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Abstract

André proved that secx is the generating function of all up-down permutations
of even length and tanx is the generating function of all up-down permutation of
odd length. There are three equivalent ways to define up-down permutations in the
symmetric group Sn. That is, a permutation σ in the symmetric group Sn is an up-
down permutation if either (i) the rise set of σ consists of all the odd numbers less
than n, (ii) the descent set of σ consists of all even number less than n, or (iii) both
(i) and (ii). We consider analogues of André’s results for colored permutations of the
form (σ, w) where σ ∈ Sn and w ∈ {0, . . . , k − 1}n under the product order. That is,
we define (σi, wi) < (σi+1, wi+1) if and only if σi < σi+1 and wi ≤ wi+1. We then say
a colored permutation (σ, w) is (I) an up-not up permutation if the rise set of (σ, w)
consists of all the odd numbers less than n, (II) a not down-down permutation if the
descent set of (σ, w) consists of all the even numbers less than n, (III) an up-down

permutation if both (I) and (II) hold. For k ≥ 2, conditions (I), (II), and (III) are
pairwise distinct. We find p, q-analogues of the generating functions for up-not up, not
down-down, and up-down colored permutations.

1 Introduction

Let P = {1, 2, 3, . . .} denote the set of positive integers, E = {2, 4, 6, . . .} denote the set
of even integers in P, and O = {1, 3, 5, . . .} denote the set of odd integers in P. Let Pn =
{1, . . . , n}, En = E∩Pn, and On = O∩Pn. Let Sn denote the symmetric group, i.e., the set
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of all permutations of Pn. Then if σ = σ1σ2 . . . σn ∈ Sn, we define Des(σ) = {i : σi > σi+1}
and Ris(σ) = {i : σi < σi+1}. We say that σ is an up-down permutation if

σ1 < σ2 > σ3 < σ4 > σ5 · · · ,

or, equivalently, if Des(σ) = En−1 or Ris(σ) = On−1. Similarly, we say that σ is an down-up

permutation if
σ1 > σ2 < σ3 > σ4 < σ5 · · · ,

or, equivalently, if Ris(σ) = En−1 or Des(σ) = On−1. Clearly if σ = σ1σ2 · · ·σn ∈ Sn is an
up-down permutation, then the complement of σ,

σc = (n + 1 − σ1)(n + 1 − σ2) · · · (n + 1 − σn)

is a down-up permutation. Thus the number of up-down permutations in Sn is equal to the
number of down-up permutations in Sn. Let UDn denote the number of up-down permuta-
tions in Sn. Then André [2, 3] proved the following.

sec t = 1 +
∑

n∈E

UDn
tn

n!
and (1)

tan t =
∑

n∈O

UDn
tn

n!
. (2)

The goal of this paper is to find analogues of André’s results for colored permutations.
That is, we shall consider pairs of the form (σ,w) where σ ∈ Sn and w ∈ {0, 1, . . . , k − 1}n.
Thus if w = w1 · · ·wn and σ = σ1 · · ·σn ∈ Sn, then we will say that σi is colored with wi in
(σ,w). Alternatively, we can think of (σ,w) as an element of the wreath product Ck ≀Sn of the
cyclic group Ck and the symmetric group Sn. Ck ≀Sn is the group of knn! signed permutations
where there are k signs, 1 = ǫ0, ǫ, ǫ2, . . ., ǫk−1 where ǫ is a primitive k-th root of unity. Hence
we can think of Γ ∈ Ck ≀Sn as a pair (σ,w) where σ = σ1 . . . σn ∈ Sn and the sign of σi is ǫwi

for i = 1, . . . , n. Throughout the paper, we shall abbreviate Sn × {0, . . . , k − 1}n by Ck ≀ Sn

even though our results do not use the group structure of Ck ≀ Sn. .
To define the analogues of up-down permutations in Ck ≀ Sn, we need to define the

analogues of the descent set and the rise set of a colored permutation. That is, suppose ≺ is
a partial order on the set of pairs (i, j) ∈ {1, . . . , n}×{0, . . . , k−1}. Then if σ = σ1 . . . σn ∈ Sn

and w = w1 . . . wn ∈ {0, . . . , k − 1}n, we define

Des≺((σ,w)) = {i : (σi, wi) ≻ (σi+1, wi+1)} and

Ris≺((σ,w)) = {i : (σi, wi) ≺ (σi+1, wi+1)}.

We then say that (σ,w) is an up-down permutation if

(σ1, w1) ≺ (σ2, w2) ≻ (σ3, w3) ≺ (σ4, w4) ≻ (σ5, w5) · · · . (3)

Now if ≺ is a total order, then counting the number of up-down permutations is uninteresting.
For example, Adin and Roichman [1] used the following total order to define their notion of
flag major index on Ck ≀ Sn:

(1, k − 1) ≺ · · · ≺ (n, k − 1) ≺ (1, k − 2) ≺ · · · ≺ (n, k − 2) ≺ · · · ≺ (1, 0) ≺ · · · ≺ (n, 0).
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If we use such a total order ≺ and we pick an assignment of colors, (1, w1), . . . (n,wn), to
1, 2, . . . , n, then ≺ induces a total order on the pairs (1, w1), . . . , (n,wn). Hence for this
assignment of colors, there are clearly just UDn pairs (σ,w) which satisfy (3). Hence relative
to a total order ≺, there are knUDn colored permutations (σ,w) ∈ Ck ≀ Sn that satisfy (3).

However if we use the product order on {1, . . . , n} × {0, . . . , k − 1}, then we have a
completely different situation. That is, we define the product order ≤ on {1, . . . , n} ×
{0, , . . . , k − 1} by declaring that (i1, j1) ≤ (i2, j2) if and only if i1 ≤ i2 and j1 ≤ j2. Again
we can define the analogue of the descent set and rise set of a colored permutation in Ck ≀Sn

as

Des((σ,w)) = {i : (σi, wi) > (σi+1, wi+1)} and (4)

Ris((σ,w)) = {i : (σi, wi) < (σi+1, wi+1)}. (5)

We can then define three different natural analogues of up-down permutations. That is, we
define the following three sets of permutations in Ck ≀ Sn:

1. U -Dn,k = {(σ,w) ∈ Ck ≀ Sn : Ris((σ,w)) = On−1 and Des((σ,w)) = En−1},

2. U -NUn,k = {(σ,w) ∈ Ck ≀ Sn : Ris((σ,w)) = On−1}, and

3. ND-Dn,k = {(σ,w) ∈ Ck ≀ Sn : Des((σ,w)) = En−1}.

Here U -NU stands for “up-not up” and ND-D stands for “not down-down.” Clearly U -Dn,k

is contained in both U -NUn,k and ND-Dn,k. However, both of these containments are strict
and U -NUn,k 6= ND-Dn,k. For example, if k = 2 and n = 3, then

(1 2 3, 1 1 0) ∈ U -NU3,2 − (U -D3,2 ∪ ND-D3,2) and

(1 3 2, 1 0 0) ∈ ND-D3,2 − (U -D3,2 ∪ U -NU3,2).

Let u-dn,k = |U -Dn,k|, nd-dn,k = |ND-Dn,k|, and u-nun,k = |U -NUn,k|. Then the main
goal of this paper is to find expressions for the following generating functions:

A(t) =
∑

n≥0

u-d2n,kt
2n

(2n)!
, B(t) =

∑

n≥0

u-d2n+1,kt
2n+1

(2n + 1)!
,

C(t) =
∑

n≥0

u-nu2n,kt
2n

(2n)!
, D(t) =

∑

n≥0

u-nu2n+1,kt
2n+1

(2n + 1)!
,

E(t) =
∑

n≥0

nd-d2n,kt
2n

(2n)!
, and F (t) =

∑

n≥0

nd-d2n+1,kt
2n+1

(2n + 1)!
.

The generating functions A(t) and B(t) are simply Hadamard products of the generating
functions for up-down permutations of Sn and the generating functions for sequences of
words w = w1 . . . wn ∈ {0, . . . , k − 1}∗ such that

w1 ≤ w2 ≥ w3 ≤ w4 ≥ w5 ≤ w6 · · · .
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The generating function for such words was found by Rawlings [16]. The generating functions
for C(t), D(t), E(t) and F (t) are more interesting. For example, we shall show that

C(t) =
(k − 1)!

dk−1

dtk−1 tk−1 cos t
and (6)

D(t) =
dk−1

dtk−1 t
k−1 sin t

dk−1

dtk−1 tk−1 cos t
(7)

For k ≤ 4, the generating functions and their initial terms are listed below:

k egf for u-nu2n,k egf for u-nu2n+1,k {u-nun,k}n≥1

1 sec t tan t 1, 1, 2, 5, 16, 61, . . .
2 1

cos t−t sin t
sin t+t cos t
cos t−t sin t

2, 3, 14, 49, 376, 1987, . . .

3 2
(2−t2) cos t−4t sin t

4t cos t+(2−t2) sin t
(2−t2) cos t−4t sin t

3, 6, 44, 201, 2436, 16768, . . .

4 6
(6−9t2) cos t−(18t−t3) sin t

(18t−t3) cos t+(6−9t2) sin t
(6−9t2) cos t−(18t−t3) sin t

4, 10, 100, 565, 9356, 79584, . . .

It is easy to see that if (σ,w) = (σ1 . . . σ2n+1, w1 . . . w2n+1) is in U -NU2n+1,k, then the
reverse of (σ,w),

(σ,w)r = (σ2n+1 . . . σ1, w2n+1 . . . w1),

will be in ND-D2n+1,k so that

∑

n≥0

nd-d2n+1,k · t
2n+1

(2n + 1)!
=

dk−1

dtk−1 t
k−1 sin t

dk−1

dtk−1 tk−1 cos t
. (8)

Thus D(t) = F (t). However the generating function for E(t) is not the same as for C(t).
We shall prove that

E(t) =
∑

n≥0

nd-d2n,k · t
2n

(2n)!
=

(

(k − 1)!

2 dk−1

dtk−1 tk−1eit
+

(k − 1)!

2 dk−1

dtk−1 tk−1e−it

)−1

=

(

dk−1

dtk−1 t
k−1eit

)(

dk−1

dtk−1 t
k−1e−it

)

(k − 1)! dk−1

dtk−1 tk−1 cos t

=
Pk−1(it)Pk−1(−it)

(k − 1)! dk−1

dtk−1 tk−1 cos t
,

where Pd(z) =
∑d

m=0 zd
(

d
m

)2
((d − m)!). In fact, we shall prove that

Pd(it)Pd(−it) =
d
∑

s=0

t2s

2s
∑

r=0

(−1)s−r

(

d

r

)2

(d − r)!

(

d

2s − r

)2

(d − (2s − r))!

=
d
∑

s=0

(d!)2

(2s)!

(

d

s

)(

d + s

s

)

t2s. (9)
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Thus Pd(it)Pd(−it) is a polynomial with integer coefficients of degree 2d where only even-
degree terms are non-zero. For k ≤ 4, we get the following results:

k egf for nd-d2n,k Pk−1(z) {nd-dn,k}n≥1

1 sec t 1 1, 1, 2, 5, 16, 61, . . .

2 1+t2

cos t−t sin t
1 + z 2, 10, 14, 85, 376, 3457, . . .

3 4+12t2+t4

(2−t2) cos t−4t sin t
2 + 4z + z2 3, 12, 44, 423, 2436, 35398, . . .

4 36+216t2+45t4+t6

(6−9t2) cos t−(18t−t3) sin t
6 + 18z + 9z2 + z3 4, 22, 100, 1315, 9356, 185804, . . .

In fact, we shall show that the generating functions C(t), D(t), E(t) and F (t) are special
cases of more general generating functions which keep track of more statistics over more
general sets of elements in Ck ≀ Sn. That is, for any k ≥ 2, let

(Ck ≀ Sn)(2) = {(σ,w) ∈ Ck ≀ Sn : On−1 ⊆ Rise((σ,w))} and (10)

(Ck ≀ Sn)(2) = {(σ,w) ∈ Ck ≀ Sn : On−1 ∩ Des((σ,w)) = ∅}. (11)

Thus (Ck ≀Sn)(2) is the set of (σ,w) ∈ Ck ≀Sn which are forced of have rises at all odd positions
and (Ck ≀Sn)(2) is the set of (σ,w) ∈ Ck ≀Sn which do not have a descent at an odd position.
Then we shall find generating functions for certain statistics on (Ck ≀Sn)(2) which specialize to
C(t) and D(t) and generating functions for certain statistics on (Ck ≀ Sn)(2) which specialize
to E(t) and F (t). The techniques that we shall use to derive our generating functions over
(Ck ≀ Sn)(2) or (Ck ≀ Sn)(2) are based on ideas from a paper by Mendes, Remmel, and Riehl
[13] who, for any k ≥ 2 and 0 ≤ j ≤ k − 1, found generating functions for permutations
σ ∈ Sn such that Des(σ) = {j + sk : k ≥ 0 & j + sk < n}. Mendes, Remmel, and Riehl
derived their generating functions by applying certain ring homomorphisms defined on the
ring of symmetric functions Γ over infinitely many variables x1, x2, . . . to simple symmetric
function identities. We will also find our generating functions over (Ck ≀ Sn)(2) or (Ck ≀ Sn)(2)

by applying ring homomorphisms defined on Λ to simple symmetric function identities. To
derive our generating functions over (Ck ≀ Sn)(2), we shall also need to find the generating
function for (σ,w) ∈ Ck ≀ Sn such that Des((σ,w)) = ∅.

The outline of this paper is as follows. In Section 2, we shall derive the generating func-
tions A(t) and B(t). In Section 3, we shall provide the necessary background on symmetric
functions that we shall need to derive the generating functions C(t), D(t), E(t) and F (t).
In Section 4, we shall give the derivations of the generating functions that specialize to C(t)
and D(t). Finally in Section 5, we shall give the derivations of the generating functions that
specialize to E(t) and F (t).

2 The generating functions for up-down permutations

In this section, we shall give expressions for the generating functions for A(t) and B(t).
To state our results, we first need some notation. Suppose that f(t) =

∑

n≥0 fnt
n and

g(t) =
∑

n≥0 gnt
n. Then the Hadamard product f(t) ⊗ g(t) of f and g is defined by

f(t) ⊗ g(t) =
∑

n≥0

fngnt
n. (12)

5



Let P∗ denote the set of all words over the alphabet P and P+ denote the set of all non-
empty words in P∗. We let ǫ denote the empty word. For any w = w1w2 . . . wn ∈ P+, we
let ℓ(w) = n denote the length of w, |w| =

∑n
i=1 wi, and x(w) =

∏n
i=1 xwi

. For example,
if w = 1 2 1 3 2 4 5 4, then ℓ(w) = 8, |w| = 22, and x(w) = x2

1x
2
2x3x

2
4x5. Given w =

w1w2 . . . wn ∈ P+, we define the descent set Des(w), the weak descent set WDes(w), the rise
set Ris(w), and the weak rise set WRis(w) as follows:

Des(w) = {i : wi > wi+1}, (13)

WDes(w) = {i : wi ≥ wi+1}, (14)

Ris(w) = {i : wi < wi+1}, and (15)

WRis(w) = {i : wi ≤ wi+1}. (16)

Definition 1. Let w = w1w2 . . . wn ∈ P+.

1. We say that w a strict up-down word if w1 < w2 > w3 < w4 > w5 · · · , or, equivalently
if Ris(w) = On−1 and Des(w) = En−1.

2. We say that w a strict down-up word if w1 > w2 < w3 > w4 < w5 · · · , or, equivalently
if Des(w) = On−1 and Ris(w) = En−1.

3. We say that w a weak up-down word if w1 ≤ w2 ≥ w3 ≤ w4 ≥ w5 · · · , or, equivalently
if WRis(w) = On−1 and WDes(w) = En−1.

4. We say that w a weak down-up word if w1 ≥ w2 ≤ w3 ≥ w4 ≤ w5 · · · , or, equivalently
if WDes(w) = On−1 and WRis(w) = En−1.

We let SUPn, SDU n, WUDn, and WDU n denote set of all words in {1, . . . , n}∗ which
are strict up-down, strict down-up, weak up-down, and weak down-up, respectively. By
convention, the empty word ǫ and all one letter words belong to all four sets. Clearly, if
w = w1w2 . . . wn ∈ P∗

n, then w ∈ SUDn (WUDn, respectively) if and only if the complement
of w relative to n,

wc,n = (n + 1 − w1)(n + 1 − w2) . . . (n + 1 − wn) ∈ SDU n (WUDn, respectively).

We let SUPn,m, SDU n,m, WUDn,m, and WDU n,m denote set of all words in P∗
n of length m

which are strict up-down, strict down-up, weak up-down, and weak down-up, respectively.
Carlitz [4] proved analogues of André’s formulas for strict up-down words. In particular,

Carlitz [4] proved that

1 +
∑

m∈E

|SUDn,m|z
m =

1

Qn(z)
and

∑

m∈O

|SUDn,m|z
m =

Pn(z)

Qn(z)
(17)

where

Pn(z) =
n
∑

k=0

(−1)k

(

n + k

2k + 1

)

z2k+1 and (18)

Qn(z) =
n
∑

k=0

(−1)k

(

n + k − 1

2k

)

z2k. (19)
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Rawlings [16] proved analogues of (17) for weak down-up words. That is, Rawlings proved
that

1 +
∑

m∈E

|WDU n,m|z
m =

1

Rn(z)
and

∑

m∈O

|WDU n,m|z
m =

Sn(z)

Rn(z)
(20)

where

Rn(z) =
∑

k≥0

(−1)k

(

n + k

2k

)

z2k and (21)

Sn(z) =
∑

k≥0

(−1)k

(

n + k

2k + 1

)

z2k+1. (22)

By our observations above, these are also the generating functions for weak up-down words.
Carlitz and Rawlings proved their generating functions by recursions. In fact, Carlitz devel-
oped recursions for the up-down words w weighted by x(w) and Rawlings actually proved
a generating function for weak down-up words w weighted by q|w|zℓ(w). Recently, Fuller
and Remmel [8] showed that the generating functions of words w according to the weight
x(w)zℓ(w) of words in either SUDn and WU n can be expressed in term of quasi-symmetric
functions. Fuller and Remmel proved their results combinatorially via some simple invo-
lutions and their methods actually extend to a much broader class of words with regular
up-down patterns.

Now it is easy to see that if (σ,w) = (σ1 · · · σn, w1 · · ·wn) ∈ Ck ≀ Sn where Ris((σ,w)) =
On−1 and Des((σ,w)) = En−1, then it must be the case that Ris(σ) = On−1 and Des(σ) =
En−1 so that σ is an up-down permutation and w1 ≤ w2 ≥ w3 ≤ w4 · · · so that w is a weak
up-down word over the alphabet {0, . . . , k − 1}. It then follows that

A(t) =
∑

n≥0

u-d2n,kt
2n

(2n)!
=

(

1

Rk(t)

)

⊗ sec t (23)

and

B(t) =
∑

n≥0

u-d2n+1,kt
2n+1

(2n + 1)!
=

(

Sk(t)

Rk(t)

)

⊗ tan t. (24)

We can also define a strong product order <s on P×{0, . . . , k−1} by defining (i1, w1) <s

(i2, w2) if and only if i1 < i2 and w1 < w2. We then define

Dess((σ,w)) = {i : (σi+1, wi)} <s (σi, wi+1)} and

Riss((σ,w)) = {i : (σi, wi) <s (σi+1, wi+1)}.

We say at that (σ,w) ∈ Ck ≀ Sn is a strong up-down permutation if Riss((σ,w)) = On−1 and
Dess((σ,w)) = En−1. We let su-dn,k denote the number of strong up-down permutations of
Ck ≀ Sn. Then clearly,

Ā(t) =
∑

n≥0

su-d2n,kt
2n

(2n)!
=

(

1

Gk(t)

)

⊗ sec t (25)
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and

B̄(t) =
∑

n≥0

su-d2n+1,kt
2n+1

(2n + 1)!
=

(

Fk(t)

Gk(t)

)

⊗ tan t. (26)

3 Symmetric Functions

In this section we give the necessary background on symmetric functions needed for our
proofs of the generating functions over (Ck ≀ Sn)(2) or (Ck ≀ Sn)(2).

Let Λ denote the ring of symmetric functions over infinitely many variables x1, x2, . . .
with coefficients in the field complex numbers C. The nth elementary symmetric function en

in the variables x1, x2, . . . is given by

E(t) =
∑

n≥0

ent
n =

∏

i

(1 + xit)

and the nth homogeneous symmetric function hn in the variables x1, x2, . . . is given by

H(t) =
∑

n≥0

hnt
n =

∏

i

1

1 − xit
.

Thus
H(t) = 1/E(−t). (27)

Let λ = (λ1, . . . , λℓ) be an integer partition, that is, λ is a finite sequence of weakly increas-
ing nonnegative integers. Let ℓ(λ) denote the number of nonzero integers in λ. If the sum
of these integers is n, we say that λ is a partition of n and write λ ⊢ n. For any partition
λ = (λ1, . . . , λℓ), let eλ = eλ1 · · · eλℓ

. The well-known fundamental theorem of symmetric
functions says that {eλ : λ is a partition} is a basis for Λ or that {e0, e1, . . .} is an alge-
braically independent set of generators for Λ. Similarly, if we define hλ = hλ1 · · ·hλℓ

, then
{hλ : λ is a partition} is also a basis for Λ. Since {e0, e1, . . .} is an algebraically independent
set of generators for Λ, we can specify a ring homomorphism θ on Λ by simply defining θ(en)
for all n ≥ 0.

Since the set of elementary symmetric functions eλ is a basis for Λ, one can expresses
hn =

∑

λ⊢n aλ,neλ for any n > 0. Up to a sign, the coefficient aλ,n equals the size of a
certain set of combinatorial objects depending on λ. A brick tabloid of shape (n) and type
λ = (λ1, . . . , λk) is a filling of a row of n squares of cells with brick of lengths λ1, . . . , λk such
that bricks to not overlap. One brick tabloid of shape (12) and type (1, 1, 2, 3, 5) is displayed
below.

Figure 1: A brick tabloid of shape (12) and type (1, 1, 2, 3, 5).

Let Bλ,n denote the set of all λ-brick tabloids of shape (n) and let Bλ,n = |Bλ,n|. Through
simple recursions stemming from (27), Eğecioğlu and Remmel proved in [7] that

hn =
∑

λ⊢n

(−1)n−ℓ(λ)Bλ,neλ. (28)
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Next we define a class of symmetric functions pn,ν which have a relationship with eλ that
is analogous to the relationship between hn and eλ. These functions were first introduced in
[9] and [11]. Let ν be a function which maps the set of nonnegative integers into the field F .
Recursively define pn,ν ∈ Λn by setting p0,ν = 1 and letting

pn,ν = (−1)n−1ν(n)en +
n−1
∑

k=1

(−1)k−1ekpn−k,ν

for all n ≥ 1. By multiplying series, this means that
(

∑

n≥0

(−1)nent
n

)(

∑

n≥1

pn,νt
n

)

=
∑

n≥1

(

n−1
∑

k=0

pn−k,ν(−1)kek

)

tn =
∑

n≥1

(−1)n−1ν(n)ent
n,

where the last equality follows from the definition of pn,ν . Therefore,

∑

n≥1

pn,νt
n =

∑

n≥1(−1)n−1ν(n)ent
n

∑

n≥0(−1)nentn
(29)

or, equivalently,

1 +
∑

n≥1

pn,νt
n =

1 +
∑

n≥1(−1)n(en − ν(n)en)tn
∑

n≥0(−1)nentn
. (30)

When taking ν(n) = 1 for all n ≥ 1, (30) becomes

1 +
∑

n≥1

pn,1t
n =

1
∑

n≥0(−1)nentn
= 1 +

∑

n≥1

hnt
n

which implies pn,1 = hn. Other special cases for ν give well-known generating functions.
For example, if ν(n) = n for n ≥ 1, then pn,ν is the power symmetric function

∑

i x
n
i . By

taking ν(n) = (−1)kχ(n ≥ k + 1) for some k ≥ 1, pn,(−1)kχ(n≥k+1) is the Schur function
corresponding to the partition (1k, n).

This definition of pn,ν is desirable because of its expansion in terms of elementary sym-
metric functions. The coefficient of eλ in pn,ν has a nice combinatorial interpretation similar
to that of the homogeneous symmetric functions. Suppose T is a brick tabloid of shape (n)
and type λ and that the final brick in T has length ℓ. Define the weight of a brick tabloid
wν(T ) to be ν(ℓ) and let

wν(Bλ,n) =
∑

T is a brick tabloid
of shape (n) and type λ

wν(T ).

By the recursions found in the definition of pn,ν , it may be shown that

pn,ν =
∑

λ⊢n

(−1)n−ℓ(λ)wν(Bλ,n)eλ

in almost the exact same way that (28) was proved in [7].
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For n ≥ 1 and λ ⊢ n, let

[n]q =
1 − qn

1 − q
= q0 + q1 + · · · + qn−1 [n]p,q =

pn − qn

p − q
= pn−1q0 + · · · + p0qn−1

[n]q! = [n]q · · · [1]q [n]p,q! = [n]p,q · · · [1]p,q
[

n

λ

]

q

=
[n]q!

[λ1]q! · · · [λℓ]q!

[

n

λ

]

p,q

=
[n]p,q!

[λ1]p,q! · · · [λℓ]p,q!

be the q- and p, q-analogues of n, n!, and
(

n
λ

)

, respectfully. We shall use the convention that
[0]q = [0]p,q = 0 and [0]q! = [0]p,q! = 1. The q- and p, q-analogues for the exponential function
are defined by

eq[t] =
∑

n≥0

tn

[n]q!
q(

n
2) ep,q[t] =

∑

n≥0

tn

[n]p,q!
q(

n
2).

For any permutation σ ∈ Sn, we define the number of inversions inv(σ) and the number
of coinversions coinv(σ) of σ by

inv(σ) =
∑

i<j

χ(σi > σj) and coinv(σ) =
∑

i<j

χ(σi < σj)

where for any statement A, χ(A) = 1 is A is true and χ(A) = 0 if A is false. Note that
inv(σ) and coinv(σ) make sense if σ is any sequence of non-negative integers.

We end this section with three lemmas that will be needed a later sections. All of the
lemmas follow from simple codings of a basic result of Carlitz [6] that

[

n

k

]

q

=
∑

R(1k0n−k)

qinv(r)

where R(1k0n−k) is the number of rearrangements of k 1’s and n − k 0’s. We start with
a lemma from [13]. Fix a brick tabloid T = (b1, . . . , bℓ(µ)) ∈ Bµ,n. Let IF (T ) denote the
set of all fillings of the cells of T = (b1, . . . , bℓ(µ)) with the numbers 1, . . . , n so that the
numbers increase within each brick reading from left to right. We then think of each such
filling as a permutation of Sn by reading the numbers from left to right in each row. For
example, Figure 2 pictures an element of IF (3, 6, 3) whose corresponding permutation is
4 6 12 1 5 7 8 10 11 2 3 9.

4 6 12 1 5 7 8 10 11 2 3 9

Figure 2: An element of IF (3, 6, 3)

Then the following lemma from [13] gives a combinatorial interpretation to

p
Pℓ(µ)

i=1 (bi
2 )
[

n
b1,...,bℓ(µ)

]

p,q
.

10



Lemma 2. If T = (b1, . . . , bℓ(µ)) is a brick tabloid in Bµ,n, then

p
P

i (
bi
2 )
[

n

b1, . . . , bℓ(µ)

]

p,q

=
∑

σ∈IF (T )

qinv(σ)pcoinv(σ).

Let DF (T ) denote the set of all fillings of the cells of T = (b1, . . . , bℓ(µ)) with the numbers
1, . . . , n so that the numbers decrease within each brick reading from left to right. It is
easy to see that if σ ∈ IF (T ), then σr ∈ DF ((bℓ(µ), . . . , b1)) and inv(σ) = coinv(σr) and
coinv(σ) = inv(σr). Thus we also have the following lemma.

Lemma 3. If T = (b1, . . . , bℓ(µ)) is a brick tabloid in Bµ,n, then

q
P

i (
bi
2 )
[

n

b1, . . . , bℓ(µ)

]

p,q

=
∑

σ∈DF (T )

qinv(σ)pcoinv(σ).

Another well-known combinatorial interpretation for
[

n+k−1
k−1

]

q
is that it is equal to sum

of the sizes of the partitions that are contained in a n× (k− 1) rectangle. Thus we have the
following lemma.

Lemma 4.
∑

0≤a1≤···≤an≤k−1

qa1+···+an =

[

n + k − 1

k − 1

]

q

.

4 The generating functions up-not up permutations

In this section, we shall derive two generating functions that can be specialized to give
the generating functions for C(t) and D(t) stated in the introduction. If (σ,w) ∈ Ck ≀Sn, we
let

RisE((σ,w)) = {2i : 2i ∈ Ris((σ,w))} and (31)

ris(σ)E((σ,w)) = |RisE((σ,w))|. (32)

We let (Ck ≀ Sn)(2) denote the set of (σ,w) ∈ Ck ≀ Sn such that On−1 ⊆ Ris((σ,w)). Thus if
(σ,w) ∈ (Ck ≀Sn)(2), (σ,w) is forced to have rises at all odd positions and ris(σ)E(σ,w) counts
how many elements of the form 2i are in Ris((σ,w)). In particular, if (σ,w) ∈ (Ck ≀ Sn)(2)

and ris(σ)E(σ,w) = 0, then (σ,w) ∈ U -NUn,k.
Our first theorem of this section is the following.

Theorem 5. For all k ≥ 2,

∑

n≥0

t2n

[2n]p,q!

∑

(σ,w)∈(Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w)) =

1 − x

1 − x +
∑

m≥1
p(

m
2 )(x−1)mt2m

[2m]p,q !

[

2m+k−1
k−1

]

r

(33)

11



Note that when we set x = 0 and p = q = r = 1, then (33) reduces to

∑

n≥0

u-nu2n,kt
2n

(2n)!
=

1
∑

m≥0
t2m(−1)m

(2m)!
(2m+k−1)(2m−k−2)···(2m+1)

(k−1)!

=
(k − 1)!

dk−1

dtk−1 tk−1 cos t
. (34)

which is the generating function of C(t) claimed in the introduction.

Proof. Define a ring homomorphism θ : Λ → Q(p, q, r, x), where Q is the set of the rational
numbers, by setting

θ(e2n) = (−1)2n−1(x − 1)n−1

[

2n+k−1
k−1

]

r

[2n]p,q!
p(n

2) (35)

if n ≥ 1 and
θ(e2n+1) = 0 (36)

if n ≥ 0. Then we claim that
θ(h2n+1) = 0 (37)

for all n ≥ 0 and

[2n]p,q!θ(h2n) =
∑

(σ,w)∈(Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w)) (38)

for all n ≥ 1. Note that
θ(hn) =

∑

µ⊢n

(−1)n−ℓ(µ)Bµ,(n)θ(eµ). (39)

First suppose that n is odd. Then clearly every partition µ of n must have an odd part and,
hence, θ(hn) = 0 since θ(e2k+1) = 0 for all k ≥ 0. If n is even, then the only µ such that
θ(eµ) 6= 0 on the RHS of (39) are when all the parts of µ are even. That is, µ must be of the
form 2λ where λ = (λ1, . . . , λk) is partition of n and 2λ = (2λ1, . . . , 2λk). Thus

[2n]p,q!θ(h2n) (40)

= [2n]p,q!
∑

µ⊢n

(−1)2n−ℓ(µ)B2µ,(2n)θ(e2µ)

= [2n]p,q!
∑

µ⊢n

(−1)2n−ℓ(µ)
∑

(2b1,...,2bℓ(µ))∈B2µ,(2n)

ℓ(µ)
∏

j=1

(−1)2bj−1(x − 1)bj−1

[

2bj+k−1
k−1

]

r

[2bj]p,q!
p(2bj

2 )

=
∑

µ⊢n

∑

(2b1,...,2bℓ(µ))∈B2µ,(2n)

p
Pℓ(µ)

j=1 (2bj
2 )
[

2n

2b1, . . . , 2bℓ(µ)

]

p,q

ℓ(µ)
∏

j=1

(x − 1)bj−1

[

2bj + k − 1

k − 1

]

r

.

Next we want to give a combinatorial interpretation to (40). By Lemma 2 for each

brick tabloid T = (2b1, . . . , 2bℓ(µ)), we can interpret p
Pℓ(µ)

j=1 (2bj
2 )[ 2n

2b1,...,2bℓ(µ)

]

p,q
as the sum of the

12



weights of fillings of T with permutations σ ∈ S2n such that σ is increasing in each brick and
we weight σ with qinv(σ)pcoinv(σ). By Lemma 4, we can interpret the term

∏ℓ(µ)
j=1

[

2bj+k−1
k−1

]

r
as

the sum of the weights of fillings w = w1 · · ·w2n of T where the elements of w are between
0 and k − 1 and are weakly increasing in each brick and we weight w by r|w|. Finally, we
interpret

∏ℓ(µ)
j=1(x− 1)bj−1 as all ways of picking a label of the even cells of each brick except

the final cell with either an x or a −1. For completeness, we label the final cell of each brick
with 1. We shall call all such objects that can be created by these choices filled labeled brick

tabloids and we let F2n denote the set of all filled labeled brick tabloids. Thus a C ∈ F2n

consists of a brick tabloid T , a permutation σ ∈ S2n, a sequence w ∈ {0, . . . , k − 1}2n, and a
labeling L of the even cells of T with elements from {x, 1,−1} such that

1. all the bricks of T have even length,

2. σ is strictly increasing in each brick,

3. w is weakly increasing in each brick,

4. the final cell of each brick is labeled with 1, and

5. each even numbered cell which is not a final cell of a brick is labeled with x or −1.

We then define the weight w(C) of C to be qinv(σ)pcoinv(σ)r|w| times the product of all the
x labels in L and the sign sgn(C) of C to be the product of all the −1 labels in L. For
example, if n = 12, k = 4, and T = (4, 6, 2), then Figure 3 pictures such a composite object
C ∈ F12 where w(C) = q23p43r17x2 and sgn(C) = −1.

Thus
[2n]p,q!θ(h2n) =

∑

C∈F2n

sgn(C)w(C). (41)

1 4 6 8 9 122 3 10 11 5 7

0 1 1 0 0 1 2 2 33 1 3

σ

L 1 1 1x x−1

w

Figure 3: A composite object C ∈ F12.

Next we define a weight preserving sign-reversing involution I1 : F2n → F2n. To define
I1(C), we scan the cells of C = (T, σ, w, L) from right to left looking for the leftmost cell
2t such that either (i) 2t is labeled with −1 or (ii) 2t is at the end a brick bj and the brick
bj+1 immediately following bj has the property that σ is strictly increasing in all the cells
corresponding to bj and bj+1 and w is weakly increasing in all the cells corresponding to bj

and bj+1. In case (i), I1(C) = (T ′, σ′, w′, L′) where T ′ is the result of replacing the brick b
in T containing 2t by two bricks b∗ and b∗∗ where b∗ contains the cell 2t plus all the cells in
b to the left of 2t and b∗∗ contains all the cells of b to the right of 2t, σ′ = σ, w′ = w, and
L′ is the labeling that results from L by changing the label of cell 2t from −1 to 1. In case
(ii), I1(C) = (T ′, σ′, w′, L′) where T ′ is the result of replacing the bricks bj and bj+1 in T by
a single brick b, σ′ = σ, w′ = w, and L′ is the labeling that results from L by changing the

13



label of cell 2t from 1 to −1. If neither case (i) or case (ii) applies, then we let I1(C) = C.
For example, if C is the element of F12 pictured in Figure 3, then I1(C) is pictured in Figure
4.

1 4 6 8 9 122 3 10 11 5 7

0 1 1 0 0 1 2 2 33 1 3

σ

L 1 1 1x x1

w

Figure 4: I1(C) for C in Figure 3.

It is easy to see that I1 is a weight-preserving sign-reversing involution and hence I1

shows that
[2n]p,q!θ(h2n) =

∑

C∈F2n,I1(C)=C

sgn(C)w(C). (42)

Thus we must examine the fixed points C = (T, σ, w, L) of I1. First there can be no
−1 labels in L so that sg(C) = 1. Moreover, if bj and bj+1 are two consecutive bricks in T
and 2t is that last cell of bj, then it can not be the case that σ2t < σ2t+1 and w2t ≤ w2t+1

since otherwise we could combine bj and bj+1. For any such fixed point, we can think of
the pair (σ,w) as an element of Ck ≀ S2n. It follows that if cell 2t is at the end of a brick,
then 2t 6∈ RisE((σ,w)). However if 2v is a cell which is not at the end of brick, then our
definitions force σ2v < σ2v+1 and w2v ≤ w2v+1 so that 2v ∈ RisE((σ,w)). Since each such cell
2v must be labeled with an x, it follows that sgn(C)w(C) = qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w)).
Moreover our definitions force that O2n−1 ⊆ Ris((σ,w)) so that (σ,w) ∈ (Ck ≀ S2n)(2). Such
a fixed point is pictured in Figure 5. Vice versa, if (σ,w) ∈ (Ck ≀ S2n)(2), then we can create
a fixed point C = (T, σ, w, L) by having the bricks in T end at cells of the form 2t where
2t 6∈ RisE((σ,w) and labeling each cell 2t ∈ RisE((σ,w)) with x and labeling all other even
numbered cells with 1. Thus we have shown that

[2n]p,q!θ(h2n) =
∑

(σ,w)∈(Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w))

as desired.

42 3 11

0 1 1 0 0 1 2 2 33 1 3

σ

L 1 1 1x xx

1 98657 10 12

w

Figure 5: A fixed point of I1.
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Applying θ to the identity H(t) = (E(−t))−1, we get

∑

n≥0

θ(hn)tn =
∑

n≥0

t2n

[2n]p,q!

∑

(σ,w)∈(Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E(σ,w)

=
1

1 +
∑

n≥1(−t)nθ(en)

=
1

1 +
∑

m≥1(−1)2mt2m (−1)2m−1(x−1)m−1p(
2m
2 )

[2m]p,q !

[

2m+k−1
k−1

]

r

=
1 − x

1 − x +
∑

m≥1
p(

2m
2 )(x−1)mt2m

[2m]p,q !

(

2m+k−1
k−1

)

which proves (33).

Theorem 6. For all k ≥ 2,

∑

n≥0

t2n+1

[2n + 1]p,q!

∑

(σ,w)∈(Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w)) =

−
∑

m≥1
p(

2m−1
2 )(x−1)mt2m−1

[2m−1]p,q

[

2m−1+k−1
k−1

]

r

1 − x +
∑

m≥1
p(

m
2 )(x−1)mt2m

[2m]p,q !

[

2m+k−1
k−1

]

r

. (43)

Note that when we set x = 0 and p = q = r = 1, then (33) reduces to

∑

n≥0

u-nu2n+1,kt
2n+1

(2n + 1)!
=

∑

m≥1
(−1)m−1t2m−1

(2m−1)!
(2m+k−2)···(2m)

(k−1)!
∑

m≥0
t2m(−1)m

(2m)!
(2m+k−1)(2m−k−2)···(2m+1)

(k−1)!

=
dk−1

dtk−1 t
k−1 sin t

dk−1

dtk−1 tk−1 cos t
(44)

which is the generating function of D(t) claimed in the introduction.

Proof. Let θ be the ring homomorphism defined in Theorem 5. In this case, we will derive
(43) by applying θ to the identity

∑

n≥1

pn,νt
n =

∑

n≥1(−1)n−1ν(n)ent
n

∑

n≥0(−1)nentn
(45)

where

ν(2n) =
[2n]p,q[2n]r

p2n−1[2n + k − 1]r
(46)

=
p(2n−1

2 )

p(2n
2 )

[2n]p,q!

[2n − 1]p,q!

[

2n−1+k−1
k−1

]

r
[

2n+k−1
k−1

]

r
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for n ≥ 1 and ν(2m + 1) = 0 for m ≥ 0. We have defined ν so that

ν(2n)θ(e2n) =
(−1)2n−1(x − 1)n−1p(2n−1

2 )

[2n − 1]p,q!

[

2n − 1 + k − 1

k − 1

]

r

. (47)

Again it is easy to see that
θ(p2n+1,ν) = 0 (48)

for all n ≥ 0 since the expansion of p2n+1,ν in terms of the elementary symmetric functions
only involves eµ’s where µ contains an odd part. The key fact that we have to prove is that

[2n + 1]p,q!θ(p2n+2,ν) =
∑

(σ,w)∈(Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w)) (49)

for all n ≥ 0. Note that

[2n + 1]p,q!θ(p2n+2,ν) (50)

= [2n + 1]p,q!
∑

µ⊢n+1

(−1)2n+2−ℓ(µ)wν(B2µ,(2n+2))θ(e2µ)

= [2n + 1]p,q!
∑

µ⊢n+1

(−1)2n+2−ℓ(µ)
∑

(2b1,...,2bℓ(µ))∈B2µ,(2n+2)

ν(2bℓ(µ)) ×

ℓ(µ)
∏

j=1

(−1)2bj−1(x − 1)bj−1

[

2bj+k−1
k−1

]

r

[2bj]p,q!
p(2bj

2 )

= [2n + 1]p,q!
∑

µ⊢n+1

∑

(2b1,...,2bℓ(µ))∈B2µ,(2n+2)

p(2bℓ(µ)−1

2
)(x − 1)bℓ(µ)−1

[2bℓ(µ) − 1]p,q!

[

2bℓ(µ) − 1 + k − 1

k − 1

]

r

×

ℓ(µ)−1
∏

j=1

p(2bj
2 )(x − 1)bj−1

[2bj]p,q!

[

2bj + k − 1

k − 1

]

r

=
∑

µ⊢n+1

∑

(2b1,...,2bℓ(µ))∈B2µ,(2n+2)

p(2bℓ(µ)−1

2
)p

Pℓ(µ)−1
j=1 (2bj

2 )
[

2n + 1

2b1, . . . , 2bℓ(µ)−1, 2bℓ(µ) − 1

]

p,q

×

(x − 1)bℓ(µ)−1

[

2bℓ(µ) − 1 + k − 1

k − 1

]

r

ℓ(µ)−1
∏

j=1

(x − 1)bj−1

[

2bj + k − 1

k − 1

]

r

.

Again we want to give a combinatorial interpretation to (50). By Lemma 2 for each brick
tabloid T = (2b1, . . . , 2bℓ(µ)), we can interpret

p(2bℓ(µ)−1

2
)p

Pℓ(µ)−1
j=1 (2bj

2 )
[

2n + 1

2b1, . . . , 2bℓ(µ)−1, 2bℓ(µ)−1

]

p,q

the sum of the weights of fillings of the first 2n+1 cells of T with a permutation σ ∈ S2n+1

such that σ is increasing in each brick and where we weight σ with qinv(σ)pcoinv(σ). Note that
T has 2n + 2 cells so we will assume that the last cell of T is filled in and we will not place
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anything in that cell. By Lemma 4, we can interpret the term
[

2bℓ(µ)−1+k−1

k−1

]

r

∏ℓ(µ)−1
j=1

[

2bj+k−1
k−1

]

r
as giving the sum of the weights of fillings w = w1 · · ·w2n+1 of the first 2n + 1 cells of T
where the elements of w are between 0 and k − 1 and are weakly increasing in each brick
and where we weight w by r|w|. Finally, we interpret (x − 1)2bℓ(µ)−1

∏ℓ(µ)−1
j=1 (x − 1)bj−1 as all

ways of picking a label of the even cells of each brick except the final cell with either an x
or a −1. For completeness, we label the final cell of each brick with 1. We shall call all such
objects that can be created in this way filled labeled brick tabloids and let G2n+2 denote the
set of all filled labeled brick tabloids. Thus a C ∈ G2n+2 consists of a brick tabloid T , a
permutation σ ∈ S2n+1, a sequence w ∈ {0, . . . , k− 1}2n+1, and a labeling L of the even cells
of T with elements from {x, 1,−1} such that

1. all the bricks of T have even length,

2. σ is strictly increasing in each brick and fills in the first 2n + 1 cells,

3. w is weakly increasing in each brick and fills in the first 2n + 1 cells,

4. the final cell of each brick is labeled with 1, and

5. each even numbered cell which is not a final cell of a brick is labeled with x or −1.

We then define the weight w(C) of C to be qinv(σ)pcoinv(σ)r|w| times the product of all the
x labels in L and the sign sgn(C) of C to be the product of all the −1 labels in L. For
example, if n = 12, k = 4, and T = (4, 6, 2), then Figure 6 pictures such a composite object
C ∈ G12 where w(C) = q20p35r14x2 and sgn(C) = −1.

Thus
[2n + 1]p,q!θ(p2n+2,ν) =

∑

C∈G2n+2

sgn(C)w(C). (51)

1 4 62 3 10 11 5

0 1 1 0 0 1 2 2 33 1

σ

L 1 1 1x x−1

987

w

Figure 6: A composite object C ∈ G12.

Next we define a weight preserving sign-reversing involution I2 : G2n+2 → G2n+2. I2 is
essentially the same as I1 of Theorem 6. That is, we scan the cells of C = (T, σ, w, L) from
right to left looking for the leftmost cell 2t such that either (i) 2t is labeled with −1 or (ii) 2t
is at the end a brick bj and the brick bj+1 immediately following bj has the property that the
σ is strictly increasing in all the cells corresponding to bj and bj+1 and w is weakly increasing
in all the cells corresponding to bj and bj+1. In case (i), I2(C) = (T ′, σ′, w′, L′) where T ′

is the result of replacing the brick b in T containing 2t by two bricks b∗ and b∗∗ where b∗

contains cell 2t plus all the cells in b to the left of 2t and b∗∗ contains all the cells of b to the
right of 2t, σ′ = σ, w′ = w, and L′ is the labeling that results from L by changing the label
of cell 2t from −1 to 1. In case (ii), I2(C) = (T ′, σ′, w′, L′) where T ′ is the result of replacing
the bricks bj and bj+1 in T by a single brick b, σ′ = σ, w′ = w, and L′ is the labeling that
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results from L by changing the label of cell 2t from 1 to −1. If neither case (i) or case (ii)
applies, then we let I2(C) = C. For example, if C is the element of G12 pictured in Figure 6,
then I2(C) is pictured in Figure 7.

1 4 62 3 10 11 5

0 1 1 0 0 1 2 2 33 1

σ

L 1 1 1x x

987

1

w

Figure 7: I2(C) for C in Figure 6.

Again, it is easy to see that I2 is a weight-preserving sign-reversing involution so that

[2n + 1]p,q!θ(p2n+2,ν) =
∑

C∈G2n+2,I2(C)=C

sgn(C)w(C). (52)

Thus we must examine the fixed points C = (T, σ, w, L) of I2. First there can be no
−1 labels in L so that sg(C) = 1. Moreover, if bj and bj+1 are two consecutive bricks in T
and 2t is that last cell of bj, then it can not be the case that σ2t < σ2t+1 and w2t ≤ w2t+1

since otherwise we could combine bj and bj+1. For any such fixed point, we can think of
(σ,w) as an element of Ck ≀ S2n+1. It follows that if cell 2t is at the end of a brick, then
2t 6∈ RisE((σ,w)). However if 2v is a cell which is not at the end of brick, then our definitions
force σ2v < σ2v+1 and w2v ≤ w2v+1 so that 2v ∈ RisE((σ,w)). Since each such cell 2v must be
labeled with an x, it follows that sgn(C)w(C) = qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w)). Moreover our
definitions force that O2n−1 ⊆ Ris((σ,w)) so that (σ,w) ∈ (Ck ≀S2n+1)

(2). Such a fixed point
is pictured in Figure 8. Vice versa, if (σ,w) ∈ (Ck ≀S2n+1)

(2), then we can create a fixed point
C = (T, σ, w, L) by having the bricks in T end at cells of the form 2t where 2t 6∈ RisE((σ,w)
and labeling each cell 2t ∈ RisE((σ,w)) with x and labeling all other even numbered cells
with 1. Thus we have shown that

[2n + 1]p,q!θ(p2n+2,ν) =
∑

(σ,w)∈(Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w))

as desired.

42 3 11

0 1 1 0 0 1 2 2 33 1

σ

L 1 1 1x xx

1 98657 10

w

Figure 8: A fixed point of I2.
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Applying θ to the identity (45), we get

∑

n≥1

θ(pn,ν)t
n =

∑

n≥1

t2n+2

[2n + 1]p,q!

∑

(σ,w)∈(Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w))

=

∑

m≥1(−1)2m−1t2mν(2m)θ(e2m)

1 +
∑

n≥1(−t)nθ(en)

=

∑

m≥1 t2m p(
2m−1

2 )(x−1)m−1

[2n−1]p,q

[

2n−1+k−1
k−1

]

r

1 +
∑

m≥1(−1)2mt2m (−1)2m−1(x−1)m−1p(
2m
2 )

[2m]p,q !

[

2m+k−1
k−1

]

r

=
−
∑

m≥1 t2m p(
2n−1

2 )(x−1)m

[2n−1]p,q

[

2n−1+k−1
k−1

]

r

1 − x +
∑

m≥1
p(

2m
2 )(x−1)mt2m

[2m]p,q !

(

2m+k−1
k−1

)

That is, we have shown that

∑

n≥0

t2n+2

[2n + 1]q!

∑

(σ,w)∈(Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w)) = (53)

−
∑

m≥1 t2m p(
2n−1

2 )(x−1)m

[2n−1]p,q

[

2n−1+k−1
k−1

]

r

1 − x +
∑

m≥1
p(

m
2 )(x−1)mt2m

[2m]q !

[

2m+k−1
k−1

]

r

.

Then dividing both sides of (53) by t yields (43).

5 The generating functions for not down-down permu-

tations

In this section, we shall prove two generating functions which specialize to the generating
functions E(t) and F (t) described in the introduction. In particular, we let (Ck ≀Sn)(2) denote
the set of all (σ,w) ∈ Ck ≀ Sn such that On−1 ∩ Des((σ,w)) = ∅. We let

NonDesE((σ,w)) = {2i : 2i 6∈ Des((σ,w))} and (54)

nondesE((σ,w)) = |NonDesE((σ,w))|. (55)

It is easy to see that the generating functions

1 +
∑

n≥1

t2n

[2n]p,q!

∑

(σ,w)∈ (Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|w|xnondesE((σ,w)). (56)

and
∑

n≥0

t2n+1

[2n + 1]p,q!

∑

(σ,w)∈ (Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xnondesE((σ,w)). (57)
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specialize to E(t) and F (t) respectively when we set x = 0 and p = q = r = 1.
Our strategy for finding these generating functions is very similar to finding the generating

function (33) and (43). That is, if one reflects on the proof of Theorem 5, the main role of the
definition of a ring homomorphism θ : Λ → Q(p, q, r, x) was to ensure that [2n]p,q!θ(h2n) could
be interpreted as the sum of the weights of labeled fillings (T, L, σ, w) such that (σ,w) was
strictly increasing within each brick relative to the product ordering. Then the combinatorics
of the involution I1 showed that

[2n]p,q!θ(h2n) =
∑

(σ,w)∈(Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w))

from which we could find the generating function by applying the ring homomorphism to
the identity H(t) = 1/E(−t). Now suppose that we could define a ring homomorphism
∆ : Λ → Q(p, q, r, x) so that [2n]p,q!∆(h2n) could be interpreted as the sum of the weights of
labeled fillings (T, L, σ, w) such that (σ,w) was non-increasing within each brick relative to
the product ordering. Then it is not difficult to see that we can define an analogue of the
involution I1 where replace the condition that (σ,w) is strictly increasing in each brick by
the condition that (σ,w) is non-increasing in each brick to show that

[2n]p,q!∆(h2n) =
∑

(σ,w)∈(Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|w|xnondesE((σ,w)) (58)

We shall show at the end of this section that

Z(p, q, r, t) =
∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈NDn,k

qinv(σ)pcoinv(σ)r|w| (59)

=
1

1 +
∑

m≥1
q(

m
2 )(−t)m

[2m]p,q !

[

m+k−1
k−1

]

r

where NDn,k is the set of permutations σ ∈ Ck ≀ Sn such that Des((σ,w)) = ∅. Then clearly

Z(p, q, r, t) + Z(p, q, r,−t)

2
= 1 +

∑

n≥1

t2n

[2n]p,q!

∑

(σ,w)∈ND2n,k

qinv(σ)pcoinv(σ)r|w| and

Z(p, q, r, t) − Z(p, q, r,−t)

2
=

∑

n≥0

t2n+1

[2n + 1]p,q!

∑

(σ,w)∈ND2n+1,k

qinv(σ)pcoinv(σ)r|w|.

Hence for all n ≥ 1,

Z(p2, qp, r, t) + Z(p2, qp, r,−t)

2
| t2n

[2n]p,q !

=
∑

(σ,w)∈ND2n,k

(pq)inv(σ)(p2)coinv(σ)r|w|

= p(2n
2 )

∑

(σ,w)∈ND2n,k

qinv(σ)pcoinv(σ)r|w| (60)
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since for all σ ∈ S2n, inv(σ) + coinv(σ) =
(

2n
2

)

. Similarly,

Z(p2, qp, r, t) − Z(p2, qp, r,−t)

2
| t2n+1

[2n+1]p,q !

=
∑

(σ,w)∈ND2n+1,k

(pq)inv(σ)(p2)coinv(σ)r|w|

= p(2n+1
2 )

∑

(σ,w)∈ND2n+1,k

qinv(σ)pcoinv(σ)r|w| (61)

since for all σ ∈ S2n+1, inv(σ) + coinv(σ) =
(

2n+1
2

)

.
We define our desired ring homomorphism ∆ : Λ → Q(p, q, r, x) by setting

∆(e2n) =
(−1)2n−1(x − 1)n−1

[2n]p,q!

(

Z(p2, pq, r, t) + Z(p2, pq, r,−t)

2
| t2n

[2n]p,q !

)

=
(−1)2n−1(x − 1)n−1

[2n]p,q!
p(2m

2 )
∑

(σ,w)∈ND2n,k

qinv(σ)pcoinv(σ)r|w|. (62)

if n ≥ 1 and
∆(e2n+1) = 0 (63)

if n ≥ 0. Again it is easy to see that

∆(h2n+1) = 0 (64)

for all n ≥ 0. Now

[2n]p,q!∆(h2n) (65)

= [2n]p,q!
∑

µ⊢n

(−1)2n−ℓ(µ)B2µ,(2n)∆(e2µ)

= [2n]p,q!
∑

µ⊢n

(−1)2n−ℓ(µ)
∑

(2b1,...,2bℓ(µ))∈B2µ,(2n)

ℓ(µ)
∏

j=1

(−1)2bj−1(x − 1)bj−1

[2bj]p,q!
×

(

Z(p2, pq, r, t) + Z(p2, pq, r,−t)

2
|

t
2bj

[2bj ]p,q !

)

=
∑

µ⊢n

∑

(2b1,...,2bℓ(µ))∈B2µ,(2n)

p
Pℓ(µ)

j=1 p(
2bj
2 )
[

2n

2b1, . . . , 2bℓ(µ)

]

p,q

ℓ(µ)
∏

j=1

(x − 1)bj−1 ×

ℓ(µ)
∏

j=1





∑

(σ,w)∈ND2bj ,k

qinv(σ)pcoinv(σ)r|w|



 .

Next we want to give a combinatorial interpretation to (65). By Lemma 2, for each

brick tabloid T = (2b1, . . . , 2bℓ(µ)), we can interpret p
Pℓ(µ)

j=1 (2bj
2 )[ 2n

2b1,...,2bℓ(µ)

]

p,q
as the sum of the
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weights of fillings of T with a permutation τ ∈ S2n such that τ is increasing in each brick
and we weight τ with qinv(τ)pcoinv(τ). Next the product

ℓ(µ)
∏

j=1

∑

(σ,w)∈ND2bj ,k

qinv(σ)pcoinv(σ)r|w|

can be interpreted as all ways to pick a permutation (σ(j), w(j)) ∈ Ck ≀S2bi
for each brick 2bj

in T such that Des(σ(j), w(j))) = ∅ with weight qinv(σ(j),w(j))pcoinv(σ(j),w(j)))r|w
(j)|. For example,

Figure 9 pictures such a choice for σ and choices for (σ(1), w(2)), (σ(2), w(2)), (σ(3), w(3)) for
the brick tabloid T = (4, 6, 2). Here we have written the (σ(j), w(j))’s in two line arrays as
we did in the previous proofs, namely, the bottom line of the array gives σ(j) and the top
line of the array gives w(j). We can then combine these two diagrams into single diagram
which is pictured at the bottom of Figure 9 by rearranging the elements of σ in each brick
bj according to the permutation σ(j) and bringing down the top sequence w(j) to be the top
sequence in each brick. The result is a pair (σ,w) such that (σ,w) has no descents that occur
between two cells in the same brick and where we weight the pair (σ,w) by qinv(σ)pcoinv(σ)r|w|.

Finally, we interpret
∏ℓ(µ)

j=1(x − 1)bj−1 as all ways of picking a label of the even cells of each
brick except the final cell with either an x or a −1. For completeness, we label the final
cell of each brick with 1. We shall call such objects filled labeled brick tabloids and we let
K2n denote the set of all filled labeled brick tabloids that arise in this way. Thus a C ∈ K2n

consists of a brick tabloid T , a permutation σ ∈ S2n, a sequence w ∈ {0, . . . , k − 1}2n, and a
labeling L of the even cells of T with elements from {x, 1,−1} such that

1. all the bricks of T have even length,

2. if i ∈ Des((σ,w)), then i must be the final cell of some brick,

3. the final cell of each brick is labeled with 1, and

4. each even numbered cell which is not a final cell of a brick is labeled with x or −1.

We then define the weight w(C) of C to be qinv(σ)pcoinv(σ)r|w| times the product of all the
x labels in L and the sign sgn(C) of C to be the product of all the −1 labels in L. For
example, if n = 12, k = 4, and T = (4, 6, 2), then the composite object C pictured at the
bottom of Figure 9 is an element of K12 where w(C) = q33p33r15x2 and sgn(C) = −1.

Thus
[2n]p,q!∆(h2n) =

∑

C∈K2n

sgn(C)w(C). (66)

At this point, we can follow the analogous steps in Theorem 5 to prove that

[2n]p,q!∆(h2n) =
∑

(σ,w)∈(Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|w|xnondesE((σ,w)).
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w w w

Figure 9: A composite object C ∈ K12.

Applying ∆ to the identity H(t) = (E(−t))−1, we get

∑

n≥0

∆(hn)tn =
∑

n≥0

t2n

[2n]p,q!

∑

(σ,ǫ)∈ (Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|ǫ|xnondesE(σ,ǫ)

=
1

1 +
∑

n≥1(−t)n∆(en)

=
1

1 +
∑

m≥1(−1)2mt2m (−1)2m−1(x−1)m−1

[2m]p,q !

(

Z(p2,pq,r,t)+Z(p2,pq,r,−t)
2

| t2m

[2m]p,q !

)

=
1 − x

1 − x +
∑

m≥1
((x−1)1/2t)2m

[2m]p,q !

(

Z(p2,pq,r,t)+Z(p2,pq,r,−t)
2

| t2m

[2m]p,q !

)

=
1 − x

−x + Z(p2,pq,r,(x−1)1/2t)+Z(p2,pq,r,−(x−1)1/2t)
2

.

Thus we have proved the following.

Theorem 7. For all k ≥ 2,

1 +
∑

n≥1

t2n

[2n]p,q!

∑

(σ,w)∈(Ck≀S2n)(2)

qinv(σ)pcoinv(σ)r|w|xnondesE((σ,w)) =

1 − x

−x + Z(p2,qp,r,(x−1)1/2t)+Z(p2,qp,r,−(x−1)1/2t)
2

. (67)
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Note that setting x = 0 and p = q = r = 1 in (67) and using Corollary 11, we obtain
that

∑

n≥0

nd-d2n,kt
2n

(2n)!
=

1
Z(1,1,1,it)+Z(1,1,1,−it)

2

=
1

1
2

(

1
dk−1

dtk−1 tk−1e−it
+ 1

dk−1

dtk−1 tk−1eit

)

=
( dk−1

dtk−1 t
k−1e−it)( dk−1

dtk−1 t
k−1eit)

dk−1

dtk−1 tk−1
(

e−it+eit

2

)

=
( dk−1

dtk−1 t
k−1e−it)( dk−1

dtk−1 t
k−1eit)

dk−1

dtk−1 tk−1 cos t
.

Let

Pk−1(t) =
dk−1

dtk−1
tk−1eit (68)

for k ≥ 2. Observe that if D = d
dt

is the ordinary differential operator, then

Dn(f(t) · g(t)) =
n
∑

k=0

(

n

k

)

Dk(f(t))Dn−k(g(t)). (69)

Hence in the special case where f(t) = eit and g(t) = tn, we have that

Pn(t) =
n
∑

k=0

(

n

k

)

ikeit(n) ↓n−k tk

= eit

n
∑

k=0

(

n

k

)2

(n − k)!iktk

where (n) ↓0= 1 and (n) ↓s= n(n − 1) · · · (n − s + 1) for s ≥ 1. It follows that

Pn(it)Pn(−it) =
2n
∑

s=0

ts
s
∑

r=0

(

n

r

)2

(n − r)!ir
(

n

s − r

)2

(n − (s − r))!(−i)s−r

=
2n
∑

s=0

(i)sts
s
∑

r=0

(−1)s−r

(

n

r

)2

(n − r)!

(

n

s − r

)2

(n − (s − r))!.

Note that when s is odd, then term

s
∑

r=0

(−1)s−r

(

n

r

)2

(n − r)!

(

n

s − r

)2

(n − (s − r))! = 0

since the r-th term in the sum is the negative of (s − r)-th term in the sum. Thus

Pn(it)Pn(−it) =
n
∑

s=0

t2s

2s
∑

r=0

(−1)s−r

(

n

r

)2

(n − r)!

(

n

2s − r

)2

(n − (2s − r))!. (70)
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We can rewrite the sum

2s
∑

r=0

(−1)s−r

(

n

r

)2

(n − r)!

(

n

s − r

)2

(n − (s − r))!

as a hypergeometric series. That is, we can rewrite this sum in terms of rising factorials (a)n

where (a)0 = 1 and (a)n = a(a + 1) · · · (a + n − 1) for n ≥ 1 to obtain that

2s
∑

r=0

(−1)s−r

(

n

r

)2

(n − r)!

(

n

s − r

)2

(n − (s − r))! =

(−1)sn!n!(−n)2s

(2s)!(2s)!

2s
∑

r=0

(−n)r(−2s)r(−2s)r

(n − 2s + 1)r(1)r

1

r!
=

(−1)sn!n!(−n)2s

(2s)!(2s)!
3F2(−n,−2s,−2s; n − 2s + 1, 1; 1). (71)

This is a special case of the following hypergeometric series identity found in [15]:

3F2(b, c,−2n; 1 − b − 2n, 1 − c − 2n; 1) =
(2n)!(b)n(c)n(b + c)2n

n!(b)2n(c)2n(b + c)n

. (72)

Using (72), we see that (71) is equal to

(−1)sn!n!(−n)2s

(2s)!(2s)!

(2s)!(−n)s(−2s)s(−n − 2s)2s

s!(−n)2s(−2s)2s(−n − 2s)s

=

(−1)sn!n!

(2s)!

(−1)sn ↓s (−1)s(2s) ↓s (−1)2s(n + 2s) ↓2s

s!(−1)2s(2s)!(−1)s(n + 2s) ↓s

=

(n!)2

(2s)!

(

n

s

)(

n + s

s

)

where a ↓0= 1 and a ↓n= a(a − 1) · · · (a − n + 1) for n ≥ 1. Hence

Pn(it)Pn(−it) =
n
∑

s=0

(n!)2

(2s)!

(

n

s

)(

n + s

s

)

t2s. (73)

Thus we have the following corollary.

Corollary 8. For k ≥ 2,

1 +
∑

n≥1

nd-d2n,kt
2n

(2n)!
=

∑k−1
s=0

((k−1)!)2

(2s)!

(

k−1
s

)(

k−1+s
s

)

t2s

d
k−1

dtk−1 tk−1 cos t
. (74)

We can also prove an analogue of Theorem 6. That is, suppose that we define

ν(2n) =
1

∆(e2n)

(−1)2n−1(x − 1)n−1

[2n − 1]p,q!

(

Z(p2, pq, r, t) + Z(p2, pq, r,−t)

2
| t2n−1

[2n−1]p,q !

)

=
1

∆(e2n)

(−1)2n−1p(2n−1
2 )(x − 1)n−1

[2n − 1]p,q!

∑

(σ,w)∈ND2n−1,k

qinv(σ,w)pcoinv(σ,w)r|w| (75)
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for n ≥ 1 and ν(2m + 1) = 0 for m ≥ 0. In this case we have defined ν so that

ν(2n)∆(e2n) =
(−1)2n−1(x − 1)n−1

[2n − 1]p,q!

(

Z(p2, pq, r, t) − Z(p2, pq, r,−t)

2
|t2n−1[2n−1]p,q !

)

=
(−1)2n−1p(2n−1

2 )(x − 1)n−1

[2n − 1]p,q!

∑

(σ,w)∈ND2n−1,k

qinv(σ,w)pcoinv(σ,w)r|w|. (76)

We can then follow the same sequence of steps as in the proof of Theorem 6 to prove that

[2n + 1]p,q!∆(p2n+2,ν) =
∑

(σ,w)∈(Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xnondesE((σ,w)).

Applying ∆ to the identity (45), we get

∑

n≥1

∆(pn,ν)t
n =

∑

n≥1

t2n+2

[2n + 1]p,q!

∑

(σ,w)∈(Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xnondesE((σ,w))

=

∑

m≥1(−1)2m−1t2mν(2m)∆(e2m)

1 +
∑

n≥1(−t)n∆(en)

=

∑

m≥1(−1)2m−1t2m (−1)2m−1(x−1)m−1

[2m−1]p,q !

(

Z(p2,pq,r,t)−Z(p2,pq,r,−t)
2

|t2m−1[2m−1]p,q !

)

1 +
∑

m≥1(−1)2mt2m (−1)2m−1(x−1)m−1

[2m]p,q !

(

Z(p2,pq,r,t)+Z(p2,pq,r,−t)
2

|t2m[2m]p,q !

)

=
−t(x − 1)1/2

∑

m≥1
((x−1)1/2t)2m−1

[2m−1]p,q !

(

Z(p2,pq,r,t)−Z(p2,pq,r,−t)
2

|t2m−1[2m−1]p,q !

)

1 +
∑

m≥1(t
2m ((x−1)1/2t)2m

[2m]p,q !

(

Z(p2,pq,r,t)+Z(p2,pq,r,−t)
2

|t2m[2m]p,q !

)

=
−t(x − 1)1/2(Z(p2,pq,r,t)−Z(p2,pq,r,−t)

2
)

−x + Z(p2,pq,r,t)+Z(p2,pq,r,−t)
2

=
−t(x − 1)1/2(Z(p2, pq, r, t) − Z(p2, pq, r,−t))

−2x + Z(p2, pq, r, t) + Z(p2, pq, r,−t)
.

That is, we have shown that

∑

n≥0

t2n+2

[2n + 1]q!

∑

(σ,w)∈(Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xris(σ)E((σ,w)) (77)

=
−t(x − 1)1/2(Z(p2, pq, r, t) − Z(p2, pq, r,−t))

−2x + Z(p2, pq, r, t) + Z(p2, pq, r,−t)

Then dividing both sides of (77) by t yields the following result.

Theorem 9. For all k ≥ 2,

∑

n≥0

t2n+1

[2n + 1]p,q!

∑

(σ,w)∈(Ck≀S2n+1)(2)

qinv(σ)pcoinv(σ)r|w|xnondesE((σ,w)) =

−(x − 1)1/2
(

Z(p2, pq, r, (x − 1)1/2t) − Z(p2, pq, r,−(x − 1)1/2t)
)

−2x + Z(p2, pq, r, (x − 1)1/2t) + Z(p2, pq, r,−(x − 1)1/2t)
(78)
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Note that when we set x = 0 and p = q = r = 1, then (78) reduces to

∑

n≥0

nd-d2n+1,kt
2n+1

(2n + 1)!
=

−i(Z(1, 1, 1, it) − Z(1, 1, 1,−it))

Z(1, 1, 1, it) + Z(1, 1, 1,−it))

=
−i
(

dk−1

dtk−1 t
k−1e−it − dk−1

dtk−1 t
k−1eit

)

dk−1

dtk−1 tk−1e−it + dk−1

dtk−1 tk−1eit

=
−i dk−1

dtk−1 (e
it − e−it)

dk−1

dtk−1 (eit + e−it)

=
dk−1

dtk−1 sin t
dk−1

dtk−1 cos t
.

which is the generating function of F (t) claimed in the introduction.
We note that the generating functions of Theorems 6 and 9 are two different generating

functions that can be specialized to

dk−1

dtk−1 t
k−1 sin t

dk−1

dtk−1 tk−1 cos t
.

We end this section by proving a result which specializes to (59).

Theorem 10. For all k ≥ 2,

1 +
∑

n≥1

tn

[n]p,q!

∑

(σ,w)∈Ck≀Sn

qinv(σ)pcoinv(σ)r|w|xdes((σ,w)) =

1 − x

1 − x +
∑

n≥1
q(

n
2)((x−1)t)n

[n]p,q !

[

n+k−1
k−1

]

r

. (79)

Proof. Define a ring homomorphism Γ : Λ → Q(p, q, r, x) by setting

Γ(en) = (−1)n−1(x − 1)n−1

[

n+k−1
k−1

]

r

[n]p,q!
q(

n
2). (80)

Then we claim that

[n]p,q!Γ(hn) =
∑

(σ,w)∈Ck≀Sn

qinv(σ)pcoinv(σ)r|w|xdes((σ,w)) (81)

27



for all n ≥ 1. That is,

[n]p,q!Γ(hn) (82)

= [n]p,q!
∑

µ⊢n

(−1)n−ℓ(µ)Bµ,(n)Γ(eµ)

= [n]p,q!
∑

µ⊢n

(−1)n−ℓ(µ)
∑

(b1,...,bℓ(µ))∈Bµ,(n)

ℓ(µ)
∏

j=1

(−1)bj−1(x − 1)bj−1

[

bj+k−1
k−1

]

r

[bj]p,q!
q(

bj
2 )

=
∑

µ⊢n

∑

(2b1,...,2bℓ(µ))∈B2µ,(2n)

q
Pℓ(µ)

j=1 (bj
2 )
[

n

b1, . . . , bℓ(µ)

]

p,q

ℓ(µ)
∏

j=1

(x − 1)bj−1

[

bj + k − 1

k − 1

]

r

.

Next we want to give a combinatorial interpretation to (82). By Lemma 3 for each brick

tabloid T = (b1, . . . , bℓ(µ)), we can interpret q
Pℓ(µ)

j=1 (bj
2 )
[

n
b1,...,bℓ(µ)

]

p,q
as the sum of the weights

of all fillings of T with a permutation σ ∈ Sn such that σ is decreasing in each brick and we
weight σ with qinv(σ)pcoinv(σ). By Lemma 4, we can interpret the term

∏ℓ(µ)
j=1

[

bj+k−1
k−1

]

r
as the

sum of the weights of fillings w = w1 · · ·wn where the elements of w are between 0 and k− 1
and are weakly decreasing in each brick and where we weight w by r|w|. Finally, we interpret
∏ℓ(µ)

j=1(x − 1)bj−1 as all ways of picking a label of the cells of each brick except the final cell
with either an x or a −1. For completeness, we label the final cell of each brick with 1. We
shall call all such objects created in this way filled labeled brick tabloids and let Hn denote
the set of all filled labeled brick tabloids that arise in this way. Thus a C ∈ Hn consists of
a brick tabloid T , a permutation σ ∈ Sn, a sequence w ∈ {0, . . . , k − 1}n, and a labeling L
of the cells of T with elements from {x, 1,−1} such that

1. σ is strictly decreasing in each brick,

2. w is weakly decreasing in each brick,

3. the final cell of each brick is labeled with 1, and

4. each cell which is not a final cell of a brick is labeled with x or −1.

We then define the weight w(C) of C to be qinv(σ)pcoinv(σ)r|w| times the product of all the
x labels in L and the sign sgn(C) of C to be the product of all the −1 labels in L. For
example, if n = 12, k = 4, and T = (4, 3, 3, 2), then Figure 10 pictures such a composite
object C ∈ H12 where w(C) = q35p31r17x5 and sgn(C) = −1.

Thus
[n]p,q!Γ(hn) =

∑

C∈Hn

sgn(C)w(C). (83)

Next we define a weight preserving sign-reversing involution I3 : Hn → Hn. To define
I3(C), we scan the cells of C = (T, σ, s, L) from right to left looking for the leftmost cell t
such that either (i) t is labeled with −1 or (ii) t is at the end a brick bj and the brick bj+1

immediately following bj has the property that the σ is strictly decreasing in all the cells
corresponding to bj and bj+1 and w is weakly decreasing in all the cells corresponding to bj
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6

1 1 1 2

σ

L 1 1 1x x−1x −1 x 1 x −1

11 4 3 2 10 9 7 5

3 0 3 1 3 0 2 0

12 8 1

w

Figure 10: A composite object C ∈ H12.

and bj+1. In case (i), I3(C) = (T ′, σ′, w′, L′) where T ′ is the result of replacing the brick b
in T containing t by two bricks b∗ and b∗∗ where b∗ contains the cell t plus all the cells in b
to the left of t and b∗∗ contains all the cells of b to the right of t, σ′ = σ, w′ = w, and L′ is
the labeling that results from L by changing the label of cell t from −1 to 1. In case (ii),
I3(C) = (T ′, σ′, w′, L′) where T ′ is the result of replacing the bricks bj and bj+1 in T by a
single brick b, σ′ = σ, w′ = w, and L′ is the labeling that results from L by changing the
label of cell t from 1 to −1. If neither case (i) or case (ii) applies, then we let I3(C) = C. For
example, if C is the element of H12 pictured in Figure 10, then I3(C) is pictured in Figure
11.

6

1 1 1 2

σ

L 1 1 1x x−1x x 1 x −1

11 4 3 2 10 9 7 5

3 0 3 1 3 0 2 0

12 8 1

1

w

Figure 11: I3(C) for C in Figure 10.

It is easy to see that I3 is a weight-preserving sign-reversing involution and hence I3

shows that
[n]p,q!Γ(hn) =

∑

C∈Hn,I3(C)=C

sgn(C)w(C). (84)

Thus we must examine the fixed points C = (T, σ, w, L) of I3. First there can be no
−1 labels in L so that sg(C) = 1. Moreover, if bj and bj+1 are two consecutive bricks in T
and t is that last cell of bj, then it can not be the case that σt > σt+1 and wt ≥ wt+1 since
otherwise we could combine bj and bj+1. For any such fixed point, we can think of (σ,w) as
an element of Ck ≀ Sn. Such a fixed point is pictured in 12. It follows that if cell t is at the
end of a brick, then t 6∈ Des((σ,w)). However if v is a cell which is not at the end of brick,
then our definitions force σv > σv+1 and wv ≥ wv+1 so that v ∈ Des((σ,w)). Since each such
cell v must be labeled with an x, it follows that sgn(C)w(C) = qinv(σ)pcoinv(σ)r|w|xdes((σ,w)).
Vice versa, if (σ,w) ∈ Ck ≀Sn, then we can create a fixed point C = (T, σ, w, L) by having the
bricks in T end as cells of the form t where t 6∈ Des((σ,w), labeling each cell t ∈ Des((σ,w))
with x, and labeling the remaining cells with 1. Thus we have shown that

[n]p,q!Γ(hn) =
∑

(σ,w)∈Ck≀S2n

qinv(σ)pcoinv(σ)r|w|xdes((σ,w))

as desired.
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6

1 1 1 2

σ

L 1 1 1x xx x 1 x

11 4 3 2 10 9 5

3 0 3 1 3 0 2 0

x x x

812 7 1

w

Figure 12: A fixed point of I3.

Applying Γ to the identity H(t) = (E(−t))−1, we obtain

∑

n≥0

Γ(hn)tn =
∑

n≥0

tn

[n]p,q!

∑

(σ,w)∈Ck≀Sn

qinv(σ)pcoinv(σ)r|w|xdes(σ,w)

=
1

1 +
∑

n≥1(−t)nΓ(en)

=
1

1 +
∑

m≥1(−1)mtm (−1)m−1(x−1)m−1q(
m
2 )

[m]p,q !

[

m+k−1
k−1

]

r

=
1 − x

1 − x +
∑

m≥1
q(

m
2 )(x−1)mtm

[m]p,q !

[

m+k−1
k−1

]

r

which proves (79).

Observe that if we set x = 0 in (79), we obtain (59) as desired. Moreover, if we set x = 0
and r = 1 in (79), then we obtain that

1 +
∑

n≥1

tn

[n]p,q!

∑

(σ,w)∈NDn,k

qinv(σ)pcoinv(σ) =

1

1 +
∑

n≥1
q(

n
2)(−t)n

[n]p,q !
(n+k−1)(n+k−2)···(n+1)

(k−1)!

=

(k − 1)!

(k − 1)! +
∑

n≥1
q(

n
2)(−t)n

[n]p,q !
(n + k − 1)(n + k − 2) · · · (n + 1)

=

(k − 1)!
dk−1

dtk−1 tk−1ep,q(−t)
.

Thus we have the following corollary.

Corollary 11. For all k ≥ 2,

1 +
∑

n≥1

tn

[n]p,q!

∑

(σ,w)∈NDn,k

qinv(σ)pcoinv(σ) =
(k − 1)!

d
k−1

dtk−1 tk−1ep,q(−t)
. (85)

and

1 +
∑

n≥1

ndn,kt
n

n!
=

(k − 1)!
d

k−1

dtk−1 tk−1e−t
(86)

where ndn,k = |NDn,k|.
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