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Abstract

Let A be a subset of N. We say that A is m-full if
∑

A = [m] for a positive integer
m, where

∑

A is the set of all positive integers which are a sum of distinct elements
of A and [m] = {1, . . . , m}. In this paper, we show that a set A = {a1, . . . , ak} with
a1 < · · · < ak is full if and only if a1 = 1 and ai ≤ a1+· · ·+ai−1+1 for each i, 2 ≤ i ≤ k.
We also prove that for each positive integer m /∈ {2, 4, 5, 8, 9} there is an m-full set.
We determine the numbers α(m) = min{|A| :

∑

A = [m]}, β(m) = max{|A| :
∑

A =
[m]}, L(m) = min{max A :

∑

A = [m]} and U(m) = max{max A :
∑

A = [m]} in
terms of m. We also give a formula for F (m), the number of m-full sets.

1 Introduction

Let n be a positive integer and denote by D(n) and σ(n) the set of its positive divisors and the
sum of its positive divisors, respectively. A positive integer n is called perfect if σ(n) = 2n.
Euclid proved that the formula 2p−1(2p − 1) gives an even perfect number whenever 2p − 1
is prime. It has been proved for the first time by Euler that if an even positive integer n is
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perfect then n = 2p−1q, where p and q = 2p − 1 are primes. In this case

D(n) = {1, 2, 22, . . . , 2p−1, q, 2q, 22q, . . . , 2p−1q}.

A simple argument shows that each 1 ≤ ℓ ≤ 2n = 2pq can be written as a sum of distinct
elements of D(n). To see this, note that each ℓ, 1 ≤ ℓ ≤ 2p − 1, can be written as a sum
2ℓ1 + · · · + 2ℓr , where r ≥ 1 and 0 ≤ ℓ1 < · · · < ℓr ≤ p − 1. Now if 2p ≤ ℓ ≤ 2pq, then
we can write ℓ = αq + β, where 0 ≤ β ≤ 2p − 1 and 1 ≤ α ≤ 2p − 1. Thus we can write
α = 2α1 + · · · + 2αi and β = 2β1 + · · · + 2βj , where i ≥ 1, j ≥ 0, 0 ≤ α1 < · · · < αi ≤ p − 1
and 0 ≤ β1 < · · · < βj ≤ p − 1. Hence

ℓ = 2α1q + · · · + 2αiq + 2β1 + · · · + 2βj

is a sum of distinct elements of D(n).
These considerations motivate us to find all positive integers n having the property that

each 1 ≤ ℓ ≤ σ(n) can be written as a sum of distinct elements of D(n). This leads us to
the following problem:

Let A = {a1, . . . , ak} be a subset of N. Define the sum set of A, denoted by
∑

A, by

∑

A = {ai1 + · · · + air : ai1 < · · · < air , 1 ≤ r ≤ k}.

For what positive integer m does there exist a set A with
∑

A = [m], where [m] =
{1, . . . ,m}?

We show that each positive integer m /∈ {2, 4, 5, 8, 9} has this property and determine
the numbers

α(m) = min{|A| :
∑

A = [m]},

β(m) = max{|A| :
∑

A = [m]},

L(m) = min{max A :
∑

A = [m]},

U(m) = max{max A :
∑

A = [m]}.

2 The Results

Definition 1. Let m be a positive integer. A subset A of N is called m-full if
∑

A = [m].
A is called full if it is m-full for some positive integer m.

Theorem 2. A subset A = {a1, . . . , ak} of N with a1 < · · · < ak is full if and only if a1 = 1
and ai ≤ a1 + · · · + ai−1 + 1 for each i, 2 ≤ i ≤ k.

Proof. Let A be full and
∑

A = [m] for a positive integer m. Clearly a1 = 1. If aj >
a1 + · · · + aj−1 + 1 for some j, 2 ≤ j ≤ k, then a1 + · · · + aj−1 + 1 is not a sum of distinct
elements of A. But 1 ≤ a1 + · · ·+ aj−1 + 1 ≤ a1 + · · ·+ ak = m. This contradicts to the fact
that

∑

A = [m].
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Conversely, suppose that a1 = 1 and ai ≤ a1 + · · · + ai−1 + 1 for each i, 2 ≤ i ≤ k. We
claim that

∑

A = [a1 + · · · + ak]. We prove this by induction on k. For k = 1 the result is
obvious. Suppose that the result is true for k− 1. Then

∑

A \ {ak} = [a1 + · · ·+ak−1]. Now
suppose that a1 + · · · + ak−1 + 1 ≤ ℓ ≤ a1 + · · · + ak and write ℓ = ak + a. Then a belongs
to {0, 1, . . . , a1 + · · · + ak−1} since ak ≤ a1 + · · · + ak−1 + 1. If a = 0 then ℓ = ak ∈

∑

A
and if a 6= 0 then a ∈ [a1 + · · · + ak−1] =

∑

A \ {ak} can be written as ai1 + · · · + air . Thus
ℓ = ai1 + · · · + air + ak ∈

∑

A.

Proposition 3. Let n = pα1

1 · · · pαr
r , with p1 < · · · < pr primes, be a positive integer. Then

D(n) = {d : d|n} is full if and only if p1 = 2 and pi ≤ σ(pα1

1 · · · p
αi−1

i−1 )+1 for each i, 2 ≤ i ≤ r.

Proof. If D(n) is m-full then m = σ(n). Since pα1

1 · · · p
αi−1

i−1 |n and pα1

1 · · · p
αi−1

i−1 6= n, we
have σ(pα1

1 · · · p
αi−1

i−1 ) < σ(n). Hence σ(pα1

1 · · · p
αi−1

i−1 ) + 1 is a member of [σ(n)]. Thus if
pi > σ(pα1

1 · · · p
αi−1

i−1 ) + 1 for some i, then the number σ(pα1

1 · · · p
αi−1

i−1 ) + 1 is a member of
[σ(n)] which is not a sum of distinct elements of D(n). On the other hand, if the condition
pi ≤ σ(pα1

1 · · · p
αi−1

i−1 ) + 1 for each i, 2 ≤ i ≤ r, is satisfied, then using an argument similar
to the one used in Theorem 2, we can inductively prove that each element of [σ(n)] can be
written as a sum of distinct elements of D(n).

In the next theorem, we characterize all m for which there is an A with
∑

A = [m].

Theorem 4. Let m be a positive integer. There is a set A such that
∑

A = [m] if and only

if m /∈ {2, 4, 5, 8, 9}.

Proof. By simple inspection, there is no A with
∑

A = [m] for m = 2, 4, 5, 8, 9 . Conversely,
for m = 1, 3, 6, 7, 10 note that A = {1}, {1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4} are m-full. The
recursive construction below shows us that for each m ≥ 10 there is an A with

∑

A = [m].
Suppose there is an A = {a1, . . . , ak} with a1 < · · · < ak such that

∑

A = [m], for some
m ≥ 10. If ak < a1 + · · · + ak−1 + 1 then

∑

(A \ {ak}) ∪ {ak + 1} = [m + 1], and there
remains nothing to prove. If ai < a1 + · · · + ai−1 + 1 for some i, 3 ≤ i < k, then choose j as
the greatest i with this property. In this case we have

aj < a1 + · · · + aj−1 + 1, aj+1 = a1 + · · · + aj−1 + aj + 1.

Notice that j ≥ 3 since a1 = 1, a2 = a1 + 1 = 2 and a3 ∈ {3, 4}. Hence aj + 1 6= aj+1

and if we omit aj from A and add aj + 1 to it, then the resulting set is still full and its
sum set is [m + 1]. Otherwise, there is no i with the property ai < a1 + · · · + ai−1 + 1
and so ai = a1 + · · · + ai−1 + 1 for each i, 2 ≤ i ≤ k. We can therefore deduce that
A = {1, 2, 4, . . . , 2k−1}. Whence m = 2k − 1 and we must give a class of sets B with
∑

B = [2k], k ≥ 4, to complete the proof.
The class of sets B is defined by a recursive construction. For k = 4 choose the set B =

{1, 2, 3, 4, 6}. If
∑

B = [2k] for B = {b1, . . . , bs} then the set B′ = {1, 2b1, . . . , 2bs−1, 2bs − 1}
is clearly full and since 1 + 2b1 + · · · + 2bs−1 + 2bs − 1 = 2(b1 + · · · + bs) = 2 · 2k = 2k+1, we
have

∑

B′ = [2k+1] and the proof is complete.

A natural question is to determine the number of m-full sets for a given positive integer
m. We denote this number by F (m). As an example, a straightforward argument shows
that F (12) = 2 and the two 12-full sets are {1, 2, 3, 6} and {1, 2, 4, 5}. We give a formula for
F (m), but prior to that we discuss some related problems.
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Proposition 5. Let m /∈ {2, 4, 5, 8, 9} be a positive integer and

α(m) = min{|A| :
∑

A = [m]},

β(m) = max{|A| :
∑

A = [m]}.

Then

α(m) = min{ℓ : m ≤ 2ℓ − 1} = ⌈log2(m + 1)⌉

β(m) = max{ℓ :
ℓ(ℓ + 1)

2
≤ m}.

Proof. Let A = {a1, . . . , ak} be an arbitrary m-full set. Then, by Theorem 2,

m = a1 + · · · + ak ≤ 1 + 2 + 4 + · · · + 2k−1 = 2k − 1.

We claim that if n = min{ℓ : m ≤ 2ℓ − 1} then k ≥ n. In contrary, suppose that k < n.
Then 2k − 1 < m. Thus m = a1 + · · · + ak ≤ 2k − 1 < m which is a contradiction. Hence
k ≥ n and, since A was arbitrary, we therefore have α(m) ≥ n.

On the other hand, we show that the minimum is attained. At first we show this when
m is a power of 2. For m = 16 we can choose A = {1, 2, 3, 4, 6}. Suppose that for m = 2n−1

there is an m-full set A = {a1, a2, . . . , an}. Then A′ = {1, 2a1, 2a2, . . . , 2an−1, 2an − 1} is a
2n-full set with n + 1 elements.

We now suppose that m = 2n−1 + r, where r belongs to {0, 1, 2, . . . , 2n−1 − 1} and we
prove the existence of an m-full set with n elements by induction on r. This is proved
for r = 0. Suppose that this is true for r − 1; namely there is a (2n−1 + r − 1)-full set
A = {a1, a2, . . . , an}. If m = 2n−1 + r is a power of 2 then there is nothing to prove. We may
thus assume that there is an i for which ai < a1 + · · · + ai−1 + 1. Now if there is the least j
with ai+j 6= ai + j then the set {a1, . . . , ai+j−2, ai+j−1 + 1, ai+j, . . . , an} is an m-full set with
n elements. Otherwise, the set {a1, . . . , an−1, an + 1} is an m-full set with n elements.

To prove the other assertion, let n′ = max{ℓ : ℓ(ℓ+1)
2

≤ m}. We claim that if A =
{a1, . . . , ak} is an arbitrary m-full set, then k ≤ n′. On the contrary, suppose that k > n′.

Then k(k+1)
2

> m. Hence m = a1 + a2 + · · · + ak ≥ 1 + 2 + · · · + k = k(k+1)
2

> m which is a
contradiction. Thus k ≤ n′ and, since A was arbitrary, we therefore have β(m) ≤ n′.

On the other hand, we show that the maximum is attained. Let m = n′(n′+1)
2

+ r, where
r belongs to {0, 1, . . . , n′}. Then A = {1, 2, 3, . . . , n′ − 1, n′ + r} is an m-full set with n′

elements.

Remark 6. The direct problem for subset sums is to find lower bounds for |
∑

A| in terms
of |A| . The inverse problem for subset sums is to determine the structure of the extremal
sets A of integers for which |

∑

A| is minimal. M. B. Nathanson gives a complete solution
for the direct and the inverse problem for subset sums in [1] and proves that if A is a set of
positive integers with |A| ≥ 2 then |

∑

A| ≥
(

|A|+1
2

)

. This immediately implies the last part
of Proposition 5.
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Theorem 7. Let m /∈ {2, 4, 5, 8, 9, 14} be a positive integer and denote min{max A :
∑

A =

[m]} by L(m). If m = n(n+1)
2

+ r, where r = 0, 1, . . . , n then

L(m) =











n, if r = 0;

n + 1, if 1 ≤ r ≤ n − 2;

n + 2, if 1 ≤ r = n − 1 or n.

Proof. Let m = n(n+1)
2

+ r, where r = 0, 1, . . . , n. Then there are 3 cases:

Case 1: r = 0. Let A = {1, . . . , n}. Since
∑

A = [n(n+1)
2

] and max A has the minimum
possible value, L(m) = n.

Case 2: r = 1, . . . , n − 2. We can consider the set

A = {1, . . . , n, n + 1} \ {n + 1 − r}

which is m-full, since n + 1− r ≥ 3 and 1 + · · ·+ n + (n + 1)− (n + 1− r) = n(n+1)
2

+ r = m.
Hence L(m) = n + 1.

Case 3: r = n−1 or n. In this case we cannot omit n+1−r from the set {1, . . . , n, n+1},
because n + 1 − r is 1 or 2 and the resulting set is not full. Thus we have to add n + 2 and
omit some other element. In fact for r = n− 1 the suitable set with minimum possible value
for its maximum is {1, . . . , n, n + 2} \ {3}, and for r = n the desired set is {1, . . . , n− 1, n +
1, n + 2} \ {3} (note that in this case we have n 6= 4 since m 6= 14 and we can therefore
deduce that the latter set is full). We can therefore deduce that L(m) = n + 2.

For the remaining case m = 14, it can be easily verified that L(14) = 7. The first few
values of L(m), Sloane’s OEIS [2, A188429], are

m 1 3 6 7 10 11 12 13 14 15 16 17 18 19 20
L(m) 1 2 3 4 4 5 5 6 7 5 6 6 6 7 7

Theorem 8. Let m ≥ 20 be a positive integer and denote max{max A :
∑

A = [m]} by

U(m). Then

U(m) =
⌈m

2

⌉

.

Proof. Let A = {a1, . . . , ak} with a1 < · · · < ak be m-full. By Theorem 2, ak ≤ a1+· · ·+ak−1,
which is equivalent to ak ≤ m − ak since A is m-full. Therefore ak ≤ ⌈m

2
⌉ holds.

Now put b = ⌈m
2
⌉. Since m − ⌈m

2
⌉ ≥ 10, by Theorem 4 we can find a B′ with

∑

B′ =
[m−⌈m

2
⌉]. Whence B = B′ ∪ {b} satisfies the properties

∑

B = [m] and max B = ⌈m
2
⌉.

For the remaining cases, it can be easily verified that the values of U(m), Sloane’s OEIS
[2, A188430], are

m 1 3 6 7 10 11 12 13 14 15 16 17 18 19
U(m) 1 2 3 4 4 5 6 7 7 8 6 7 8 9
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We can now determine the value of F (m) for each positive integer m. We assume that
L(m) = U(m) = 0 whenever m ∈ {2, 4, 5, 8, 9}.

Lemma 9. Let m be a positive integer and F (m, i) denote the number of m-full sets A with

max A = i, where L(m) ≤ i ≤ U(m). Then

F (m, i) =

min{U(m−i),i−1}
∑

j=L(m−i)

F (m − i, j).

Proof. Let A = {a1, . . . , ak} with a1 < · · · < ak = i be an m-full set. Then A′ = A \ {ak} is
an (m − i)-full set such that j = max A′ < i. Thus L(m − i) ≤ j ≤ min{U(m − i), i − 1}
and the result follows.

Theorem 10. Let m be a positive integer and denote the number of m-full sets by F (m).

Then F (m) =
∑U(m)

i=L(m) F (m, i).

Proof. Let A = {a1, . . . , ak} with a1 < · · · < ak be an m-full set. Then L(m) ≤ ak ≤ U(m)
and the result is now obvious.

The first few values of F (m), Sloane’s OEIS [2, A188431], are

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
F (m) 1 0 1 0 0 1 1 0 0 1 1 2 2 1 2 1 2 3 4 5

Example 11. We evaluate F (21). Using Theorem 7 and Theorem 8, L(21) = 6 and U(21) =
12. Thus

F (21) = F (21, 6) + F (21, 7) + F (21, 8) + F (21, 9) + F (21, 10) + F (21, 11) + F (21, 12).

We need to compute L(m) and U(m) for m = 15, 14, 13, 12, 11, 10, 9. We have

m 9 10 11 12 13 14 15
L(m) 0 4 5 5 6 7 5
U(m) 0 4 5 6 7 7 8

Noting the facts that L(6) = U(6) = 3 and L(7) = U(7) = 4 we therefore have

F (21) = F (15, 5) + F (13, 6) + F (13, 7) + F (12, 5) + F (12, 6) + F (11, 5) + F (10, 4)

= F (10, 4) + F (7, 4) + F (6, 3) + F (7, 4) + F (6, 3) + F (6, 3) + F (6, 3)

= F (6, 3) + F (7, 4) + F (6, 3) + F (7, 4) + F (6, 3) + F (6, 3) + F (6, 3)

= 7.

The seven 21-full sets are

{1, 2, 3, 4, 5, 6}, {1, 2, 4, 6, 8}, {1, 2, 3, 7, 8}, {1, 2, 4, 5, 9},

{1, 2, 3, 6, 9}, {1, 2, 3, 5, 10}, {1, 2, 3, 4, 11}.
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