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Abstract

Let I be a finite set of integers and F be a finite set of maps of the form n 7→ ki n+ℓi

with integer coefficients. For an integer base k ≥ 2, we study the k-recognizability of
the minimal set X of integers containing I and satisfying ϕ(X) ⊆ X for all ϕ ∈ F . We
answer an open problem of Garth and Gouge by showing that X is k-recognizable when
the multiplicative constants ki are all powers of k and additive constants ℓi are chosen
freely. Moreover, solving a conjecture of Allouche, Shallit and Skordev, we prove
under some technical conditions that if two of the constants ki are multiplicatively
independent, then X is not k-recognizable for any k ≥ 2.
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1 Introduction

In the general framework of numeration systems, the so-called recognizable sets of integers
have been extensively studied. Let k ≥ 2 be an integer. The function repk : N → {0, . . . , k−
1}∗ maps a non-negative integer onto its k-ary representation (without leading zeros). A
set X ⊆ N is k-recognizable if the language repk(X) = {repk(n) | n ∈ X} is regular; see,
for instance, [3]. A similar definition can be given for the k-recognizable subsets of Z using
convenient conventions to represent negative numbers, like adding a symbol “−” to the
alphabet or considering the positive and the negative elements separately. Since the seminal
work of Cobham [5], it is well-known that the recognizability of a set depends on the choice
of the base k — except for the ultimately periodic sets, i.e., the union of a finite set and a
finite number of infinite arithmetic progressions, which are easily seen to be k-recognizable
for all k ≥ 2. The celebrated theorem of Cobham can be stated as follows. Let k, ℓ ≥ 2 be
two multiplicatively independent bases, i.e., log k/ log ℓ is irrational. If a set X ⊆ N is both
k-recognizable and ℓ-recognizable, then it is ultimately periodic.

Kimberling [13] introduced the so-called self-generating sets of integers. They can be
defined as follows. Let r ≥ 1 and G = {ϕ1, ϕ2, . . . , ϕr} be a set of affine maps where
ϕi : n 7→ ki n+ ℓi with ki, ℓi ∈ Z and 2 ≤ k1 ≤ k2 ≤ · · · ≤ kr. The set generated by G and a
finite set of integers I is the minimal subset X of Z containing I and such that ϕi(X) ⊆ X
for all i = 1, . . . , r. For any subset S ⊆ Z, we set G(S) := {ϕ(s) | s ∈ S, ϕ ∈ G}, G0(S) := S
and Gm+1(S) := G(Gm(S)) for all m ≥ 0. Otherwise stated, X =

⋃
m≥0G

m(I) is the set of
all integers n such that there exist m ≥ 0, a ∈ I and a finite sequence (ϕi1 , ϕi2 , . . . , ϕim) of
maps in G such that

n = ϕim ◦ ϕim−1
◦ · · · ◦ ϕi1(a) = ϕim(ϕim−1

(· · ·ϕi1(a) · · · )). (1)

Example 1. Kimberling [13] showed for G = {n 7→ 2n, n 7→ 4n − 1} and I = {1} that
the corresponding self-generating set

K1 = {1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 15, 16, . . .}

is closely related to the Fibonacci word. This relationship will be developed in Section 4,
where with our techniques we obtain again Kimberling’s original result. Notice that for
I = {0}, we get a subset containing negative integers: K0 = {0,−1,−2,−4,−5,−8,−9, . . .}.
In particular, for I = {0, 1}, the corresponding self-generating set is K0 ∪ K1.

Self-generating sets are also called affinely recursive in [14] where the correspondence be-
tween words i1i2 · · · im over the alphabet {1, 2, . . . , r} and integers ϕim(ϕim−1

(· · ·ϕi1(1) · · · ))
is studied. For example, conditions under which this correspondence is one-to-one are given,
which in turn implies that the natural ordering of the integers induces an ordering on the set
of non-empty words over {1, 2, . . . , r} providing a kind of abstract numeration system [15].
Note that in the definition of affinely recursive sets [14] the set of generating functions G
can be an infinite set of maps of the form ϕi : n 7→ ki n+ ℓi, where ki, ℓi ∈ N.

Allouche, Shallit and Skordev [2] consider a general framework for self-generating sets.
The k-ary representations of the elements of some self-generating sets are related to words
over Σk = {0, 1, . . . , k−1} where some fixed block of digits is missing. As an illustration, one
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can notice that the set K1 − 1 = {0, 1, 2, 3, 5, 6, 7, 10, . . .} introduced in Example 1 consists
of all integers whose binary expansion does not contain “00” as factor. Recall that the
characteristic sequence (cX(n))n≥0 of a set X ⊆ N is defined by cX(n) = 1, if n ∈ X and
cX(n) = 0, otherwise. In particular, X is k-recognizable (resp., ultimately periodic) if and
only if (cX(n))n≥0 is k-automatic (resp., an ultimately periodic infinite word). Self-generating
sets are consequently studied from the point of view of automatic and morphic sequences
as well as in relation to non-standard numeration systems; for the definitions and further
information, see [1, 16]. Moreover, Allouche, Shallit and Skordev ask the following question:
Under what conditions is the characteristic sequence of a self-generating set k-automatic?

They also present the following conjecture.

Conjecture 2. With “mixed base” rules, such as G = {n 7→ 2n + 1, n 7→ 3n}, the set
generated from I = {1} is not k-recognizable for any integer base k ≥ 2.

Let us fix the notation once and for all.

Definition 3. In this paper, instead of considering a set G of maps as described above,
we will moreover consider the extended set of r + 1 ≥ 2 maps

F = G ∪ {ϕ0} = {ϕ0, ϕ1, . . . , ϕr}

where ϕ0 : n 7→ n and ϕi : n 7→ ki n+ ℓi with ki, ℓi ∈ Z and

2 ≤ k1 ≤ k2 ≤ · · · ≤ kr.

Having the identity function ϕ0 at our disposal, for any set S ⊆ Z, we have Fm(S) ⊆
Fm+1(S). Therefore, for any finite set I of integers, the set

F ω(I) := lim
m→∞

Fm(I)

is exactly the self-generating set with respect to G and I.

This article is an extended version of our presentation given in the MFCS conference 2009
[12]. The content of the paper is the following. In Section 2 we give some simple observations
on self-generating sets. For example, if we add to F an extra map ψ : n 7→ n+ ℓ with ℓ 6= 0,
then the corresponding self-generating set F ω(I) is ultimately periodic and therefore k-
recognizable for all k ≥ 2. We also show that we can restrict our considerations to subsets
of N and assume that all additive constants ℓi for the maps ϕi ∈ F are non-negative.

In sections 3 and 4 we consider the multiplicatively dependent case. The results are based
on Frougny’s normalization transducer; see, e.g., Chapter 7 in [16]. If all multiplicative con-
stants ki are pairwise multiplicatively dependent, then we give a general method to build
a finite automaton recognizing repk(F

ω(I)) for any k that is multiplicatively dependent on
every ki. This allows us to generalize a recognizability result of Garth and Gouge [9]. More-
over, a new proof of the relation between the Kimberling set K1 and the infinite Fibonacci
word is given in Section 4; for other proofs, see [2, 13].

In the multiplicatively independent case of Section 5 we study differences and ratios of
consecutive elements in the considered self-generating set. The results rely on a classical
gap theorem; see Theorem 14. We prove that if there exist i, j such that ki and kj are
multiplicatively independent and if

∑r
i=1 k

−1
i < 1, then F ω(I) is not k-recognizable for any

k ≥ 2. In particular, this condition always holds for sets F where r = 2 and k1 < k2 are
multiplicatively independent, answering Conjecture 2 in the affirmative.
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2 Some reductions

First we show that assuming ki ≥ 2 for every i = 1, 2, . . . , r is not a real restriction from the
point of view of recognizability.

Lemma 4. If we add to F in Definition 3 an extra map ψ : n 7→ n+ ℓ with ℓ 6= 0, then the

corresponding self-generating set F ω(I) is ultimately periodic of period ℓ.

Proof. Denote by F j(I) mod ℓ the set {n mod ℓ | n ∈ F j(I)}. Recall that the identity
function ϕ0 belongs to F . Since there are finitely many congruence classes modulo ℓ and
F j(I) mod ℓ ⊆ F j+1(I) mod ℓ, there must exist an integer J such that F J+1(I) mod ℓ =
F J(I) mod ℓ. Moreover, this means that F j(I) mod ℓ = F J(I) mod ℓ for every j ≥ J , and,
consequently,

F ω(I) mod ℓ = F J(I) mod ℓ. (2)

On the other hand, if n ∈ F ω(I), then ψt(n) = n+ t ℓ ∈ F ω(I). Since n+ t ℓ ≡ n mod ℓ,
we conclude by (2), for any n ≥ maxF J(I), that

cF ω(I)(n) =

{
1, if n mod ℓ ∈ F J(I) mod ℓ;
0, otherwise.

Hence, the characteristic sequence of F ω(I) is ultimately periodic with preperiod maxF J(I)
and period ℓ.

Remark 5. In Definition 3 and in what follows, we always assume that all multiplicative
constants ki of the affine maps ϕ1, . . . , ϕr in F are at least 2. This condition does not
guarantee that the corresponding self-generating set is not ultimately periodic. For example,
if ϕi(x) = r x+ i for i = 1, . . . , r, then we easily see that F ω({0}) = N.

The next lemma justifies that we may restrict our consideration to non-negative integers.

Lemma 6. Let F ω(I) be a self-generating set as given in Definition 3. One can effectively

construct two finite sets of non-negative integers I+ and I− such that

F ω(I) ∩ N = F ω(I+) ∩ N and F ω(I) ∩ −N = −(F
ω
(I−) ∩ N),

where −N is the set of all non-positive integers and F = {ϕ0, ϕ1, ϕ2, . . . , ϕr} with ϕi : n 7→
ki n− ℓi for i = 1, 2, . . . , r.

Proof. Let m = max{|ℓi| | i = 1, 2, . . . , r} and denote by M the interval of integers [[−m,m]].
Define Ij := F j(I) ∩M for j ≥ 0. Since ki ≥ 2 for all i ∈ {1, 2, . . . , r}, it follows that if n
does not belong to M , then ϕi(n) 6∈ M for all i ∈ {0, 1, . . . , r}. By this property and since
F j(I) ⊆ F j+1(I), there must exist an integer J such that Ij = IJ for all j ≥ J . Hence, the
integers of F ω(I) falling into the interval M are exactly the ones in IJ and we can find the
set I+ := ((F ω(I) ∩M) ∪ I) ∩ N effectively.

Next we show that F ω(I) ∩ N = F ω(I+) ∩ N. Since I+ ⊆ F ω(I), it is clear by definition
that F ω(I+) ∩ N ⊆ F ω(I) ∩ N. Assume now that there exists an integer x belonging to
(F ω(I) ∩ N) \ (F ω(I+) ∩ N). Since I+ contains all non-negative elements of I, the element
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x must be generated from some negative element a ∈ I. In other words, there exists a finite
sequence (ϕi1 , ϕi2 , . . . , ϕit) of maps in F such that x = ϕit ◦ ϕit−1

◦ · · · ◦ ϕi1(a). Since a
is negative and x is positive, there exists j such that ϕij−1

◦ ϕij−2
◦ · · · ◦ ϕi1(a) = y < 0

and ϕij(y) = z ≥ 0. Hence, we have kijy < 0 and z = kijy + ℓij < m. This means that
z ∈ (F ω(I) ∩M) ∩ N and therefore x = ϕit ◦ ϕit−1

◦ · · · ◦ ϕij+1
(z) ∈ F ω(I+) ∩ N. This is a

contradiction.
Similarly, by defining I− := −(((F ω(I) ∩ M) ∪ I) ∩ −N), we obtain F ω(I) ∩ −N =

F ω(−I−) ∩−N. If F = {ϕ0, ϕ1, ϕ2, . . . , ϕr}, where ϕi : n 7→ ki n− ℓi for i = 1, 2, . . . , r, then
we clearly have F ω(I) ∩ −N = −(F

ω
(I−) ∩ N), which concludes the proof.

Let y ≥ 0. Recall (for instance, see [3]) that a set Y ⊆ N is k-recognizable if and only
if Y + y is k-recognizable. As explained by the following lemma, from the point of view
of recognizability of subsets of N, one can also assume that all additive constants ℓi are
non-negative.

Lemma 7. Let F ω(I) be a self-generating set as given in Definition 3. There exist a non-

negative integer y and a self-generating set F̂ ω(I − y) such that F ω(I) = F̂ ω(I − y) + y and

F̂ = {ϕ0, ϕ̂1, . . . , ϕ̂r}, where ϕ̂i : n 7→ ki n+ℓ̂i for every i = 1, 2, . . . , r with some non-negative

constants ℓ̂i completely determined by F .

Proof. Assume that at least for some function ϕi ∈ F the constant ℓi is negative. Otherwise,
the claim is trivial. Let y = max{|ℓi| | ℓi < 0} and set

ℓ̂i := ℓi + (ki − 1)y

for i = 1, 2, . . . , r. Since ki ≥ 2, the constants ℓ̂i are non-negative for every i. Let F̂ =
{ϕ0, ϕ̂1, . . . , ϕ̂r} where ϕ̂i : n 7→ ki n + ℓ̂i for i = 1, . . . , r. We show by induction on the

number of applied maps m that x belongs to Fm(I) if and only if x−y belongs to F̂m(I−y).
First, for any x ∈ I, it is obvious that x− y belongs to I− y and vice versa. Assume now

that x ∈ Fm(I) for some m ≥ 1. In other words, there exist z ∈ Fm−1(I) and i ∈ {0, . . . , r}

such that x = ϕi(z). By induction hypothesis, z − y belongs to F̂m−1(I − y). If ϕi = ϕ0,

then x = z and x − y ∈ F̂m−1(I − y) ⊆ F̂m(I − y). Hence, assume that ϕi 6= ϕ0. We have
ϕi(z) = ki z + ℓi and ϕ̂i(z − y) = ki(z − y) + ℓi + (ki − 1)y = ϕi(z) − y. This proves that

x− y belongs to F̂m(I − y).

Next assume that x − y ∈ F̂m(I − y) for some m ≥ 1, i.e., x − y = ϕ̂i(z) for some

z ∈ F̂m−1(I − y) and i ∈ {0, . . . , r}. As above, we may assume that ϕi 6= ϕ0. Then we have
x = ϕ̂i(z) + y = ki(z + y) + ℓi = ϕi(z + y), where z + y belongs to Fm−1(I) by induction
hypothesis. Hence, x belongs to Fm(I).

Example 8. Consider the set K1 of Example 1 generated from {1} by the maps n 7→ 2n
and n 7→ 4n − 1. Applying the construction given in the previous proof, set y = 1 and
consider the maps 2n+ 1 and 4n+ 2. These two maps generate from {1} − 1 = {0}, the set
{0, 1, 2, 3, 5, 6, 7, 10, . . .} which is equal to K1 − 1.
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3 Multiplicatively Dependent Case

In this section we assume that the multiplicative coefficients ki appearing in Definition 3 are
all pairwise multiplicatively dependent, i.e., for every pair (i, j), there exist positive integers
ei and ej such that kei

i = k
ej

j . Note that ki and kj are multiplicatively dependent if and only

if there exist an integer n ≥ 2 and two integers di, dj ≥ 1 such that ki = ndi and kj = ndj . By
this characterization, it is easy to see that if the coefficients ki are pairwise multiplicatively
dependent, then there exists an integer k such that every ki is a power of k. Our aim is to
build a finite automaton showing that the set F ω(I) is k-recognizable.

Recall that Σk = {0, 1, . . . , k − 1} and that repk : N → Σ∗
k maps an integer n to its

k-ary representation without leading zeros. For any finite alphabet A ⊆ Z, the function
valA,k : A∗ → Z maps a word w = wnwn−1 · · ·w0 over A to the corresponding numerical
value

valA,k(w) =
n∑

i=0

wi k
i.

The function defined over the set of words w ∈ A∗ such that valA,k(w) ≥ 0 and which maps
w to repk(valA,k(w)) is called normalization over A. In the special case A = Σk, we simply
write valk instead of valΣk,k.

Theorem 9. Let F given in Definition 3 be such that the multiplicative coefficients k1, . . . , kr

are all pairwise multiplicatively dependent. For any finite I ⊂ Z, the self-generating set F ω(I)
is k-recognizable if ki is a power of k for every i = 1, 2, . . . , r.

We give a proof relying on Frougny’s normalization theorem. Another proof is given
in [12].

Proof. Assume that the maps in F are of the kind ϕi : n 7→ kei n + ℓi with ei ≥ 1 for
all i ∈ {1, . . . , r}. Since in the constructions of F and F̂ of Lemma 6 and Lemma 7 the
multiplicative constants ki are not modified, it suffices to consider only non-negative elements
of F ω(I) and, moreover, we may assume that all initial values in I and all additive constants
ℓi are non-negative. Thus, we assume F ω(I) ⊆ N and show that this self-generating set is
k-recognizable.

Let n be an element of F ω(I). In other words, there exists a finite sequence (ϕi1 , ϕi2 , . . . , ϕim)
of maps in F such that n = ϕim(ϕim−1

(· · ·ϕi1(a) · · · )) for some a ∈ I. With that integer, we
associate the word

w = a 0ei1
−1ℓi1 · · · 0

eim−1ℓim

over the finite alphabet A = I ∪ {0, ℓ1, . . . , ℓr} ⊂ N. One can notice that valA,k(w) = n and
valA,k(I{0

e1−1ℓ1, . . . , 0
er−1ℓr}

∗) = F ω(I). Frougny’s normalization theorem ([16, Proposition
7.1.4], see also [8]) says that normalization over A is computable by a finite transducer T .
It is also well-known (see, e.g., [1, Theorem 4.3.6]) that if a regular language L is an input
of a transducer then the output language is also regular. Hence, feeding the transducer T
with the language I{0e1−1ℓ1, . . . , 0

er−1ℓr}
∗ gives us the regular language repk(F

ω(I)), which
proves the claim.
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Remark 10. The set F ω(I) considered in the above theorem is k-recognizable and there-
fore kn-recognizable for all n ≥ 1; again, see [3] for details. But usually this set is not
ultimately periodic and therefore, by Cobham’s Theorem, not ℓ-recognizable for any ℓ ≥ 2
such that k and ℓ are multiplicatively independent. Indeed, if Theorem 15 described below
can be applied, then F ω(I) contains arbitrarily large gaps.

Remark 11. Garth and Gouge [9] consider the sequence SF which is the increasing
sequence of the elements in F ω(I) in the case where I = {1}, ki = kei , 1 = e1 ≤ e2 ≤ · · · ≤ er,
ℓ1 = 0 and −kei < ℓi ≤ 0 for each i = 1, 2, . . . , r. They prove that this sequence reduced
modulo positive integer m is morphic. In other words, there exists a morphism f satisfying
f(a) = ax for some letter a and some word x 6= ε such that SF mod m is the image under a
coding of the infinite word

fω(a) = lim
n→∞

fn(a) = axf(x)f 2(x) · · · ,

which is a fixed point of f . Moreover, they show that the characteristic sequence of F ω(I)
is k-automatic.

The authors of [9] ask whether their results hold for more general families of functions, for
example, allowing ℓi ≤ −kei . The answer for the case where the multiplicative constants ki

are powers of a fixed k but additive constants ℓi are chosen freely follows easily from Theo-
rem 9. Namely, as was mentioned in the introduction, the set of non-negative integers F ω(I)
is k-recognizable if and only if its characteristic sequence (cF ω(I)(n))n≥0 is k-automatic. Note
that in the general case F ω(I) ⊆ Z we should consider two-sided k-automatic sequences and
two-sided infinite fixed points (see Section 5.3 and Section 7.4 in [1] for more information)
or consider non-negative and non-positive integers separately. In any case, by Lemma 6, the
general case can be reduced to subsets of N.

Hence, let us consider a self-generating set F ω(I) ⊆ N where the multiplicative con-
stants ki are powers of some k. By Theorem 9, the characteristic sequence (cF ω(I)(n))n≥0

is k-automatic. Since (n mod m)n≥0 is clearly k-automatic for any k ≥ 2, then also the
sequence

u = ([cF ω(I)(n), n mod m])n≥0

over the alphabet Σ2×Σm is k-automatic. Thus, by the result of Cobham [6], it is the image
under a coding of a fixed point of a k-uniform morphism. Define a morphism f : (Σ2×Σm)∗ →
Σ∗

m by

f([a, b]) =

{
ε, if a = 0;
b, otherwise.

Since the image of a morphic sequence by any morphism is either finite or morphic [4] (see
also [1, Corollary 7.7.5]) and (cF ω(I)(n))n≥0 contains infinitely many ones, we conclude that
f(u) is morphic. Since f(u) is clearly the sequence SF reduced modulo m, we have answered
the open question of Garth and Gouge [9] by generalizing their results for any additive
constants ℓi.

Remark 12. Sequences with missing blocks are considered in [2, 9, 14]. For example, if
ϕ1 : n 7→ 2n+1, ϕ2 : n 7→ 4n+2 and I = {0}, then the set F ω(I) is the set of integers that do
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not contain the block “00” in their normalized binary expansion. Recall that this set is K1−1;
see Example 8. In [2] the authors ask whether or not the sequences with missing blocks are
always particular cases of affinely recursive sets. We want to make a remark that, if F ω(I)
is a sequence with missing blocks, then all constants ki must be multiplicatively dependent.
Otherwise, assume that k1 and k2 are multiplicatively independent. Consider now the subset
Xi ⊆ F ω(I) generated from I by only applying the map ϕi. By Theorem 9, this subset is ki-
recognizable. Consider now the language 0∗repk(Xi), where k is multiplicatively independent
to ki. It is known that this language is right dense meaning that every word over the alphabet
Σk appears as a prefix of some word in 0∗repk(Xi); for a proof, see [1, Lemma 11.1.1]. Hence,
it follows that any block of digits over Σk is a factor of repk(n) for some integer n ∈ Xi.
For any integer k ≥ 2, either k1 or k2 is multiplicatively independent with k, and therefore
the set X1 or X2, and consequently also F ω(I), cannot be a set of integers that do not have
some block of digits in their normalized base-k representation.

In order to obtain a self-contained proof for Theorem 9, we may tailor Frougny’s nor-
malization transducer for the language 0∗I{0e1−1ℓ1, . . . , 0

er−1ℓr}
∗ and directly conclude that

the output language over Σk is regular. Next we describe this in more detail. The following
construction is needed to prove the result relating K1 and the infinite Fibonacci word in the
next section. By Lemma 6, it suffices to consider the set F ω(I) ∩ N.

Let C ⊂ Z be a finite input alphabet and let Σk be the output alphabet. Denote
m = max{|c − a| | c ∈ C, a ∈ Σk} and let γ = m/(k − 1). Note that by the Euclidean
division, for every s ∈ Z and c ∈ C, there exist a unique a ∈ Σk and s′ ∈ Z such that
s + c = s′k + a. Moreover, if |s| < γ, then |s′| ≤ (|s| + |c − a|)/k < (γ + m)/k = γ. This
justifies that we may define a finite right subsequential transducer, where the set of states
Q = {s ∈ Z | |s| < γ} corresponds to possible carries, the initial state is 0 and the set of
edges is

E = {s
c/a
−→ s′ | s+ c = s′k + a}. (3)

A right subsequential transducer is a transducer that reads the input from right to left and
the underlying automaton where only inputs are considered is deterministic. Moreover, we
have a partial terminal function ω : Q → Σ∗

k mapping a state s ≥ 0 onto its normalized
representation repk(s). Let w = cncn−1 · · · c0 ∈ C∗ \ 0C∗ be a representation of an integer
N = valC,k(w) ≥ 0. If we enter w into the transducer, there is a unique path

0 = s0
c0/a0

−→ s1
c1/a1

−→ s2
c2/a2

−→ · · ·
cn/an
−→ sn+1

such that N =
∑n

i=0 cik
i =

∑n
i=0 aik

i + sn+1k
n+1. Hence, ω(sn+1)anan1

· · · a0 is the normal-
ized representation in base k of the integer N . This transducer is Frougny’s normalization
transducer for an input not containing leading zeros; see the proof of Lemma 7.1.1 in [16].

Next we adapt the above construction to our specific case of self-generating sets. Let the
input alphabet be C = I ∪ {0, ℓ1, . . . , ℓr}. We want to restrict the accepted input to the
words w ∈ 0∗I{0e1−1ℓ1, . . . , 0

er−1ℓr}
∗ such that valC,k(w) ≥ 0. As was shown in the proof

of Theorem 9, these words represent exactly the numbers in F ω(I) ∩ N. Hence, we build a
transducer T such that from each carry state q ∈ Q = {s ∈ Z | |s| < γ} we may read only
words of the form 0ei−1ℓi from right to left, output the corresponding output of Frougny’s
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transducer and end up in some carry state q′ ∈ Q. This can be achieved by introducing
chains of intermediate states where each state has only one incoming and outgoing edge
simulating the behavior of Frougny’s transducer. For example, assume that k = 2, q = 1
and we want to read 003 from right to left. This corresponds to the map ϕ : n 7→ 8n+3. By
the construction, in our modified transducer there is a path

1
3/0
−→ 2̂

0/0
−→ 1̂

0/1
−→ 0,

where 2̂ and 1̂ are additional intermediate states and the starting state 1 and the ending
state 0 belong to the original set Q. From each state q ∈ Q there are exactly r paths of this
kind corresponding to the r maps ϕi ∈ F .

In addition, we need transitions corresponding to the initial values I. Let t 6∈ Q be a
unique final state. For each q ∈ Q and a ∈ I such that q + a ≥ 0, we add extra states
and transitions which form a separate path from q to t such that it simulates Frougny’s
transducer with input 0ia, where i is the maximum integer satisfying ki ≤ q + a. Padding
with sufficiently many zeros insures that the carry is 0 after entering the final state t. Note
that since we consider only non-negative elements of F ω(I), we do not build a path from q
to the final state t for an initial value a ∈ I such that q + a < 0. For example, in the case
k = 2, q = 1 and a = 5 we have i = 2, since k2 < q+ a = 6 < k3, and the path from q to t is

1
5/0
−→ 3̂

0/1
−→ 1̂

0/1
−→ t,

where 3̂ and 1̂ are new intermediate states. There is also a loop from the final state t onto
itself with input 0 and output 0. This corresponds to allowing leading zeros after the most
significant non-zero digit.

By our construction, each path from the initial state 0 to the final state t corresponds
to reading some word of the language 0∗I{0e1−1ℓ1, . . . , 0

er−1ℓr}
∗. Therefore, the output of

such an accepted path in our transducer T corresponds to some normalized representation
(with possibly leading zeros) of a number in the self-generating set F ω(I). Conversely,
the normalized representation of a number in F ω(I) padded with sufficiently many zeros
corresponds to the input of some accepted path in our transducer T . Therefore, we may
forget the input and consider a finite automaton A where the edges are labeled only with
the output. Moreover, let us define that if in A there is a path from a state q to the state t
with a label belonging to 0∗, then the set q is an accepting state. This allows us to accept all
normalized representations with an arbitrary number of leading zeros. We may also change
the reading direction by turning the arrows and changing the roles of the initial and final
states. Of course, the automaton obtained this way need not be complete and deterministic,
but it can be made complete by adding missing edges which end up in a sink state and it
can be made deterministic by the subset construction. Hence, we have constructed this way
a deterministic finite automaton B which recognizes 0∗repk(F

ω(I) ∩ N) and, by Lemma 6,
we conclude that F ω(I) is k-recognizable.

4 Kimberling set and the Fibonacci word

In this section we show a result connecting the Kimberling set K1 considered in Exam-
ple 1 and the infinite Fibonacci word defined as the fixed point ϕω(0) = 01ϕ(1)ϕ2(1) · · · =

9



01001010 · · · of the morphism ϕ : 0 7→ 01, 1 7→ 0. Recall that K1 = F ω(I), where F =
{ϕ0, ϕ1, ϕ2}, ϕ1 : n 7→ 2n, ϕ2 : n 7→ 4n− 1 and I = {1}.

Theorem 13. Let S be the increasing sequence of elements of K1. Omitting the first term,

the sequence S reduced modulo 2, is the Fibonacci word ϕω(0).

This was the main result in [13] and it was reproved in [2]. Here we give a third proof based
on the transducer construction of the previous section and on some technical manipulation
of morphisms.

Proof. Let us first build the transducer T for the set K1 = F ω(I) as explained in the end
of Section 3. This transducer and the corresponding reduced automaton A are illustrated
in Figure 1. Using the same notation as above, we have k = 2, C = {1, 0,−1}, m = 2 and
γ = 2. Since we never reach a carry state 1 from the initial state 0, our set Q = {−1, 0, 1}
can be reduced to {−1, 0}. The input 0 corresponds to the map ϕ1 and the input 0(−1)
corresponds to the map ϕ2. When we read 0(−1) from right to left starting from either state

0 or −1, we introduce an intermediate state −̂1. Namely, for s = 0 and c = −1, we have
s+ c = (−1) · k+1 and, for s = −1 and c = −1, we have s+ c = (−1) · k+0. Then from the

state −̂1 we must read 0 and, since −1 + 0 = −1 · k+ 1, we output 1 and end up in −1 ∈ Q.
Moreover, we can read the initial value 1 ∈ I starting from any state in Q. For example,
there is an edge with label 1/0 from −1 to F , since −1 + 1 = 0 · k + 0.

0 −̂1

F −1

0/0

1/1

−1/1

0/10/0

0/1
−1/0

1/0

0 −̂1

F −1

0

1

1

10

1
0

0

Figure 1: Transducer T and automaton A corresponding to the Kimberling set.

Using standard techniques we may easily build from A a deterministic automaton B
accepting 0∗rep2(K1) when reading digits from left to right. This automaton is described
in Figure 2. A number in K1 such that its binary representation is accepted by b (the
corresponding path ends in the final state b) must be odd, since all incoming edges of b are
labeled by 1. Similarly, we conclude that a number having a binary representation accepted
by c or d must be even. Hence, with an output function τ : A∗ 7→ Σ∗

2, where A denotes the
set of states of B and

τ(x) =






1, if x = b;
0, if x = c or x = d;
ε, otherwise,

the automaton Bτ generates the sequence S mod 2, where S is the increasing sequence of
elements of K1.

The 2-uniform morphism corresponding to B is σ : A∗ → A∗ defined by

a 7→ ab, b 7→ cb, c 7→ de, d 7→ dg, e 7→ fb, f 7→ ge, g 7→ gg.
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a

b

c d

e f

g
0

1

1

0

0

1

0

1
0, 1

1 0

1
0

Figure 2: A finite deterministic automaton B accepting 0∗rep2(K1).

By the above reasoning, it is clear that τ(σω(a)) = S mod 2. Let us denoteB = {a, b, c, d, e, f, g, h}.
Using the techniques described in the proof of Theorem 7.6.1 and Theorem 7.7.4 in [1],
we obtain a coding ν : B∗ → Σ∗

2 and a non-erasing morphism µ : B∗ → B∗ such that
ν(µω(a)) = S(τ(σω(a))), where S is the shift function deleting the first element of the
infinite word. The morphism µ is defined by

a 7→ abcdbeb, b 7→ cdb, c 7→ fgb, d 7→ eb, e 7→ fh,

f 7→ f, g 7→ gbeb, h 7→ hcdb

and

ν(x) =

{
1, if x = b or x = h;
0, otherwise.

Our goal is to show that ν(µω(a)) is the infinite Fibonacci word. For this purpose, let
us first simplify the morphism µ. Since µ(fgb) = fgbebcdb = µ(cdb), we conclude that
ν(µi(fgb)) = ν(µi(cdb)) for every i ≥ 0 and, consequently, we may set µ(c) = cdb without
changing ν(µω(a)). Similarly, µ(fh) = fhcdb = µ(eb) and therefore ν(µi(e)) = ν(µi(d)) for
i ≥ 0. Thus, we may set e = d and replace the morphism µ by a simpler morphism on a
four-letter alphabet {a, b, c, d}:

a 7→ abcdbdb, b 7→ cdb, c 7→ cdb, d 7→ db.

Note that b and c have a different role with respect to the coding, i.e., ν(b) 6= ν(c). Since
b is always preceded by d except in the very beginning, we finally redefine the morphism
µ : {a, b, c, d}∗ → {a, b, c, d}∗ by

a 7→ abcdbdbc, b 7→ db, c 7→ cdb, d 7→ dbc.

Hence, the sequence obtained by reducing S modulo 2 and omitting the first element can be
obtained as the image of a coding ν of the fixed point µω(a).

Let us next modify the morphism generating the Fibonacci word. First, note that we
may replace ϕ by ϕ2, since clearly limn→∞ ϕn(0) = limn→∞(ϕ2)n(0). Since ϕ2(0) = 010 and
ϕ2(1) = 01, we notice that there are two types of zeros in the Fibonacci word: those followed
by 0 will be denoted by c and those followed by 1 will be denoted by d. Let us also replace
every 1 by b. Hence, we have ϕω(0) = ν(φω(d)), where ν is the coding defined above and
φ : {b, c, d}∗ → {b, c, d}∗ is a morphism such that

b 7→ db, c 7→ dbc, d 7→ dbc.

11



We denote (fn)n≥0 = φω(d) = dbcdb · · · and (sn)n≥0 = µω(a) = abcdbdbcdb · · · . In order to
prove the result of Kimberling, we have to show that ν(φω(d)) = ν(µω(a)). Since ν(f0) =
ν(d) = 0 = ν(a) = ν(s0), it suffices to show that fn = sn for all n ≥ 1. We do this by
induction.

First observe that if sn = fn for all n = 1, 2, . . . , k, then

|µ(s0 · · · sk)| = |φ(f0 · · · fk)| + 5. (4)

This holds because |µ(x)|y = |φ(x)|y for every x and y in {b, c, d} and |µ(s0)| = |µ(a)| =
|φ(f0)| + 5. Here |w|y denotes the number of letters y occurring in the word w.

Now assume that sn = fn for 1 ≤ n ≤ l and l is such that φ(f0 · · · fk) = f0f1 · · · fl for
some k > 1 satisfying fk = b. This implies that φ(f0 · · · fk) = ufl−1fl = udb and, by (4) and
by the assumption, we have

µ(s0 · · · sk) = udbsl+1sl+2sl+3sl+4sl+5 = udb.dbc.db, (5)

where sl+4sl+5 = µ(sk) = µ(b) and sl+1sl+2sl+3 = µ(sk−1) = µ(d), since sk = b must be
preceded by d if k > 1. We have two possibilities, either fk+1fk+2 = db or fk+1fk+2fk+3 = cdb.

If fk+1fk+2 = db, then φ(f0 · · · fk+2) = udbφ(fk+1)φ(fk+2) = udb.dbc.db and, by comparing
this to (5), we conclude that the claim sn = fn holds for 1 ≤ n ≤ l + 5.

Assume next that fk+1fk+2fk+3 = cdb. Now f1 · · · fk+3 = s1 · · · sk+3, since we must have
k + 3 ≤ l. Hence, we obtain

φ(f0 · · · fk+3) = udb.dbc.dbc.db,

µ(s0 · · · sk+3) = udb.dbc.db.cdb.dbc.db,

which implies that sn = fn for 1 ≤ n ≤ l + 8.
Since in the first case fk+2 = b and in the second case fk+3 = b, we may proceed

by induction. This concludes the proof, since the claim clearly holds for small values of
n ≥ 1.

5 Multiplicatively Independent Case

In this section our aim is to show that F ω(I) ⊆ N given in Definition 3 is not recognizable in
any base k ≥ 2 provided that

∑r
i=1 k

−1
i < 1 and that there are at least two multiplicatively

independent coefficients ki. For the proof, we introduce the following notation. Let X =
{x0 < x1 < x2 < · · · } be an infinite ordered subset of N. Then we denote

RX = lim sup
i→∞

xi+1

xi

and DX = lim sup
i→∞

(xi+1 − xi).

In order to prove that a set is not k-recognizable for any base k ≥ 2, we use the following
result from [6], see also Eilenberg’s book [7, Chapter V, Theorem 5.4].

Theorem 14 (Gap Theorem). Let k ≥ 2. If X is a k-recognizable infinite subset of N, then

either RX > 1 or DX <∞.
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Note that DX <∞ means that X is syndetic, i.e., there exists a constant C such that the
gap xi+1 − xi between any two consecutive elements xi, xi+1 in X is bounded by C. Let us
first show that if

∑r
i=1 k

−1
i < 1, then the set F ω(I) given in Definition 3 contains arbitrarily

large gaps.

Theorem 15. Let X = F ω(I) be a self-generating subset of N given in Definition 3. If∑r
i=1 k

−1
i < 1, then X is not syndetic.

Proof. Let n ≥ 1 and K = k1k2 · · · kr. Let g = g1 ◦ g2 ◦ · · · ◦ gn be a composite function,
where gj belongs to G = {ϕ1, ϕ2, . . . , ϕr} for every j = 1, 2, . . . , n and gj = ϕi for exactly
ni integers j ∈ {1, . . . , n}. Note that n1 + n2 · · · + nr = n. By definition, we have g(x) =
kn1

1 k
n2

2 · · · knr
r x + cg, where cg is some constant depending on g. Since kn1

1 k
n2

2 · · · knr
r divides

Kn, we get
#{g(x) mod Kn | x ∈ Z} = kn−n1

1 kn−n2

2 · · · kn−nr

r .

Recall that F = G∪{ϕ0}, where ϕ0 denotes the identity function. The set F n(I) contains
exactly the integers obtained by at most n applications of maps in G. For any interval of
integers [[N,N+Kn−1]] where N > maxF n(I), the elements of X belonging to this interval
have been obtained by applying at least n+ 1 maps. Hence, in the interval [[N,N +Kn − 1]]
there can be at most kn−n1

1 kn−n2

2 · · · kn−nr
r integers x ∈ X such that the last n maps which

produce x correspond to the composite function g, i.e., such that there exists y ∈ X satisfying
g(y) = x. For fixed numbers ni, i = 1, 2, . . . , r, there are n!/(n1!n2! · · ·nr!) functions g of the
type described above. Thus, the number of integers in X ∩ [[N,N + Kn − 1]] for any large
enough N is at most

∑

n1,n2,...,nr

(
n!

n1!n2! · · ·nr!

)
kn−n1

1 kn−n2

2 · · · kn−nr

r = Kn

(
1

k1

+
1

k2

+ · · · +
1

kr

)n

where the sum is over n1, n2, . . . , nr ≥ 0 satisfying n1 + n2 + · · · + nr = n.
Hence, the biggest gap xi+1 − xi between two consecutive elements xi, xi+1 ∈ X in the

interval [[N,N +Kn − 1]] is at least

d(n) =
Kn

Kn
(

1
k1

+ 1
k2

+ · · · + 1
kr

)n =

(
1

k1

+
1

k2

+ · · · +
1

kr

)−n

.

Since
∑r

i=1 k
−1
i < 1, the function d(n) tends to infinity as n tends to infinity. This means

that there are arbitrarily large gaps in X. In other words, the self-generating set X is not
syndetic.

Before showing that RX = 1 let us first recall the density property of multiplicatively
independent integers. A set S is dense in an interval I ⊆ R if every subinterval of I contains
an element of S.

Theorem 16. If k, ℓ ≥ 2 are multiplicatively independent, {kp/ℓq | p, q ≥ 0} is dense in

[0,∞).
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This is a consequence of Kronecker’s theorem, which states that for any irrational number
θ the sequence ({nθ})n≥0 is dense in the interval [0, 1). Here {x} denotes the fractional part
of the real number x. The proof of Kronecker’s theorem as well as the proof of Theorem 16
can be found in [1, Section 2.5] or [11]. As an easy consequence of the previous theorem, we
obtain the following result.

Corollary 17. Let α > 0 and β be two real numbers. If k and ℓ are multiplicatively inde-

pendent, then the set {(αkp + β)/ℓq | p, q ≥ 0} is dense in [0,∞).

Proof. We show how to get arbitrarily close to any positive real number x. Let ǫ > 0. By
Theorem 16, there exist integers p and q such that

∣∣∣∣
x

α
−
kp

ℓq

∣∣∣∣ <
ǫ

2α
and

∣∣∣∣
β

ℓq

∣∣∣∣ <
ǫ

2
.

Hence, it follows that

∣∣∣∣x−
αkp + β

ℓq

∣∣∣∣ ≤
∣∣∣∣x−

αkp

ℓq

∣∣∣∣ +

∣∣∣∣
β

ℓq

∣∣∣∣ <
ǫ

2α
α+

ǫ

2
= ǫ.

Let us next consider the ratio RX of a self-generating set X.

Theorem 18. For any self-generating set X = F ω(I) ⊆ N given in Definition 3 where ki

and kj are multiplicatively independent for some i and j, we have RX = 1.

Proof. Without loss of generality, we may assume that F = {ϕ0, ϕ1, ϕ2}, where ϕ1 : n 7→
k1 n + ℓ1, ϕ2 : n 7→ k2 n + ℓ2, and k1 and k2 are multiplicatively independent. Namely, for
F ⊆ F ′, it is obvious that F ω(I) ⊆ F ′ω(I) and consequently, RF ω(I) = 1 implies RF ′ω(I) = 1.
By Lemma 7, we may also assume that ℓ1 and ℓ2 are non-negative.

Let a ∈ X be a positive integer and set Xn := X ∩ [ϕn−1
1 (a), ϕn

1 (a)] for all n > 0. Note
that ∪n∈NXn = X ∩ [a,∞). Recall that X = {x0 < x1 < x2 < · · · } and define

rn := max

{
xi+1 − xi

xi

∣∣∣∣ xi+1, xi ∈ Xn

}
.

Note that, for all x and for j = 1, 2, if we set bj := ℓj/(kj − 1), then we have

ϕn
j (x) = kn

j x+ ℓj

n−1∑

i=0

ki
j = (x+ bj) k

n
j − bj. (6)

Let m ≥ 0 and xi, xi+1 be two consecutive elements belonging to the set Xm. By Corol-

lary 17, there exist infinitely many positive integers p and q such that
ϕp

2
(a)

kq
1

is equal to

(a+ b2)k
p
2 − b2

kq
1

∈

[
xi+1 + b1 −

3

4
(xi+1 − xi), xi + b1 +

3

4
(xi+1 − xi)

]
.
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Therefore ϕp
2(a) is an element of X belonging to the interval

[c, d] :=

[
kq

1(xi+1 + b1) −
3

4
kq

1(xi+1 − xi), k
q
1(xi + b1) +

3

4
kq

1(xi+1 − xi)

]
,

which is a sub-interval2 of the interval [ϕq
1(xi), ϕ

q
1(xi+1)]. In other words, we have

ϕq
1(xi) < c < ϕp

2(a) < d < ϕq
1(xi+1).

Hence, for all t > q, the difference xj+1 − xj of any two consecutive elements xj, xj+1 of X
in the interval [ϕt

1(xi), ϕ
t
1(xi+1)] is at most

max{ϕt−q
1 (ϕq

1(xi+1)) − ϕt−q
1 (ϕp

2(a)), ϕ
t−q
1 (ϕp

2(a)) − ϕt−q
1 (ϕq

1(xi))}

≤ max{ϕt
1(xi+1) − ϕt−q

1 (c), ϕt−q
1 (d) − ϕt

1(xi)} =
3

4
kt

1(xi+1 − xi) + b1k
t−q
1 .

Thus, the ratio (xj+1 − xj)/xj is at most

3 kt
1(xi+1 − xi)

4ϕt
1(xi)

+
b1k

t−q
1

ϕt
1(xi)

=
3 kt

1(xi+1 − xi)

4ϕt
1(xi)

+
1

kq
1

b1k
t
1

(xi + b1)kt
1 − b1

. (7)

The latter term in this sum can be taken as small as possible for q and t large enough (1/kq
1

tends to 0 and the other factor tends to the constant b1/(xi + b1)). In particular, for q and
t large enough, we have

b1k
t−q
1

ϕt
1(xi)

<
xi+1 − xi

12xi

.

Moreover, we have

3 kt
1(xi+1 − xi)

4ϕt
1(xi)

=
3 (xi+1 − xi)

4 (xi + b1 − b1/kt
1)
<

3 (xi+1 − xi)

4xi

<
10 (xi+1 − xi)

12xi

.

Thus, by (7), we obtain
xj+1 − xj

xj

<
11 (xi+1 − xi)

12xi

. (8)

Since the above holds for any consecutive elements xi and xi+1 in Xm and there are only
finitely many such pairs, we conclude that there exists an integer N1 such that (8) holds
for any consecutive elements xj, xj+1 ∈ Xn where n ≥ N1. Hence, we obtain rn < 11

12
rm

for every n ≥ N1. Moreover, by repeating this procedure, we conclude that there exists an
integer Nk such that

rn <

(
11

12

)k

rm

for every n ≥ Nk. This implies that lim supn→∞ rn = 0 and, consequently,

RX = 1 + lim sup
n→∞

rn = 1.

2c − ϕ
q
1(xi) = 1

4
k

q
1(xi+1 − xi) + b1 and ϕ

q
1(xi+1) − d = 1

4
k

q
1(xi+1 − xi) − b1 which is positive for large

enough q.
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Our main result is a straightforward consequence of the previous theorems.

Theorem 19. Let X = F ω(I) ⊆ N be given in Definition 3. If
∑r

t=1 k
−1
t < 1 and there exist

i, j such that ki and kj are multiplicatively independent, then F ω(I) is not k-recognizable for

any integer base k ≥ 2.

Proof. Let X = F ω(I) satisfy the assumptions of the theorem. By Theorem 15, we have
DX = ∞ and, by Theorem 18, we have RX = 1. Thus, Theorem 14 implies that X is not
k-recognizable for any k ≥ 2.

As a corollary, we have solved the conjecture of Allouche, Shallit and Skordev [2].

Corollary 20. Let F = {ϕ0, n 7→ k1 n+ ℓ1, n 7→ k2 n+ ℓ2}, where k1 and k2 are multiplica-

tively independent. Then any infinite self-generating set F ω(I) given in Definition 3 is not

k-recognizable for any k ≥ 2.

Proof. This follows directly from Theorem 19. Namely, if k1 and k2 are multiplicatively
independent, then k1 ≥ 2 and k2 ≥ 3 and k−1

1 + k−1
2 ≤ 1/2 + 1/3 = 5/6 < 1.

The condition
∑r

t=1 k
−1
t < 1 is not needed in a very special case of self-generating sets

where ℓi = 0 for every i = 1, 2, . . . , r. This situation is related to so-called y-smooth numbers.
An integer is y-smooth if it has no prime factors greater than y. For more on smooth numbers,
see, e.g., [10].

Theorem 21. Let X = F ω(I) be given in Definition 3. If ℓi = 0 for every i = 1, 2, . . . , r
and there exist i, j such that ki and kj are multiplicatively independent, then F ω(I) is not

k-recognizable for any integer base k ≥ 2. In particular, for y ≥ 3, the set of y-smooth

numbers is not k-recognizable for any k ≥ 2.

Proof. Assume that ϕi : n 7→ kin for i = 1, 2, . . . , r and denote X = F ω(I). Let x ≥ 2 be an
integer and consider n ∈ X ∩ [0, x]. By the definition of X, the integer n must be of the form
ke1

1 · · · ker
r a, where a ∈ I. Since the exponent ei is at most log2(x) for every i = 1, 2, . . . , r,

the number of integers in X ∩ [0, x] is at most (1 + log2(x))
r|I| = O(logr(x)). It follows

that x/|X ∩ [0, x]| tends to infinity when x tends to infinity. This implies that F ω(I) cannot
be syndetic, i.e., DX = ∞. If there are two multiplicatively independent constants k1 and
k2, then RX = 1 by Theorem 18. Hence, by Theorem 14, the self-generating set X is not
k-recognizable for any k ≥ 2. The second claim follows, since the set of y-smooth numbers
can be represented as a self-generating set F ω(I), where I = {1} and ϕi : n 7→ pin for
i = 1, 2, . . . , r. Here pi is the ith smallest prime and pr is the largest prime less than or equal
to y.

6 Acknowledgments

We thank the anonymous referees of the MFCS version of this paper for suggesting improve-
ments in the presentation of this paper. In particular, it is one of the referees who pointed
out a possible connection with smooth numbers.

16



References

[1] J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations,
Cambridge University Press, 2003.

[2] J.-P. Allouche, J. Shallit, G. Skordev, Self-generating sets, integers with missing blocks,
and substitutions, Discrete Math. 292 (2005), 1–15.

[3] V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of
integers, Bull. Belg. Math. Soc. 1 (1994), 191–238.

[4] A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, in IEEE

Conference Record of 1968 Ninth Annual Symposium on Switching and Automata The-

ory, 1968, pp. 51–60. Also appeared as IBM Research Technical Report RC-2178,
August 23, 1968.

[5] A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata,
Math. Systems Theory 3 (1969), 186–192.

[6] A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164–192.

[7] S. Eilenberg, Automata, Languages, and Machines, Vol. A., Pure and Applied Mathe-
matics, Vol. 58, Academic Press, 1974.

[8] C. Frougny, Representations of numbers and finite automata, Math. Systems Theory 25

(1992), 37–60.

[9] D. Garth, A. Gouge, Affinely self-generating sets and morphisms, J. Integer Seq. 10

(2007), Article 07.1.5.

[10] A. Granville, Smooth numbers: computational number theory and beyond, in J. P.
Buhler, P. Stevenhagen, eds., Algorithmic number theory: lattices, number fields, curves

and cryptography, Math. Sci. Res. Inst. Publ. 44, Cambridge University Press, 2008,
pp. 267–323.

[11] G. H. Hardy, E. M. Wright, Introduction to the Theory of Numbers, Oxford University
Press, 1985.

[12] T. Kärki, A. Lacroix, M. Rigo, On the recognizability of self-generating sets, in R.
Královič, D. Niwiński, eds., Proceedings of the 34st International Symposium on Math-

ematical Foundations of Computer Science, Bratislava, August 24 - 28, 2009, Lecture
Notes in Comput. Sci. 5734 (2009), 525–536.

[13] C. Kimberling, A self-generating set and the golden mean, J. Integer Seq. 3 (2000),
Article 00.2.8.

[14] C. Kimberling, Affinely recursive sets and orderings of languages, Discrete Math. 274

(2004), 147–159.

17



[15] P. B. A. Lecomte, M. Rigo, Numeration systems on a regular language, Theory Comput.

Syst. 34 (2001), 27–44.

[16] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its
Applications, 90, Cambridge University Press, 2002.

2000 Mathematics Subject Classification: Primary 68Q45; Secondary 68R15, 11B85.
Keywords: self-generating set, recognizability, numeration systems, multiplicatively inde-
pendent integers, Fibonacci word.

(Concerned with sequences A000045, A000201, A001950, A003754, A003849, A052499.)

Received November 16 2009; revised version received January 21 2010. Published in Journal

of Integer Sequences, January 27 2010.

Return to Journal of Integer Sequences home page.

18

http://www.research.att.com/~njas/sequences/index.html?q=A000045
http://www.research.att.com/~njas/sequences/index.html?q=A000201
http://www.research.att.com/~njas/sequences/index.html?q=A001950
http://www.research.att.com/~njas/sequences/index.html?q=A003754
http://www.research.att.com/~njas/sequences/index.html?q=A003849
http://www.research.att.com/~njas/sequences/index.html?q=A052499
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Some reductions
	Multiplicatively Dependent Case
	Kimberling set and the Fibonacci word
	Multiplicatively Independent Case
	Acknowledgments

