying

$$
\begin{equation*}
D m_{1}^{2}+C=A, D m_{2}^{2}+C=A q^{r_{2}}, D m_{3}^{2}+C=A q^{r_{3}}, D m_{4}^{2}+C=A q^{r_{4}} . \tag{12}
\end{equation*}
$$

Since $A q^{r_{4}}$ is an integer, then $a^{r_{4}} \mid A b^{r_{4}}$, and so $a^{r_{4}} \mid A$ since $\operatorname{gcd}(a, b)=1$. Let $A=a_{0} a^{r_{4}}$. We can derive that all the numbers $D m_{i}+C, i \in\{1,2,3,4\}$ are positive integers. If not, then since $a>1, r_{4} \geq 3, r_{4}-r_{2} \geq 2, r_{4}-r_{3} \geq 1$, we must have either

$$
D m_{3}^{2}+C=a_{0} a^{r_{4}-r_{3}} b^{r_{3}}=-2,-3
$$

or

$$
D m_{4}^{2}+C=a_{0} b^{r_{4}}=-1,-2 \quad \text { or } \quad-3 .
$$

This follows either

$$
\left(D, m_{3}, C, a_{0}, a, b\right)=(2,1,-4,1,2,-1),(1,1,-4,1,3,-1)
$$

such that r_{4} is even since $D m_{4}^{2}+C=a_{0} b^{r_{4}}$ is a positive integer, or

$$
\left(D, m_{4}, C, a_{0}, b\right)=(3,1,-4,1,-1),(2,1,-4,2,-1), \quad \text { or } \quad(1,1,-4,3,-1)
$$

such that r_{4} is odd integer and such that both r_{2} and r_{3} are even integers since both $D m_{2}^{2}+C=a_{0} a^{r_{4}-r_{2}} b^{r_{2}}$ and $D m_{3}^{2}+C=a_{0} a^{r_{4}-r_{3}} b^{r_{3}}$ are positive integers.

If $\left(D, m_{3}, C, a_{0}, a, b\right)=(2,1,-4,1,2,-1)$, we will get $m_{1}^{2} \equiv 2(\bmod 4)$ by considering equation $m_{1}^{2}-2=2^{r_{4}-1} \bmod 4$, which is impossible.

If $\left(D, m_{3}, C, a_{0}, a, b\right)=(1,1,-4,1,3,-1)$, we will get $m_{1}^{2}-\left(3^{r_{4} / 2}\right)^{2}=4$, which is impossible.

If $\left(D, m_{4}, C, a_{0}, b\right)=(3,1,-4,1,-1)$, we have that both $\left(m_{2}, a^{\left(r_{4}-r_{2}-1\right) / 2}\right)$ and $\left(m_{3}, a^{\left(r_{4}-r_{3}-1\right) / 2}\right)$ are positive integer solutions of Diophantine equation

$$
3 x^{2}-a y^{2}=4
$$

Thus by Lemma $8,\left(m_{2}, a^{\frac{r_{4}-r_{2}-1}{2}}\right)=\left(m_{3}, a^{\frac{r_{4}-r_{3}-1}{2}}\right)$ is the minimal positive solution of $3 x^{2}-$ $a y^{2}=4$, which contradicts the assumption that $m_{2} \neq m_{3}$.

If $\left(D, m_{4}, C, a_{0}, b\right)=(2,1,-4,1,-1)$, we have that both $\left(m_{1}, a^{\left(r_{4}-3\right) / 2}\right)$ and $\left(m_{2}, a^{\left(r_{4}-r_{2}-3\right) / 2}\right)$ are positive integer solutions of Diophantine equation

$$
x^{2}-a^{3} y^{2}=2 .
$$

Thus by Lemma $9,\left(m_{1}, a^{\frac{r_{4}-3}{2}}\right)=\left(m_{2}, a^{\frac{r_{4}-r_{2}-3}{2}}\right)$ is the minimal positive solution of $x^{2}-a^{3} y^{2}=$ 2 , which contradicts the assumption that $m_{1} \neq m_{2}$.

If $\left(D, m_{4}, C, a_{0}, b\right)=(1,1,-4,3,-1)$ and $2 \nmid a$, then, both $\left(m_{1}, a^{\left(r_{4}-3\right) / 2}\right)$ and $\left(m_{2}, a^{\left(r_{4}-r_{2}-3\right) / 2}\right)$ are positive integer solutions of Diophantine equation

$$
x^{2}-3 a^{3} y^{2}=4
$$

Thus by Lemma $9,\left(m_{1}, a^{\frac{r_{4}-3}{2}}\right)=\left(m_{2}, a^{\frac{r_{4}-r_{2}-3}{2}}\right)$ is the minimal positive solution, which contradicts the assumption that $m_{1} \neq m_{2}$.

If $\left(D, m_{4}, C, a_{0}, b\right)=(1,1,-4,3,-1)$ and $2 \mid a$, then, both $\left(m_{1} / 2, a^{\left(r_{4}-3\right) / 2}\right)$ and $\left(m_{2} / 2, a^{\left(r_{4}-r_{2}-3\right) / 2}\right)$ are positive integer solutions of Diophantine equation

$$
x^{2}-\frac{3 a^{3}}{4} y^{2}=1
$$

Thus by Remark 4 of Lemma 9, $\left(m_{1} / 2, a^{\frac{r_{4}-3}{2}}\right)=\left(m_{2} / 2, a^{\frac{r_{4}-r_{2}-3}{2}}\right)$ is the minimal positive solution, which contradicts the assumption that $m_{1} \neq m_{2}$.

Therefore we can assume that $0<q<1$, which follows that $0<b<a$ and $m_{1}>m_{2}>$ $m_{3}>m_{4}>0$. It follows from (12) that

$$
\begin{equation*}
D m_{1}^{2}-a_{0} a^{r_{4}}=-C, \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
D m_{2}^{2}-a_{0} a^{r_{4}-r_{2}} b^{r_{2}}=-C, \tag{14}\\
D m_{3}^{2}-a_{0} a^{r_{4}-r_{3}} b^{r_{3}}=-C, \tag{15}\\
D m_{4}^{2}-a_{0} b^{r_{4}}=-C . \tag{16}
\end{gather*}
$$

It is easy to see that $\operatorname{gcd}\left(a_{0} a, a_{0} b\right)=a_{0}$ since $\operatorname{gcd}(a, b)=1$. We will consider three cases according to the divisibility of a_{0} by 2 .

If $2 \nmid a_{0}$, we must have either $2 \nmid a_{0} a$ or $2 \nmid a_{0} b$. Suppose now that $2 \nmid a_{0} a$, then D is odd, by (13). Thus by Lemma 12, we have that $\left(D, a_{0} a b\right)=1$ and $2 \nmid D a_{0} a b$. The case of $2 \nmid a_{0} b$ is similar, using (16).

If $2 \| a_{0}$, we can derive that $2 \nmid a$ and $2 \nmid b$. Assume to the contrary, we let $2 \mid a$ (the case that $2 \mid b$ is similar), then $2 \nmid b$. We get $D m_{4}^{2} \equiv 2(\bmod 4)$ by considering equation (16) mod 4 , which implies that $2 \| D$ since $2 \mid m_{4}$ would imply $D m_{4}^{2} \not \equiv 2(\bmod 4)$. Therefore we obtain from (13) that either $2 m_{1}^{2} \equiv \pm 4(\bmod 8)$ or $6 m_{1}^{2} \equiv \pm 4(\bmod 8)$ which is impossible. Hence $2 \nmid a$ and $2 \nmid b$, and so $2 \| D$. Let $a_{0}=2 l_{1}, D=2 D_{1}$, where l_{1} and D_{1} are odd positive integers. Thus we have from (13), (14), (15), (16) that

$$
\begin{gather*}
D_{1} m_{1}^{2}-l_{1} a^{r_{4}}=-C / 2, \tag{17}\\
D_{1} m_{2}^{2}-l_{1} a^{r_{4}-r_{2}} b^{r_{2}}=-C / 2, \tag{18}\\
D_{1} m_{3}^{2}-l_{1} a^{r_{4}-r_{3}} b^{r_{3}}=-C / 2, \tag{19}\\
D_{1} m_{4}^{2}-l_{1} b^{r_{4}}=-C / 2, \tag{20}
\end{gather*}
$$

where l_{1}, a, b and D_{1} are odd positive integers.
If $4 \mid a_{0}$, we must have either $4 \mid D$ or $2 \mid \operatorname{gcd}\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$. Let $D=4 D_{2}, a_{0}=4 l_{2}$ and $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ when $4 \mid D$, and let $D_{2}=D, a_{0}=4 l_{2}$ and $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=$ $\left(m_{1} / 2, m_{2} / 2, m_{3} / 2, m_{4} / 2\right)$ when $2 \mid \operatorname{gcd}\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$. Thus we have from (13), (14), (15), (16) that

$$
\begin{gather*}
D_{2} n_{1}^{2}-l_{2} a^{r_{4}}=-C / 4, \tag{21}\\
D_{2} n_{2}^{2}-l_{2} a^{r_{4}-r_{2}} b^{r_{2}}=-C / 4, \tag{22}\\
D_{2} n_{3}^{2}-l_{2} a^{r_{4}-r_{3}} b^{r_{3}}=-C / 4, \tag{23}
\end{gather*}
$$

$$
\begin{equation*}
D_{2} n_{4}^{2}-l_{2} b^{r_{4}}=-C / 4 \tag{24}
\end{equation*}
$$

From consideration of these three cases, let $\left(k, l, u_{i}, C_{1}\right)=\left(D, a_{0}, m_{i},-C\right)$ or $\left(D_{1}, l_{1}, m_{i},-C / 2\right)$ or $\left(D_{2}, l_{2}, n_{i},-C / 4\right)$, then one can easily see that the problem is equivalent to proving that the following questions

$$
\begin{gather*}
k u_{1}^{2}-l a^{r_{4}}=C_{1}, \tag{25}\\
k u_{2}^{2}-l a^{r_{4}-r_{2}} b^{r_{2}}=C_{1}, \tag{26}\\
k u_{3}^{2}-l a^{r_{4}-r_{3}} b^{r_{3}}=C_{1}, \tag{27}\\
k u_{4}^{2}-l b^{r_{4}}=C_{1}, \tag{28}
\end{gather*}
$$

where $C_{1} \in\{-1,1,-2,2,-4,4\}, u_{1}>u_{2}>u_{3}>u_{4}>0, \operatorname{gcd}(k, l a b)=1$ and $2 \nmid k l a b$ if $2 \mid C_{1}$, cannot be simultaneously satisfied.

Case 1: $2 \mid r_{4}$. It is easy to see that $k l$ is not a square. Otherwise both k and l are squares. And so $\left(\sqrt{k} u_{1}, \sqrt{l} a^{r_{4} / 2}\right)$ is a positive integer solution of equation $X^{2}-Y^{2}=C_{1}$ by (25), which is impossible.

If $2 \mid r_{2}$, then, by (25) and Lemma 9, we know that $\left(u_{1}, a^{r_{2} / 2}\right)$ is the minimal positive solution of the Diophantine equation

$$
\begin{equation*}
k x^{2}-l a^{r_{4}-r_{2}} y^{2}=C_{1} . \tag{29}
\end{equation*}
$$

By (26), ($\left.u_{2}, b^{r_{2} / 2}\right)$ is a positive integer solution of (29). So by Lemma 11, we obtain $a^{r_{2} / 2} \mid b^{r_{2} / 2}$, which contradicts the assumption that $a>b$.

Similarly we have $2 \nmid r_{3}$ from (27).
We now suppose that $2 \nmid r_{2}$ and $2 \nmid r_{3}$.
If $C_{1}=4$, then, by (26), (27) and Lemma 8, $\left(u_{2}, a^{\frac{r_{4}-r_{2}-1}{2}} b^{\frac{r_{2}-1}{2}}\right)=\left(u_{3}, a^{\frac{r_{4}-r_{3}-1}{2}} b^{\frac{r_{3}-1}{2}}\right)$ is the minimal positive solution of the Diophantine equation

$$
k x^{2}-l a b y^{2}=4,
$$

which contradicts the assumption that $u_{2}>u_{3}$.
If $C_{1}=-4$, then, by $(26),(27)$ and Lemma 8 , we have that $\left(a^{\frac{r_{4}-r_{3}-1}{2}} b^{\frac{r_{3}-1}{2}}, u_{3}\right)$ is the minimal positive solution of the Diophantine equation $l a b x^{2}-k y^{2}=4$, and $\left(l a b, k, a^{\frac{r_{4}-r_{2}-1}{2}} b^{\frac{r_{2}-1}{2}}, u_{2}\right)=$ $(5,1,5,11)$, and so $l=b=k=1, a=5$. Thus $(1,1)=\left(a^{\frac{r_{4}-r_{3}-1}{2}} b^{\frac{r_{3}-1}{2}}, u_{3}\right)$ is the minimal
positive solution of $5 x^{2}-y^{2}=4$, which follows $a=1$, which is a contradiction.
If $C_{1}= \pm 2$ or $C_{1}= \pm 1$, then, by (26), (27), both $\left(u_{2}, a^{\frac{r_{4}-r_{2}-1}{2}} b^{\frac{r_{2}-1}{2}}\right)$ and $\left(u_{3}, a^{\frac{r_{4}-r_{3}-1}{2}} b^{\frac{r_{3}-1}{2}}\right)$ are positive integer solutions of the Diophantine equation

$$
k x^{2}-l a b y^{2}=C_{1}
$$

Noting that $u_{2}>u_{3}$, by Lemmas 6 and 7,

$$
u_{3} \sqrt{k}+a^{\left(r_{4}-r_{3}-1\right) / 2} b^{\left(r_{3}-1\right) / 2} \sqrt{l a b}=\varepsilon
$$

must be the minimal positive solution. Therefore again by Lemmas 6 and $7, u_{2} \sqrt{k}+$ $a^{\left(r_{4}-r_{2}-1\right) / 2} b^{\left(r_{2}-1\right) / 2} \sqrt{l a b}=\varepsilon^{3}$ and

$$
a^{\left(r_{4}-r_{2}-1\right) / 2} b^{\left(r_{2}-1\right) / 2}=3^{s} a^{\left(r_{4}-r_{3}-1\right) / 2} b^{\left(r_{3}-1\right) / 2}, 3^{s} \mp 3=\frac{4}{\left|C_{1}\right|} l a^{r_{4}-r_{3}} b^{r_{3}} .
$$

It follows that $a^{\left(r_{3}-r_{2}\right) / 2}=3^{s} b^{\left(r_{3}-r_{2}\right) / 2}$, and thus

$$
b=1, a=3, r_{3}=2 s+r_{2}, l=\left(3^{s-1} \mp 1\right)\left|C_{1}\right| / 4,
$$

since $\operatorname{gcd}(a, b)=1$. By (28), we get $4 k u_{4}^{2} /\left|C_{1}\right|=3^{s-1} \pm 3$, and so $3 \mid k$ and $3 \mid \operatorname{gcd}(k$, $a)$, which is impossible since $\operatorname{gcd}(k, a)=1$. This concludes the analysis of Case 1 .

Case 2: $2 \nmid r_{4}$.
Subcase 2.1: $C_{1}= \pm 4$. Similarly, by (25) and Lemma 8, we can derive that

$$
\begin{equation*}
u_{1} \sqrt{k}+a^{\left(r_{4}-1\right) / 2} \sqrt{l a}=\varepsilon \tag{30}
\end{equation*}
$$

is the minimal positive solution of the Diophantine equation

$$
\begin{equation*}
k x^{2}-l a y^{2}=C_{1} . \tag{31}
\end{equation*}
$$

If not, we must have $\left(l a, k, a^{\left(r_{4}-1\right) / 2}, u_{1}, C_{1}\right)=(5,1,5,11,-4)$. This follows that

$$
l=k=1, a=5, r_{4}=3,
$$

and thus

$$
r_{2}=1, r_{3}=2, b=1 \quad \text { or } \quad 3
$$

Hence by (26), we get either $u_{2}^{2}=21$ or $u_{2}^{2}=71$, which is impossible.
If 2| r_{2}, then, by $(26),\left(u_{2}, a^{\left(r_{4}-r_{2}-1\right) / 2} b^{r_{2} / 2}\right)$ is a positive integer solutions of (31). We have by Lemma 11 that $a^{\left(r_{4}-1\right) / 2} \mid a^{\left(r_{4}-r_{2}-1\right) / 2} b^{r_{2} / 2}$. Therefore $a^{r_{2} / 2} \mid b^{r_{2} / 2}$, contradicting with $a>b$.

Similarly we have $2 \nmid r_{3}$ from (27).

Now we assume that $2 \nmid r_{2}$ and $2 \nmid r_{3}$, then since $l a^{2} b \neq 5$, by (26), (27) and Lemma 8, $\left(u_{2}, a^{\frac{r_{4}-r_{2}-2}{2}} b^{\frac{r_{2}-1}{2}}\right)=\left(u_{3}, a^{\frac{r_{4}-r_{3}-2}{2}} b^{\frac{r_{3}-1}{2}}\right)$ is the minimal positive solution of the Diophantine equation

$$
k x^{2}-l a^{2} b y^{2}=C_{1},
$$

which contradicts the assumption that $u_{2}>u_{3}$.
Subcase 2.2: $C_{1}= \pm 1$ or $C_{1}= \pm 2$.
If $2 \mid r_{2}$, then, by $(26),\left(u_{2}, a^{\frac{r_{4}-r_{2}-3}{2}} b^{\frac{r_{2}}{2}}\right)$ is a positive integer solution of Diophantine equation

$$
\begin{equation*}
k x^{2}-l a^{3} y^{2}=C_{1} . \tag{32}
\end{equation*}
$$

By (25) and Lemma 9, $u_{1} \sqrt{k}+a^{\left(r_{4}-3\right) / 2} \sqrt{l a^{3}}$ must be the minimal positive solution of (32). Therefore we have by Lemma 11 that $a^{\left(r_{4}-3\right) / 2} \left\lvert\, a^{\frac{r_{4}-r_{2}-3}{2}} b^{\frac{r_{2}}{2}}\right.$. So $a^{r_{2} / 2} \mid b^{r_{2} / 2}$, which contradicts the assumption that $a>b$.

If $2 \nmid r_{2}$ and $2 \nmid r_{3}$, then, by (26) and (27), both $\left(u_{2}, a^{\frac{r_{4}-r_{2}-2}{2}} b^{\frac{r_{2}-1}{2}}\right)$ and ($\left.u_{3}, a^{\frac{r_{4}-r_{3}-2}{2}} b^{\frac{r_{3}-1}{2}}\right)$ are positive integer solutions of Diophantine equation

$$
\begin{equation*}
k x^{2}-l a^{2} b y^{2}=C_{1} . \tag{33}
\end{equation*}
$$

Noting that $u_{2}>u_{3}$, by Lemmas 6 and 7,

$$
u_{3} \sqrt{k}+a^{\left(r_{4}-r_{3}-2\right) / 2} b^{\left(r_{3}-1\right) / 2} \sqrt{l a^{2} b}=\varepsilon
$$

must be the minimal positive solution. Therefore again by Lemmas 6 and $7, u_{2} \sqrt{k}+$ $a^{\left(r_{4}-r_{2}-2\right) / 2} b^{\left(r_{2}-1\right) / 2} \sqrt{l a^{2} b}=\varepsilon^{3}$ and that

$$
a^{\frac{r_{4}-r_{2}-2}{2}} b^{\frac{r_{2}-1}{2}}=3^{s} a^{\frac{r_{4}-r_{3}-2}{2}} b^{\frac{r_{3}-1}{2}}, \quad 3^{s} \mp 3=\frac{4}{\left|C_{1}\right|} l a^{r_{4}-r_{3}} b^{r_{3}} .
$$

This follows that $a^{\frac{r_{3}-r_{2}}{2}}=3^{s} b^{\frac{r_{3}-r_{2}}{2}}$, and so $3 \mid a$. Since $r_{4}-r_{3}$ is even, $3^{s} \mp 3=\frac{4}{\left|C_{1}\right|} l a^{r_{4}-r_{3}} b^{r_{3}}$ is also divisible by 9 . Hence $9 \mid 3$, which is a contradiction.

If $2 \nmid r_{2}$ and $2 \mid r_{3}$, then, by $(25),\left(u_{1}, a^{\left(r_{4}-1\right) / 2}\right)$ is a positive integer solution of Diophantine equation

$$
\begin{equation*}
k x^{2}-l a y^{2}=C_{1}, \tag{34}
\end{equation*}
$$

and by $(28),\left(u_{4}, b^{\left(r_{4}-1\right) / 2}\right)$ is a positive integer solution of Diophantine equation

$$
\begin{equation*}
k x^{2}-l b y^{2}=C_{1} . \tag{35}
\end{equation*}
$$

We have by Lemmas 6 and 7 that either

$$
u_{1} \sqrt{k}+a^{\left(r_{4}-1\right) / 2} \sqrt{l a}=\varepsilon
$$

$$
\frac{u_{1} \sqrt{k}+a^{\left(r_{4}-1\right) / 2} \sqrt{l a}}{\sqrt{\left|C_{1}\right|}}=\left(\frac{\varepsilon}{\sqrt{\left|C_{1}\right|}}\right)^{3}, a^{\left(r_{4}-1\right) / 2}=3^{s} y_{1}, 3^{s} \mp 3=\frac{4}{\left|C_{1}\right|} l a y_{1}^{2}, s \geq 2
$$

where $\varepsilon=x_{1} \sqrt{k}+y_{1} \sqrt{l a}$ is the minimal positive solution of (34), and that either

$$
u_{4} \sqrt{k}+b^{\left(r_{4}-1\right) / 2} \sqrt{l b}=\delta,
$$

or

$$
\frac{u_{4} \sqrt{k}+b^{\left(r_{4}-1\right) / 2} \sqrt{l b}}{\sqrt{\left|C_{1}\right|}}=\left(\frac{\delta}{\sqrt{\left|C_{1}\right|}}\right)^{3}, b^{\left(r_{4}-1\right) / 2}=3^{s_{1}} v_{1}, 3^{s_{1}} \mp 3=\frac{4}{\left|C_{1}\right|} l b v_{1}^{2}, s_{1} \geq 2
$$

where $\delta=d_{1} \sqrt{k}+v_{1} \sqrt{l b}$ is the minimal positive solution of (35).
If $\frac{u_{1} \sqrt{k}+a^{\left(r_{4}-1\right) / 2} \sqrt{l a}}{\sqrt{\left|C_{1}\right|}}=\left(\frac{\varepsilon}{\sqrt{\left|C_{1}\right|}}\right)^{3}$ and $\frac{u_{4} \sqrt{k}+b^{\left(r_{4}-1\right) / 2} \sqrt{l b}}{\sqrt{C_{1}}}=\left(\frac{\delta}{\sqrt{\left|C_{1}\right|}}\right)^{3}$, then $a^{\left(r_{4}-1\right) / 2}=3^{s} y_{1}^{2}, b^{\left(r_{4}-1\right) / 2}=$
$3^{s_{1}} v_{1}^{2}$. Thus $3 \mid a$ and $3 \mid b$, which contradicts the assumption that $\operatorname{gcd}(a, b)=1$.
If $u_{1} \sqrt{k}+a^{\left(r_{4}-1\right) / 2} \sqrt{l a}=\varepsilon$, then, by $(27),\left(u_{3}, a^{\frac{r_{4}-r_{3}-1}{2}} b^{\frac{r_{3}}{2}}\right)$ is a positive integer solution of (34). By Lemma 4, we obtain

$$
\frac{u_{3} \sqrt{k}+a^{\left(r_{4}-r_{3}-1\right) / 2} b^{r_{3} / 2} \sqrt{l a}}{\sqrt{\left|C_{1}\right|}}=\left(\frac{u_{1} \sqrt{k}+a^{\left(r_{4}-1\right) / 2} \sqrt{l a}}{\sqrt{\left|C_{1}\right|}}\right)^{n}
$$

for some positive integer n. This implies that $u_{3} \geq u_{1}$, which is a contradiction.
If $u_{4} \sqrt{k}+b^{\left(r_{4}-1\right) / 2} \sqrt{l b}=\delta$, then, by $(26),\left(u_{2}, a^{\frac{r_{4}-r_{2}}{2}} b^{\frac{r_{2}-1}{2}}\right)$ is a positive integer solution of (35). We have by Lemma 11 that $b^{\left(r_{4}-1\right) / 2} \mid a^{\left(r_{4}-r_{2}\right) / 2} b^{\left(r_{2}-1\right) / 2}$. This implies $b^{\left(r_{4}-r_{2}\right) / 2} \mid a^{\left(r_{4}-r_{2}\right) / 2}$, and so, since $\operatorname{gcd}(a, b)=1, b=1$. By (25) and (27), both $\left(u_{1}, a^{\frac{r_{4}-1}{2}}\right)$ and $\left(u_{3}, a^{\frac{r_{4}-r_{3}-1}{2}}\right)$ are positive integer solutions of Diophantine equation

$$
k x^{2}-l a y^{2}=C_{1} .
$$

Noting that $u_{1}>u_{3}$, by Lemmas 6 and 7,

$$
u_{3} \sqrt{k}+a^{\frac{r_{4}-r_{3}-1}{2}} \sqrt{l a}=\varepsilon
$$

must be the minimal positive solution. Therefore again by Lemmas 6 and $7, u_{1} \sqrt{k}+$ $a^{\left(r_{4}-1\right) / 2} \sqrt{l a}=\varepsilon^{3}$ and that $a^{\frac{r_{4}-1}{2}}=3^{s} a^{\frac{r_{4}-r_{3}-1}{2}}, \quad 3^{s} \mp 3=\frac{4}{\left|C_{1}\right|} l a^{r_{4}-r_{3}}$. It follows that

$$
a=3, l=\left(3^{s-1} \mp 1\right)\left|C_{1}\right| / 4,
$$

which is impossible as shown at the end of Case 1 . This concludes the analysis of Case 2.
This completes the proof of Theorem 1.

4 Acknowledgement

The authors would like to thank the referee for his valuable suggestions.

References

[1] M. A. Bennett, A question of Sierpinski on triangular numbers, Integers 5 (2005), Paper \#A25. Available at http://www.integers-ejcnt.org/vol5.html.
[2] Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte, J. Reine Angew. Math. 539 (2001), 75-122.
[3] Y. G. Chen, J. H. Fang, Triangular numbers in geometric progression, Integers 7 (1) (2007), Paper \#A19. Available at http://www.integers-ejcnt.org/vol7.html.
[4] L. E. Dickson, History of the Theory of Numbers, Carnegie, Washington, D. C., 1920.
[5] J. H. Fang, Nonexistence of a geometric progression that contains four triangular numbers, Integers 7 (1) (2007), Paper \#A59. Available at http://www.integers-ejcnt.org/vol7.html.
[6] A. Gerardin, Sphinx-Oedipe 9 (1914), 145-146.
[7] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 2004.
[8] Jiagui Luo, Extensions and applications on Störmer theory, (in Chinese), J. Sichuan Univ. 28 (1991), 469-474.
[9] K. Szymiczek, L'équation $u v=w^{2}$ en nombres triangulaires, Publ. Inst. Math. (Beograd) (N.S.) 17 (1963), 139-141.
[10] K. Szymiczek, The equation $\left(x^{2}-1\right)\left(y^{2}-1\right)=\left(z^{2}-1\right)^{2}$, Eureka 35 (1972), 21-25.
[11] Q. Sun and Pingzhi Yuan, On the Diophantine equation $\left(a x^{n}-1\right) /(a x-1)=y^{2}$ and $\left(a x^{n}+1\right) /(a x+1)=y^{2}$, (in Chinese), J. Sichuan Univ. 26 (1989), 20-24.
[12] D. T. Walker, On the diophantine equation $m X^{2}-n Y^{2}= \pm 1$, Amer. Math. Monthly 74 (1967), 504-513.
[13] Pingzhi Yuan and Jiagui Luo, On solutions of higher degree diophantine equation, (in Chinese), J. Math. Res. \& Expo. 21 (2001), 99-102.
[14] S. Yang, A note of the conjecture of Sierpinski on triangular numbers, Gen. Math. 16 (2008), 69-76.
[15] S. C. Yang and B. He, A conjecture of Sierpinski on triangular numbers, J. Nanjing Normal Univ. 30 (2007), 33-36.

2000 Mathematics Subject Classification: Primary 11D09; Secondary 11B83.
Keywords: quadratic diophantine equation, minimal positive solution, triangular numbers, geometric progression.

Received October 11 2009; revised version received February 25 2010. Published in Journal of Integer Sequences, February 262010.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Supported by NSF of China (No. 10971072) and the Guangdong Provincial Natural Science Foundation (No. 8151027501000114).

