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Abstract

Based on the multiple binomial transforms introduced in this paper, the n-fold

generating and generated sequences of a given integer sequence can be defined and a

family of this integer sequence can be constructed. The family sets form a partition of

the set of integer sequences. Special attention is paid to the recurrent integer sequences,

which are produced by some linear and homogeneous recurrence relations or difference

equations. For the recurrent integer sequences, a distinct rule to construct their families

is obtained based on the linear difference calculus.

1 Introduction

We know that if for an integer sequence a(t), t ∈ N0 = {0, 1, 2, . . .}, a function g(x), x ∈ R,

has a power series form: g(x) =
∑∞

j=0 a(j)xj

j!
, then g(x) is called exponential generating

function of the integer sequence a(t) (see [1]). However, the generating function is a real
function defined on real numbers R, not another integer sequence. If the generating function
itself still is an integer sequence, then we can continuously repeat such operation on the new
integer sequence and generate a series of integer sequences, one after another.

In fact, we can accomplish this thinking, for we know that in sense of the calculus on
time scales, the binomial coefficients {

(
t

j

)
, j = 0, 1, 2, . . .}, are just the “polynomials on time

scale N0,”, like {xj

j!
, j = 0, 1, 2, . . .}, which are the polynomials on time scale R (see [2]).

Any integer sequence can be expanded to be a “binomial coefficient series” with integer
coefficients (called the discrete Taylor series, or the inverse binomial transform [1, 2]), and
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on the other hand, any integer sequence also always can be “binomial expansion” coefficients
of another integer sequence (called the binomial transform [3]). In this way, we tie one given
integer sequence in with others by using successive binomial transforms or inverse binomial
transforms (we call it the Multiple Binomial Transform), which form a series of new integer
sequences and naturally compose a large family of the given integer sequence.

The successive binomial transforms or inverse binomial transforms have been used in
some authors’ work. For example, Spivey and Steil [5] used successive binomial transforms
or inverse binomial transforms to prove the invariance of the Hankel transform of integer
sequences under the falling k-binomial transform when k is an integer. The falling k-binomial
transform is a new variation of the binomial transform introduced in [5].

In this paper, we give a special attention to the recurrent integer sequences (The integer
geometric sequence, the Fibonacci sequence, and the Tribonacci sequence are some exam-
ples), and describe a distinct rule to construct their families based on the linear difference
calculus. By the way, please note that in the text of this paper, for any integer sequence
a(t), we always regard t ∈ N0.

2 Multiple binomial transforms

Definition 1. [Multiple binomial transform] Let a(t) be an integer sequence. Then we
define the following transform φn(a) to be the n-fold binomial transform of a(t): for n =
1, 2, . . .,

b(t) = φn(a) =
t∑

kn=0

kn∑

kn−1=0

· · ·

k3∑

k2=0

k2∑

k1=0

a(k1)

(
k2

k1

)(
k3

k2

)

· · ·

(
kn

kn−1

)(
t

kn

)

. (1)

The integer sequence b(t) is called the image sequence of a(t) with respect to the n-fold
binomial transform, denoted by b = φn(a). Conversely, the integer sequence a(t) is called
the inverse image sequence of b(t), and can be denoted by a = φ−n(b). For the case of n = 0,
define φ0 = 1 (the identity transform).

Remark 2. We can see from (1), the φ1(a) (φ−1(a)) is just well-known binomial (inverse
binomial) transform of a(t) (see [3]). φn(a) can be considered as n successive binomial trans-
form φ1 on a(t): φn(a) = φ1(φ1(· · · (φ1

︸ ︷︷ ︸

n−fold

(a))), and φ−n(a) can be considered as n successive

inverse binomial transform φ−1 on a(t): φ−n(a) = φ−1(φ−1(· · · (φ−1
︸ ︷︷ ︸

n−fold

(a)))

Proposition 3. If defining successive two multiple binomial transforms on an integer se-
quence as a transform multiplication, then the set of the multiple binomial transform on in-
teger sequences, Φ(a) = {φn(a), n = 0,±1,±2, . . .} (a is any integer sequence) is an Abelian
transformation group. We can call it the binomial transformation group.

Proof. From (1) we can see that for any two transforms, φn and φm, (φm·φn)(a) = φm(φn(a)) =
φn+m(a), and (φn ·φm)(a) = φn(φm(a)) = φm+n(a), that is, φn ·φm = φm ·φn (the commutative
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law). For three successive transforms φn, φm and φp, we have that (φn ·φm) ·φp = φm+n ·φp =
φp+m+n, and φn · (φm · φp) = φn · φp+m = φp+m+n, that is, (φn · φm) · φp = φn · (φm · φp) (the
associative law). Besides for any n, noticing φ0 = 1, we have that φn · φ0 = φ0 · φn = φn and
φ−nφn = φnφ−n = φ0. Hence, (Φ(a), ·) is an Abelian transformation group.

Proposition 4. Let a(t) be an integer sequence. Then the terms of the inverse image
sequence of a(t) with respect to the binomial transform, a(−1)(t) = φ−1(a), are the discrete
Taylor expansion coefficients of a(t), that is,

a(−1)(t) = △ta(0) =
t∑

j=0

(−1)j

(
t

j

)

a(t − j) =
t∑

j=0

(−1)t−j

(
t

j

)

a(j). (2)

The inverse image sequence of a(t) with respect to the n-fold binomial transform, denoted by
a(−n)(t) = φ−n(a), can be calculated by n successive φ−1 transforms.

Proof. From Definition 1, we have that a(t) =
∑t

k=0 a(−1)(k)
(

t

k

)
. On the other hand, the

discrete Taylor expansion of a(t) is that a(t) =
∑t

k=0 △
ka(0)

(
t

k

)
(see [2]). Hence, integer

sequence a(−1)(t) − △ta(0) is the 1-generated sequences of the zero sequence ω(t) = 0, t =
0, 1, 2, . . . (A000004 in [3]), that is, ω(t) itself. Therefore, a(−1)(t) = △ta(0). For a(−n)(t) =
φ−n(a), from Definition 1 and Remark 2, we have that φ−n(a) = φ−1(φ−1(· · · (φ−1

︸ ︷︷ ︸

n−fold

(a))).

3 Families of integer sequences

Definition 5. [Generating and generated sequences] Let a(t) be an integer sequence.
Define the image sequence of the n-fold binomial transform of a(t), denoted by a(n)(t),
as the n-fold generating sequence of a(t), and the inverse image sequence of the n-fold
binomial transform of a(t), denoted by a(−n)(t), as the n-fold generated sequence of a(t),
where n = 1, 2, . . . . In case n = 0, a(0)(t) = a(t).

From Definition 1 and 5, and Proposition 4, we can get the following two Corollaries.

Corollary 6. If integer sequence a(t) is the n-fold generating (n-fold generated) sequence of
integer sequence b(t), then b(t) is the n-fold generated (n-fold generating) sequence of a(t).

Corollary 7. The terms of the n-fold generated integer sequence of an integer sequence a(t)
can be calculated as follows,

a(−1)(t) = △ta(0), a(−2)(t) = △ta(−1)(0), . . . , a(−n)(t) = △ta(−(n−1))(0). (3)

Remark 8. For the zero sequence ω(t), obviously, each of its n-generating and n-generated
sequences (n = 1, 2, . . .) is still the zero sequence itself.

Remark 9. For the unit pulse sequence δ(t): δ(0) = 1, and δ(t) = 0 for t = 1, 2, . . .
(A000007 in [3]). δ(n)(t) = nt (n = ±1,±2, . . .). Hence, we may obtain some interesting
identities, such as for n = 1, 2, . . . ,

t∑

kn=0

kn∑

kn−1=0

· · ·

k3∑

k2=0

k2∑

k1=0

δ(k1)

(
k2

k1

)(
k3

k2

)

· · ·

(
kn

kn−1

)(
t

kn

)

= nt,

3

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000004
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000007


and
t∑

kn=0

kn∑

kn−1=0

· · ·

k3∑

k2=0

k2∑

k1=0

(−n)k1

(
k2

k1

)(
k3

k2

)

· · ·

(
kn

kn−1

)(
t

kn

)

= δ(t),

Furthermore, because the identical sequence b(t) = 1 (A000012 in [3]) is the 1-generating
sequence of δ(t), from the above identity we have that for n = 1, 2, . . .,

t∑

kn+1

kn+1∑

kn=0

· · ·

k3∑

k2=0

k2∑

k1=0

(−n)k1

(
k2

k1

)(
k3

k2

)

· · ·

(
kn+1

kn

)(
t

kn+1

)

≡ 1,

Definition 10. [Family of integer sequences] Let a(t) be an integer sequence, and a(n)(t),
n = ±1,±2, . . . be respectively the n-fold generating and nfold -generated sequences of a(t).
Then we define the set {a(n)(t), n = 0,±1,±2, . . .} to be the family of a(t), and denote it
by F [a].

Proposition 11. Let F1 and F2 be two families of integer sequences. Then F1 = F2 iff set
F1

⋂
F2 is nonempty.

Proof. If F1 = F2, obviously F1

⋂
F2 is nonempty. Conversely, if F1

⋂
F2 is a nonempty set

and integer sequence c(t) ∈ F1

⋂
F2, then from Definition 10 and Corollary 6, an arbitrary

element of F1 is a certain generation generating or generated sequence of c(t), and hence it
is also an element of F2. Vice versa. Hence, F1 = F2.

Corollary 12. Let n be an arbitrary integer, and integer sequence a(n) be the n-generating
or n-generated sequence of integer sequence a. If F1[a] is family of a and F2[a

(n)] is family
of a(n), then F1[a] = F2[a

(n)].

Theorem 13 (Existence and Uniqueness). Every integer sequence belongs to one and only
one family.

Proof. We can directly construct a family of a given sequence by using Definitions 5 and 10.
This is Existence proof. Uniqueness is a direct conclusion of Proposition 11.

Remark 14. Theorem 13 implies that the family sets form a partition of the set of all
integer sequences.

Remark 15. Most of the families of integer sequences are infinite sets. However, the
family of zero sequence ω(t) is a one element set {ω(t)}.

We now give an interesting property of the families of integer sequences as follows.

Theorem 16. Let F [a] be the family of an integer sequence a(t), and a(n)(t), n = 0,±1,±2, . . . ,
be all the elements of set F [a]. Then all of the sequences, a(n)(t), have the same Hankel
transform.

Proof. We know from [4] that the Hankel transform is invariant under the binomial trans-
form. Hence from they definitions, all of the sequences a(n)(t), n = 0,±1,±2, . . . , have the
same Hankel transform.
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4 Families of recurrent integer sequences

An integer sequence a(t) is called a recurrent integer sequence, if it is produced by a linear
and homogeneous recursion formula as follows:

a(0) = a0, a(1) = a1, . . . , a(p−1) = ap−1, and a(t+p) =

p
∑

k=1

ξka(t+p−k), t = 0, 1, 2, . . . ,

(4)
where, all of aj (j = 0, 1, 2, . . . , p − 1) and ξk (k = 1, 2, . . . , p) are integers, and ξp 6= 0. The
positive integer p is called the recurrence order of a(t). For such a recurrent integer sequence
a(t), we know the following basic results.

The recursion formula (4) corresponds to a linear and homogeneous difference equation
for a(t). By using a basic relation in the difference equation theory (see [6]): a(t + k) =
∑k

j=0

(
k

j

)
△k−ja(t), k = 1, 2, . . . , p in (4), and then merging the coefficients of every identical

order difference of a(t), we can get that

∆pa(t) +

p
∑

k=1

ηk∆
p−ka(t) = 0, (5)

where,

ηk =

(
p

k

)

−

k∑

j=1

(
p − j

k − j

)

ξj. (6)

Conversely, if the difference equation (5) is given, then by using another basic relation in
the difference equation theory: △ka(t) =

∑k

j=0(−1)j
(

k

j

)
a(t + k − j), k = 1, 2, . . . , p, in (5),

and merging the coefficients of every identical backward term of a(t), we can obtain the
corresponding recursion formula of a(t) in the form of (4), where

ξk = (−1)k+1

(
p

k

)

+
k∑

j=1

(−1)k−(j−1)

(
p − j

k − j

)

ηj. (7)

In this paper, we call the characteristic values of difference equation (5), that is, the roots
λk (k = 1, 2, . . . , p) of characteristic equation λp +

∑p

k=1 ηkλ
p−k = 0, as ∆-characteristic

values of a(t), to avoid confusing with the roots of recurrence characteristic equation σp −
∑p

k=1 ξkσ
p−k = 0. (The later is often called by some authors as characteristic values of a

recurrent sequence.)
According to the difference equation theory, the general term of a(t) is

a(t) =

p
∑

k=1

ck(1 + λk)
t, (8)

where coefficients c1, c2, . . . , cp are determined by the initial conditions, which lead to the
following linear algebraic equation:

p
∑

k=1

λ
j
kck = △ja(0) =

j
∑

k=0

(−1)j−k

(
j

k

)

ak, j = 0, 1, . . . , p − 1. (9)
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For the n-generating (n-generated) sequence of a recurrent integer sequence a(t), we can
prove the following theorem.

Theorem 17. Let a(t) be a recurrent integer sequence defined in (4), and λk and ck (k =
1, 2, . . . , p) be respectively the ∆-characteristic values and general term coefficients of a(t),
and a(n)(t) (a(−n)(t)) be the n-fold generating (n-fold generated) sequence of a(t), n = 1, 2, . . ..
Then for n = ±1,±2, . . . ,

(A1) the ∆-characteristic values of a(n)(t) are

λ
(n)
k = λk + n, k = 1, 2, . . . , p, (10)

(A2) the general term of a(n)(t) is

a(n)(t) =

p
∑

k=1

ck(1 + n + λk)
t, (11)

(A3) the p-th order linear and homogeneous difference equation for a(n)(t) is

△pa(n)(t) +

p
∑

k=1

η
(n)
k △p−ka(n)(t) = 0, (12)

with integer coefficients

η
(n)
k = (−n)k

(
p

k

)

+
k∑

j=1

(−n)k−j

(
p − j

k − j

)

ξj, k = 1, 2, . . . , p. (13)

(A4) the recursion formula of a(n)(t) is

a(n)(t + p) =

p
∑

k=1

ξ
(n)
k a(n)(t + p − k), (14)

with recursion coefficients

ξ
(n)
k = (−1)k−1

(
p

k

)

−
k∑

j=1

(−1)k−j

(
p − j

k − j

)

η
(n)
j , k = 1, 2, . . . , p. (15)

Proof. Using induction we get that △j[ck(1 + λk)
t] = ckλ

j
k(1 + λk)

t, (k = 1, 2, . . . , p), for
j = 0, 1, 2, . . .. Hence, the general term of a(−1)(t) is that a(−1)(t) = △ta(0) =

∑p

k=1 ckλ
t
k.

This means that a(−1)(t) has the ∆-characteristic values of λ
(−1)
k = λk−1 and the general term

coefficients are identical to the coefficients of a(t), ck, (k = 1, 2, . . . , p). From Corollary 6, we

see that a(t) is the 1-generated sequence of a(1)(t). Hence, λk = λ
(1)
k −1, or λ

(1)
k = λk+1, (k =

1, 2, . . . , p), and the general term coefficients are still ck, (k = 1, 2, . . . , p). Using induction,
we can see that for any fold generating (generated) sequence of a(t), (A1) and (A2) hold.
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From (5), we get that the ∆-characteristic polynomial of a(t) is a(λ) = λp +
∑p

k=1 ηkλ
p−k =

∏p

k=1(λ − λk). Hence from (A1), for n = ±1,±2, . . . , the ∆-characteristic polynomials of
a(n)(t) are a(n)(λ) =

∏p

k=1[λ− (λk +n)] =
∏p

k=1[(λ−n)−λk] = (λ−n)p +
∑p

k=1 ηk(λ−n)p−k.
Expanding (λ − n)j (j = 1, 2, . . . , p) and then merging the coefficients of the same power of

λ, we get a(λ) = λp +
∑p

k=1 η
(n)
k λp−k which leads to (12) and (13). This is (A3). Replacing

ηk and ξk by η
(n)
k and ξ

(n)
k (k = 1, 2, . . . , p) in (7), we get (15), that is, (A4) holds.

Remark 18. For the first order recurrent integer sequence: a(0) = a0 and a(t+1) = ξa(t),
t = 0, 1, 2, . . ., the corresponding difference equation is △a − (ξ − 1)a = 0, the ∆-eigenvalue
of a(t) is λ1 = ξ − 1, the general term is a(t) = a0ξ

t. The ∆-eigenvalues of a(n)(t) are

λ
(n)
1 = ξ − 1 + n, and their general terms are a(n)(t) = a0(ξ + n)t (n = ±1,±2, . . . ,). Hence,

the family of a(t) is just the set of whole integer geometric sequences with identical initial
value a0. Noticing that a(−ξ)(t) = a0δ(t), we see that the case of a0 = 1, is the family of the
unit pulse sequence δ(t) (Remark 9). Obviously, the case of a0 = 0, is the family of the zero
sequence ω(t) (Remarks 8).

Remark 19. For the second order recurrent integer sequence, we take the Fibonacci
sequence (A000045 in [3]) as an example: F (0) = 0, F (1) = 1, and F (t+2) = F (t+1)+F (t),
t = 0, 1, 2, . . . . Its difference equation is △2F +△F − F = 0, and the ∆-eigenvalues of F (t)

are λ1,2 = −1
2
±

√
5

2
, and the general term is F (t) = 1√

5
[(1

2
+

√
5

2
)t − (1

2
−

√
5

2
)t]. The ∆-

eigenvalues of F (n)(t) are λ
(n)
1 = 2n−1

2
+

√
5

2
, and λ

(n)
2 = 2n−1

2
−

√
5

2
, (n = ±1,±2, . . .). The

general term of F (n)(t) is F (n)(t) = 1√
5
[(2n+1

2
+

√
5

2
)t − (2n+1

2
−

√
5

2
)t], and recurrence formula

is F (n)(0) = 0, F (n)(1) = 1, and

F (n)(t + 2) = (2n + 1)F (n)(t + 1) − (n2 + n − 1)F (n)(t), (16)

where t = 0, 1, 2, . . .. Table 1 lists some family elements of the Fibonacci sequence.

Remark 20. For the third order recurrent integer sequence, we take the Tribonacci
sequence (A000073 in [3]) as an example: T (0) = 0, T (1) = 0, T (2) = 1, and T (t + 3) =
T (t + 2) + T (t + 1) + T (t), t = 0, 1, 2, . . .. Its difference equation is △3T + 2△2T − 2T = 0,
and the corresponding ∆-eigenvalues, λ1, λ2, and λ3, are the roots of the ∆-characteristic
equation λ3 + 2λ2 − 2 = 0 (λ1 is a real root, and λ2, and λ3 are a pair of conjugate complex
roots). Its general term is T (t) = c1(1 + λ1)

t + c2(1 + λ2)
t + c3(1 + λ3)

t. The ∆-eigenvalues

of T (n)(t) are λ
(n)
k = λk + n, k = 1, 2, 3, and the corresponding general term is T (n)(t) =

c1(1 + n + λ1)
t + c2(1 + n + λ2)

t + c3(1 + n + λ3)
t for n = ±1,±2, . . .. All of T (n)(t) have the

same first three terms 0, 0, 1, and the same general term coefficients c1, c2, c3. The recurrence
formula is T (n)(0) = 0, T (n)(1) = 0, T (n)(2) = 1 and

T (n)(t+ 3) = (1 + 3n)T (n)(t+ 2) + (1− 2n− 3n2)T (n)(t+ 1) + (1−n+n2 +n3)T (n)(t), (17)

where t = 0, 1, 2, . . .. Table 2 lists some family elements of the Tribonacci sequence.
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Table 1: Elements in family of the Fibonacci sequence (F (n)(t), n = 0,±1,±2,±3,±4)
Sequence Initial values Recurrence formula Number in [3]

F (t) 0, 1 F (t + 2) = F (t + 1) + F (t) A000045

F (1)(t) 0, 1 F (1)(t + 2) = 3F (1)(t + 1) − F (1)(t) A001906

F (2)(t) 0, 1 F (2)(t + 2) = 5F (2)(t + 1) − 5F (2)(t) A093131

F (3)(t) 0, 1 F (3)(t + 2) = 7F (3)(t + 1) − 11F (3)(t) nil

F (4)(t) 0, 1 F (4)(t + 2) = 9F (4)(t + 1) − 19F (4)(t) nil

F (−1)(t) 0, 1 F (−1)(t + 2) = −F (−1)(t + 1) + F (−1)(t) A039834

F (−2)(t) 0, 1 F (−2)(t + 2) = −3F (−2)(t + 1) − F (−2)(t) nil

F (−3)(t) 0, 1 F (−3)(t + 2) = −5F (−3)(t + 1) − 5F (−3)(t) nil

F (−4)(t) 0, 1 F (−4)(t + 2) = −7F (−4)(t + 1) − 11F (−4)(t) nil

Table 2: Elements in family of the Tribonacci sequence (F (n)(t), n = 0,±1,±2,±3,±4)
Sequence Initial Recurrence formula Number

values in [3]
T (t) 0, 0, 1 T (t + 3) = T (t + 2) + T (t + 1) + T (t) A000073

T (1)(t) 0, 0, 1 T (1)(t + 3) = 4T (1)(t + 2) − 4T (1)(t + 1) + 2T (1)(t) A115390

T (2)(t) 0, 0, 1 T (2)(t + 3) = 7T (2)(t + 2) − 15T (2)(t + 1) + 11T (2)(t) nil

T (3)(t) 0, 0, 1 T (3)(t + 3) = 10T (3)(t + 2) − 32T (3)(t + 1) + 34T (3)(t) nil

T (4)(t) 0, 0, 1 T (4)(t + 3) = 13T (4)(t + 2) − 55T (4)(t + 1) + 77T (4)(t) nil

T (−1)(t) 0, 0, 1 T (−1)(t + 3) = −2T (−1)(t + 2) + 2T (−1)(t) nil

T (−2)(t) 0, 0, 1 T (−2)(t + 3) = −5T (−2)(t + 2) − 7T (−2)(t + 1) − T (−2)(t) nil

T (−3)(t) 0, 0, 1 T (−3)(t + 3) = −8T (−3)(t + 2) − 20T (−3)(t + 1) − 14T (−3)(t) nil

T (−4)(t) 0, 0, 1 T (−4)(t + 3) = −11T (−4)(t + 2) − 39T (−4)(t + 1) − 43T (−4)(t) nil
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