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Abstract

Let b > 1 be a natural number and n ∈ N0. Then the numbers Fb,n := b2n

+1 form
the sequence of generalized Fermat numbers in base b. It is well-known that for any
natural number N , the congruential sequence (Fb,n (mod N)) is ultimately periodic.
We give criteria to determine the length of this Fermat period and show that for any
natural number L and any b > 1 the number of primes having a period length L to
base b is infinite. From this we derive an approach to find large non-Proth elite and
anti-elite primes, as well as a theorem linking the shape of the prime factors of a given
composite number to the length of the latter number’s Fermat period.

1 Introduction

Let N and b > 1 be natural numbers. For n ∈ N0 denote by Fb,n := b2n

+ 1 the terms of the
sequence of generalized Fermat numbers in base b. The numbers Fb,n obviously fulfill the
recurrence relation

Fb,n+1 = (Fb,n − 1)2 + 1. (1)
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This immediately implies that the sequence 0 ≤ fn < N defined by fn ≡ Fb,n (mod N)
is ultimately periodic. So, there exist two minimal natural numbers s and L such that
fs = fs+kL for all k ∈ N. Then we call the terms fs, fs+1, . . . , fs+L−1 the b-Fermat remainders
of N . Moreover, we say that the natural number N has a b-Fermat period of length L
beginning with the Fermat number Fb,s. We shall denote the length of the b-Fermat period
of the natural number N by Lb(N) throughout this paper. Notice that, from another point of
view, the Fermat remainders may be considered to be a special case of power generators. The
statistical properties of the period lengths appearing in this standard method to generate
pseudorandom numbers have been studied by several authors in the past years, e.g., by
Kurlberg and Pomerance [8], who give new results together with a review of the present
knowledge of this matter.

In his 1986 paper, Aigner [1] gave a complete characterization of s and L for prime
numbers N in the case b = 2. That result was generalized for all bases b > 1 by the author
and Reinhart [12].

The purpose of the present paper is to give a complete characterization of Lb(N) for all
bases b > 1 and all natural numbers N . To that respect, we show some multiplicative laws
allowing us to compute Lb(N) for composite N using the respective period lengths of its
prime factors. This demands for a closer look to Lb(p) for prime numbers p and selected
bases b.

Moreover, we prove that for every b > 1 and every natural number l the set Fb(l) is
infinite. Here, Fb(l) := {p ∈ P : Lb(p) = l} denotes the set of all prime numbers with a
b-Fermat period of length l. Finally, we present two possible applications of these theoretical
approaches. First, the numbers considered in the infinity proof can be used to provide prime
numbers with given period lengths. We examine several of these numbers in order to find
large non-Proth elite and anti-elite prime numbers. Secondly, the multiplicative laws for
Lb(N) show that every composite number preserves a part of information on the periodical
behavior of its prime factors. This could be – as we illustrate in one single example – used
to develop or support methods of factorization.

2 The Fermat period of natural numbers

The theorem of Aigner can be generalized for every natural number N that is relatively
prime to the given base b > 1.

Theorem 2.1. Let N and b > 1 be natural numbers with gcd(N, b) = 1. Write the multi-
plicative order of b modulo N as ordN(b) = 2s · t with s ∈ N0 and t an odd number. Then
the b-Fermat period of N begins with the Fermat number Fb,s. The length Lb(N) of the
b-Fermat period equals the multiplicative order of 2 modulo t.

The proof of Theorem 2.1 works in total analogy to that of Theorem 2.6 in the paper of
Müller and Reinhart [12].

Remark 1. If N is a prime number of the form 2r · h + 1 with r ∈ N and h odd, it is obvious
that the parameters of the multiplicative order of b modulo N , i.e., 2s · t, fulfill 0 ≤ s ≤ r
and t|h.
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The question of the period length Lb(N) remains open for the case gcd(N, b) > 1 yet. It
is resolved by the following results.

Lemma 2.2. Let b > 1 and n be natural numbers. Then Lb(2
n) = 1.

Proof. If b is even we immediately get b2m

+1 ≡ 1 (mod 2n) for all m with 2m > n. It follows
Lb(2

n) = 1.
For odd b we have gcd(b, 2n) = 1 such that the theorem of Euler guarantees

b2n−1

+ 1 ≡ bφ(2n) + 1 ≡ 2 (mod 2n), (2)

and hence by recurrence relation (1) we have Fb,m ≡ 2 (mod 2n) for all m ≥ n − 1. This
again leads to Lb(2

n) = 1.

Lemma 2.3. Let p be an odd prime number. Let a and n be natural numbers. Then
Lap(p

n) = 1.

Proof. We have (ap)2m

+ 1 ≡ 1 (mod pn) for all m with 2m ≥ n. From this follows the
claim.

Lemma 2.4. Let b > 1 and n be natural numbers. Write n = am such that for every prime
factor p of a we have p|b and gcd(b,m) = 1. Then Lb(n) = Lb(m).

Proof. The conditions of the lemma lead to the congruential system

{

Fb,k ≡ 1 (mod a)

Fb,k ≡ λk (mod m)

for all indices k large enough. The Chinese remainder theorem states that then there exists
an unique solution to this system of the form Fb,k ≡ Λk (mod n).

Because of the periodicity we have Fb,k+Lb(m) ≡ Fb,k ≡ λk (mod m) and hence Fb,k+Lb(m) ≡
ΛK ≡ Fb,k (mod n). This implies Lb(m) ≥ Lb(n).

Moreover, we get Fb,k+Lb(n) ≡ Fb,k (mod n). Since m|n we obtain from this latter con-
gruence Fb,k+Lb(n) ≡ Fb,k (mod m), i.e., Lb(m) ≤ Lb(n).

This proves the claim.

Lemma 2.5. Let b > 1 be a natural number. Let n and m be coprime natural numbers.
Then Lb(nm) = lcm(Lb(n), Lb(m)).

Proof. First we study the case gcd(n, b) = gcd(m, b) = 1. Write 2sntn the multiplicative
order of b modulo n and 2smtm the multiplicative order of b modulo m. Then by Theorem
2.1 we know that Lb(n) = ordtn(2) and Lb(m) = ordtm(2). Using a well-known result from
elementary number theory, we get

ordnm(b) = lcm(ordn(b), ordm(b))

= lcm(2sntn, 2
smtm)

= 2s lcm(tn, tm),
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where s := max{sn, sm}. Moreover, it is well-known that ordlcm(tn,tm)(2) = lcm(ordtn(2), ordtm(2)).
Again with Theorem 2.1 we then obtain

Lb(nm) = ordlcm(tn,tm)(2)

= lcm(ordtn(2), ordtm(2)) = lcm(Lb(n), Lb(m)).

Secondly we examine the case gcd(n, b), gcd(m, b) ≥ 1. Write n = anν and m = amµ such
that for every prime factor p of an we have p|b and gcd(b, ν) = 1 and such that for every prime
factor q of am we have q|b and gcd(b, µ) = 1. By Lemma 2.4 we know that Lb(nm) = Lb(νµ).
Notice that gcd(ν, µ) = 1. So, the first part of the present proof guarantees that Lb(νµ) =
lcm(Lb(ν), Lb(µ)). Again with Lemma 2.4 this finally gives Lb(nm) = lcm(Lb(n), Lb(m)).

Using induction over the number of different prime factors of N , this latter result can be
easily generalized.

Consequence 2.6. Let b > 1 be a natural number. Let N =
∏r

ν=1 pαν
ν be the canonical

prime factorization of the natural number N > 1. Then

Lb(N) = lcm(Lb(p
α1
1 ), Lb(p

α2
2 ), . . . , Lb(p

αr

r )).

Furthermore, if we define Lb(1) := 1, we obtain a complete characterization of Lb(N) for
every base b > 1 and every natural number N .

Remark 2.7. Let n,m, b > 1 be natural numbers with gcd(nm, b) = 1. If the b-Fermat
period of n, (resp., m) begins with the term Fb,sn

(resp., Fb,sm
) then the b-Fermat period of

the number nm begins with the term Fb,max{sn,sm}.

3 The infinity of the sets Fb(L)

The following necessary condition for a prime number p to have a b-Fermat period of length
L is known [12].

Theorem 3.1. Let p = 2r · h + 1 be a prime number with a natural number r ≥ 1 and h
odd. Let b > 1 be a natural number. If p has a b-Fermat period of length L > 1 then p is a
divisor of the number

N
(L)
b,r :=

2L−2
∑

n=0

(Fb,r − 1)n. (3)

We will use Theorem 2.1 and the latter result to show that for all natural numbers L and
for every base b > 1 there are infinitely many prime numbers q having a b-Fermat period
of length L. For L = 1 this claim is trivial since it is well-known that the odd parts of the
Fermat numbers Fb,n are pairwise coprime and for every odd prime divisor p of a given Fb,m

equation (1) implies Fb,n ≡ 2 (mod p) for all n > m, i.e., we get L = 1 for infinitely many
primes.
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3.1 Factors of the numbers N
(L)
b,r

Notice that the condition in Theorem 3.1 is not sufficient for p to have a b-Fermat period of
length L > 1. In fact, if p = 2rh+1 is a factor of N

(L)
b,r then every positive divisor of L could

be the length of the b-Fermat period of p too. In the proof of Theorem 3.1 one makes use
of the fact that if L is the length of the period then Fb,r+L ≡ Fb,r (mod p), i.e., there exists

a natural number c with c + 1 ≡ Fb,r (mod p) and c2L

≡ c (mod p). From this follows (by

excluding the cases c ≡ 0 and c ≡ 1 (mod p) leading to period length 1) that p divides N
(L)
b,r .

But for every natural number k we obtain, because of the definition of L, that c2Lk

≡ c (mod

p) and hence in total analogy to the previous argument that p is a divisor of N
(Lk)
b,r as well.

The other way around, if L > 1 is the length of the b-Fermat period of p = 2rh + 1 we
have p |N

(L)
b,r , i.e., c2L

≡ c (mod p). Like in Theorem 2.1 we write 2st the multiplicative order

of b modulo p. This implies that there cannot be a natural number m < L such that p |N
(m)
b,r

because otherwise we would get the relation c2m

≡ c (mod p) contradicting the minimality of

L. Suppose now that p |N
(L1)
b,r for some L1 > L. Then we get the congruence c2L(L1−L)−1 ≡ 1

(mod p). This is equivalent to the fact that the multiplicative order of c modulo p divides
the difference of the exponents, i.e., the number 2L(2L1−L − 1). As we have c ≡ b2r

(mod
p), the multiplicative order of c modulo p equals t. Hence 2L1−L ≡ 1 (mod t), which implies
that the multiplicative order of 2 modulo t, i.e., L, is a divisor of the exponent L1 − L. So,
we finally have L1 ≡ 0 (mod L). All this shows that the following theorem holds.

Theorem 3.2. Let b > 1 be a natural number. Let p = 2rh + 1 be a prime number dividing
N

(K)
b,r for a natural number K. Then the length L of the b-Fermat period of p is a divisor of

K.

In order to prove our main result we need the following factorization formula

N
(L)
b,r+1 = N

(L)
b,r



N
(L)
b,r − 2

2L−1−2
∑

n=0

(Fb,r − 1)2n+1



 . (4)

The truth of this can be seen as follows. Let R ≥ 0 be an even number and let x be a natural
number. Using the properties of geometric sums we get

R
∑

n=0

xn ·
R

∑

n=0

(−x)n =
R

∑

n=0

x2n. (5)

Notice that all three sums of this latter equation actually are odd numbers. Moreover, we
see that

R
∑

n=0

xn = 1 + (x + 1)

R
2
−1

∑

n=0

x2n+1 (6)

and

R
∑

n=0

(−x)n =
R

∑

n=0

xn − 2

R
2
−1

∑

n=0

x2n+1. (7)
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If we now define x := b2r

= (Fb,r − 1) and R := 2L − 2 this leads to formula (4). Denote by

d the greatest common divisor of the numbers
∑R

n=0 xn and
∑R

n=0(−x)n. Then d must be

odd and we obtain by (7) that d is a divisor of
∑

R
2
−1

n=0 x2n+1 as well. With (6) this leads to

0 ≡

R
∑

n=0

xn ≡ 1 (mod d), (8)

which is possible if and only if d = 1. Hence the numbers N
(L)
b,r and Q

(L)
b,r := N

(L)
b,r+1/N

(L)
b,r

are coprime for all r. Moreover, the sequence Q
(L)
b,n (n ∈ N0) consists of pairwisely coprime

terms.

3.2 The main result

Lemma 3.3. Let b > 1 be a natural number. Let L be a prime number. Then there are
infinitely many prime numbers with a b-Fermat period of length L.

Proof. Let L be a prime number. We already know that the terms of the sequence Q
(L)
b,r are

pairwisely coprime. This means that there are infinitely many prime numbers being factors
of the numbers N

(L)
b,r (r ∈ N). Let p be such a prime number. By Theorem 3.2 we know that

the length of the b-Fermat period of p is a divisor of L, i.e., 1 or L. The first case implies
x2 ≡ x (mod p) for x ≡ b2r

(mod p). From this follows x(x − 1) ≡ 0 (mod p), i.e., either
x ≡ 0 (mod p) or x ≡ 1 (mod p). Now, x ≡ b2r

≡ 0 (mod p) implies b ≡ 0 (mod p), which
is only possible for the finite number of prime factors of b. From x ≡ 1 (mod p) follows that

N
(L)
b,r ≡ 2L − 1 ≡ 0 (mod p), i.e., p is an element of the finite set of all prime factors of the

number 2L − 1. All in all, only a finite number of primes dividing one of the numbers N
(L)
b,r

have a b-Fermat period of length 1. Hence, all the remaining primes dividing the terms N
(L)
b,r

(r ∈ N) must have a Fermat period of length L.

Theorem 3.4. Let b > 1 and L be natural numbers. Then the set Fb(L) is infinite.

Proof. For L = 1 we have Fb(1) = {p ∈ P : p|Fb,r for r ∈ N}. It is well-known that this
latter set is infinite.
If L is a prime number this is the claim of Lemma 3.3. So let L > 1 be a composite number
in the following. We again consider the numbers

N
(L)
b,r =

2L−2
∑

ν=0

(

b2r)ν
and Q

(L)
b,r =

2L−2
∑

ν=0

(

−b2r)ν

for r ∈ N. In order to prove the claim of the theorem, we have to show that for all r large
enough the numbers Q

(L)
b,r have a prime divisor p not dividing any number Q

(d)
b,s 6= Q

(L)
b,r with

s ≤ r and d|L.

First, we consider the case s < r and d|L. As seen above we then have N
(d)
b,s+1|N

(d)
b,r . Moreover,

the properties of geometric sums tell us that the expression xdk−1
xd−1

is an natural number for
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any base x ∈ N. Hence, we obtain N
(d)
b,r |N

(L)
b,r as well. Combining these observations, we get

the fact that N
(d)
b,s+1|N

(L)
b,r . We already know that N

(d)
b,s+1 = N

(d)
b,s Q

(d)
b,s . As N

(L)
b,r and Q

(L)
b,r are

coprime, the numbers Q
(d)
b,s and Q

(L)
b,r must be coprime as well. So, in this case we find that

no prime factor of Q
(L)
b,r actually divides an term of the form Q

(d)
b,s with s < r and d|L.

The case s = r and d 6= L is still to study. We see that

Q
(L)
b,r =

b(2r)(2L−1) + 1

b2r + 1
.

A well-known result of Carmichael [3] implies that for 1 < x ∈ N and for all exponents n
large enough the numbers of the form xn + 1 do have a primitive divisor, i.e., a prime factor
not dividing any number of the form xm + 1 with m < n. Hence, for all r large enough the
numbers Q

(L)
b,r have a primitive factor not dividing a number of the form Q

(d)
b,r . This completes

the proof.

Remark 3.5. The proof of Theorem 3.4 just given was proposed by the anonymous referee.
Our original proof was much longer and used the following argument. We factorized the
terms N

(L)
b,r into the Form MrGrRr, where Gr denotes the lowest common multiple of the

numbers N
(d)
b,r for all d|L fulfilling 1 < d < L. Mr is the product of all prime factors of

N
(L)
b,r G−1

r having a b-Fermat period of length 1. For all r large enough Mr can be shown to
be a constant. Moreover, it is possible to prove that Rr is not bound and that the greatest
common divisor of Gr and Rr is also a constant for all r large enough. Finally, the terms Rn

are pairwisely coprime such that for all r large enough there is a primitive divisor to Rr not
dividing MrGr. Hence, this prime cannot have a period length inferior to L.

4 Consequences and application

4.1 Non-Proth elite and anti-elite primes

We will now have a closer look at the cases L = 3 and L = 4 for the base b = 2. As shown
in Lemma 3.3, (resp., Theorem 3.4) there are infinitely many prime numbers with Fermat
periods of length 3, (resp., 4). We get the following necessary and sufficient characterizations.

Corollary 4.1. Let b = 2. Let p = 2r ·h+1 be a prime number with r ≥ 1 and h odd. Then
p has a 2-Fermat period of length L = 3 if and only if p is a divisor of the number

N
(3)
2,r =

6
∑

ν=0

(

22r)ν
. (9)

Proof. As shown in the proof of Lemma 3.3 the number N
(L)
b,r is divided only by finitely

many primes with a period length 1 if L is a prime number. These primes are divisors of
the number 2L − 1, (resp., the base b). Here we have L = 3, i.e., 23 − 1 = 7, and b = 2.

But these two prime numbers cannot divide N
(3)
2,r , since N

(3)
2,r is an odd number and 7 has a

2-Fermat period of length 2. From this follows the claim.
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Corollary 4.2. Let b = 2. Let p = 2r ·h+1 be a prime number with r > 1 and h odd. Then
p has a 2-Fermat period of length L = 4 if and only if p is a divisor of the number

Wr :=
1

5
·

4
∑

ν=0

(

22r·3
)ν

. (10)

If r = 1 the only prime numbers with a 2-Fermat period of length L = 4 are 11, 31, 151 and
331.

Proof. The case r = 1 is trivial. Consider now r ≥ 2. We know that all the primes of the
form p = 2r · h + 1 with a period length L = 4 divide the term

N
(4)
2,r = N

(2)
2,r ·

4
∑

ν=0

(

22r·3
)ν

.

All primes dividing N
(4)
2,r and having a Fermat period of length 2 must also divide N

(2)
2,r . So

the numbers we are looking for are all the prime divisors of the term

Vr :=
4

∑

ν=0

(

22r·3
)ν

not having a Fermat period of length 1 or 2. The first kind of primes again must be divisors
of the numbers b = 2 or 2L − 1 = 15, i.e., 2, 3 or 5. The second kind of primes consists of
common prime divisors of the numbers N

(2)
2,r and Vr. Suppose p to be such a prime number.

Then

22r·3 = 22r·3 + N
(2)
2,r − N

(2)
2,r

= 22r

N
(2)
2,r − N

(2)
2,r + 1 ≡ 1 (mod p).

This leads to 0 ≡ Vr ≡ 5 (mod p) for all common prime divisors of N
(2)
2,r and Vr. Therefore,

only the primes 2, 3 and 5 have to be considered here. All three have a 2-Fermat period of
length 1. As Vr is odd the first candidate is not a divisor, as well as 3 since Vr ≡ 2 (mod 3)
for all natural numbers r ≥ 1. An easy computation shows that Vr ≡ 0 (mod 5) and Vr ≡ 5
(mod 25) for all r ≥ 2. Hence, the number Vr

5
is divided only by numbers having a period

length L = 4. This proves the corollary.

These two corollaries can be used to find prime numbers with 2-Fermat periods of the
lengths 3 or 4, and furthermore to find elite or anti-elite primes. A b-elite prime number
p is a prime number none of whose b-Fermat remainders is a quadratic residue modulo p.
If all the b-Fermat remainders are quadratic residues modulo a prime number p then p is
called a b-anti-elite prime [13]. If b = 2, we simply speak of elite or anti-elite primes.
In the past years a number of papers on these two families of prime numbers have been
published [1, 4, 5, 7, 10, 11, 15]. There have been two approaches to compute elites, resp.,
anti-elites. A first way consisted in checking all prime numbers of a given interval for eliteness,
resp., anti-eliteness. As a result of such researches all 27 elite primes up to 2.5 · 1012 are
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known [5], as well as all 84 anti-elite primes up to 1011 [11]. These prime numbers are
summarized in sequence A102742, resp., sequence A128852 of Sloane’s On-Line Encyclopedia
of Integer Sequences [14]. Recently, Dennis R. Martin completed the search for elite and anti-
elite primes up to 1014. He found two new elite primes and 29 new anti-elite primes [9].

In a second approach only large primes of the easy-to-check Proth type 2r · h + 1 with
rather small h < 2r were examined in order to find large primes having relatively small
Fermat periods, which then were checked for eliteness. That way, some 60 elite primes larger
than 2.5 ·1012 could be found, the largest of which have more than 300000 decimal digits [5].
No elite prime larger than 1012 and not being a Proth number was known until the year 2008.
Using the Corollary 4.2 we can find one such prime with 35 decimal digits. Furthermore,
a non-Proth anti-elite prime with 14 decimal digits can be found. For this we consider the
prime factorization of the number W5 which is given by

W5 = 11 · 31 · 41 · 61 · 151 · 331 · 1321 · 23041 · 61681 · 414721 ·

394783681 · 4278255361 · 4562284561 · 46908728641

·44479210368001 · 14768784307009061644318236958041601.

Let us have a look at the factors p := 14768784307009061644318236958041601 and q :=
44479210368001. Notice that their primality can be established, e.g., by the well-known
method of Brillhart, Lehmer and Selfridge [2]. We obtain

p = 29 · 28845281849627073524059056558675 + 1

and
q = 210 · 43436728875 + 1.

A simple computation shows that p provides four Fermat remainders each being a quadratic
non-residue modulo p, while all four Fermat remainders of q are quadratic residues modulo
q, i.e., p is an elite and q an anti-elite prime number.

Investing more computational effort into the rather time-consuming factorization of the
numbers Wr could probably lead to the discovery of even larger non-Proth elite or anti-elite
primes.

Moreover, we find the non-Proth elite prime

p = 1475204679190128571777 = 27 · 11525036556172879467 + 1

with period length L = 6 considering the prime factors of the integer number
N

(6)
2,3

lcm(N
(2)
2,3 ,N

(3)
2,3 )

.

Remark 4.3. A fourth way of computing elite primes was recently proposed by “Eigenray”
in a forum on the pages of UC Berkeley (compare the URL [6]; valid as of July 8, 2008).
It is considered to search for elite primes among the factors of the values of the 5 · 2s-th
cyclotomic polynomial evaluated at 2. The following elite primes were found that way by
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the author of the forum entry:

s = 7 : p1 = 3442404051886487041 (11)

s = 8 : p2 = 7771646317471635593256655841281, (12)

p3 = 210 · C99 + 1 (13)

s = 9 : p4 = 46454107161999112389551048616961 (14)

s = 10 : p5 = 3587745015951361 (15)

In line (13), the number

C99 = 51233969525206267191459826792872621224191144511286-

8396608612454598970667762655058642306684254536535

is an odd composite number with 99 decimal digits; p3 is a prime with 102 decimal digits.
The similar approach has lately also been discussed by Witno [15]. Notice that all the primes
presented here are non-Proth elite primes with L = 4. This supports a conjecture about
non-Proth elite primes proposed by Chaumont et al. [5].

4.2 Factors of composite numbers

A second application could lie in the field of factoring natural numbers. The following
theorem connects the shape of a prime number p with the information on b-Fermat period
lengths preserved in every composite number being a multiple of p.

Theorem 4.4. Let N be an odd composite number. Then every prime factor p of N is of
the form p = 2r ·k ·δ +1 with r ∈ N, k odd and δ a divisor of 2Lb(N)−1 for any given natural
number b > 1, i.e., δ is a divisor of the Lb(N)-th Mersenne number.

Proof. If p is a divisor of N then Lb(p) is a divisor of Lb(N) as well. This can be seen by
combining the above-mentioned Consequence 2.6 and Theorem 3.2. Now write p = 2r ·h+1
where r is a natural number and h is odd. Then we know by Aigner’s theorem that there
exists a divisor δ of h, i.e., h = k · δ for some appropriate k, with Lb(p) = ordδ(2). Therefore,
we get p = 2rkδ + 1 with 2Lb(p) ≡ 1 (mod δ). This completes the proof.

Example 4.5. Consider the 74-decimal-digit natural number

N := 96493407697763496186309154173906589877-

72498722136713669954798667326094136661.

If one finds out that this number equals N
(7)
2,1 it is trivial to give the factorization N =

N
(7)
2,0 · Q

(7)
2,0. If one is lacking this piece of information, the task of factoring the number N is

not at all that easy.
As a reference, we use the standard integer factorization routine (ifactor) given in

MAPLE 11. Optionally, this command can be used with an additional parameter allowing
to run factorization algorithms based on D. Shanks’ undocumented square-free factorization,
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Lenstra’s elliptic curve method or on Pollard’s Rho method. All these methods are not able to
factorize N within 120 seconds on a PC powered by an AMD Sempron 2600 XP+ processor.
Now, the MAPLE-implementation of Pollard’s Rho method allows to add another parameter.
If we know that one of the searched prime factors p is of the form p ≡ 1 (mod δ) we can run
the command ifactor(N,pollard,δ) in order to increase the efficiency of the method.

A simple computation checking the congruences F2,n (mod N) for the indices n ∈
{1, 2, . . . , 8} shows that L2(N) = 7. So, by Theorem 4.4 every prime factor p of N has
to fulfill p ≡ 1 (mod δ) for some δ dividing 27 − 1 = 127. As 127 is a prime and δ = 1 only
leads to a period length of 1, we obtain δ = 127 here.

Running the command ifactor(N,pollard,127) gives the prime factorization N =

N
(7)
2,0 · Q

(7)
2,0 in less than one hundredth of a second.

This one example may suffice here. Deeper insights in whether this approach might be
worth of further considerations have to be brought to light by forthcoming studies. Maybe
this is a first small step towards a “statistical” factorization approach.
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[7] M. Kř́ıžek, F. Luca, and L. Somer, On the convergence of series of reciprocals of primes
related to the Fermat numbers. J. Number Theory 97 (2002), 95–112.

11

http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Mueller/mueller12.html


[8] P. Kurlberg and C. Pomerance, On the periods of linear congruential and power gener-
ators. Acta Arith. 119 (2005), 149–169.

[9] D. R. Martin, Elite prime search and anti-elite prime search, published
online: http://www.primenace.com/papers/math/ElitePrimes.htm and
http://www.primenace.com/papers/math/Anti-ElitePrimes.htm (valid as of
July 28, 2010).

[10] T. Müller, Searching for large elite primes, Experiment. Math. 15 (2006), 183–186.

[11] T. Müller, On anti-elite prime numbers, J. Integer Seq. 10 (2007), Article 07.9.4.

[12] T. Müller and A. Reinhart, On generalized elite primes. J. Integer Seq. 11 (2008),
Article 08.3.1.

[13] T. Müller, A generalization of a theorem by Kř́ıžek, Luca and Somer on elite primes.
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