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Université de Caen
F-14032 Caen Cedex

France
christian.ballot@unicaen.fr

Abstract

Given a pair (Ut) and (Vt) of Lucas sequences, an odd integer ν ≥ 1, and a
prime p ≥ ν + 4 of maximal rank ρU , i.e., such that ρU is p or p ± 1, we show that
∑

0<t<ρU
(Vt/Ut)

ν ≡ 0 (mod p2). This extends a result of Kimball and Webb, who
proved the case ν = 1. Some further generalizations are also established.

1 Introduction

The main purpose of this note is to provide a common generalization to Theorems 1 and 2
below.

Theorem 1. Let ν ≥ 1 be an odd integer. Suppose p ≥ ν + 4 is a prime number. Then

Hν
p−1 :=

p−1
∑

t=1

1

tν
≡ 0 (mod p2).

Theorem 2. Let U(P,Q), V (P,Q) be a pair of Lucas sequences, p ≥ 5, p ∤ Q, a prime of
rank ρ equal to p− ǫp, where ǫp = 0 or ±1. Then

ρ−1
∑

t=1

Vt

Ut

≡ 0 (mod p2).
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Theorem 1 appears in the book of Hardy and Wright [3] as Theorem 131 and is one of
many generalizations of the 1862 congruence of Wolstenholme [10] which states that

Hp−1 := 1 +
1

2
+

1

3
+ · · ·+ 1

p− 1
≡ 0 (mod p2), (1)

i.e., that the numerator of the rational number Hp−1 is a multiple of p2, whenever p is a
prime number at least 5. Sums of the type

∑m
t=1 1/t

ν , where ν is odd and t is prime to m,
were first studied by Leudesdorf [6]. Their values modulo m2 have been the subject of many
papers and these results were revisited in the paper [9]. Historically, Wolstenholme used the
congruence (1) to prove that for all primes p ≥ 5 we have

(

2p− 1

p− 1

)

≡ 1 (mod p3), (2)

a fact known as Wolstenholme’s congruence. The survey paper [7] mentions many general-
izations of the congruence (2), but also contains generalizations of the related congruence
(1), particularly in Sections 4 and 8.

Theorem 2, as may not readily appear, is yet another (surprising!) generalization of the
congruence (1) of Wolstenholme. Contrary to other known generalizations, its discovery
by Kimball and Webb [5], who initially proved it for the special pair of Lucas sequences
U(1,−1), V (1,−1) in the paper [4], came much later, and more than 130 years after (1) had
appeared. For (P,Q) = (2, 1), we have x2 − Px + Q = (x − 1)2, Ut = t and Vt = 2 for all
integers t ≥ 0 so that every prime p has rank p, and we see that the result of Kimball and
Webb is indeed a generalization of the congruence of Wolstenholme.

Putting Theorems 1 and 2 next to each other and computing a few sums such as
∑7

t=1 L
3
t/F

3
t (mod 49) or

∑9
t=1 L

5
t/F

5
t (mod 121), where Lt and Ft are the t-th Lucas and

the t-th Fibonacci numbers, and finding in both cases 0 (mod p2) for p = 7 and p = 11,
respectively, led to conjecturing (ô res mirabile!) that Theorem 3 holds.

Theorem 3. Let ν ≥ 1 be an odd integer and U(P,Q), V (P,Q) be a pair of Lucas sequences.
If p ≥ ν + 4, p ∤ Q, is a prime of maximal rank ρ, i.e., of rank p− ǫp, where ǫp = 0 or ±1,
then

ρ−1
∑

t=1

V ν
t

Uν
t

≡ 0 (mod p2).

We briefly remark that Theorem 2 of Kimball and Webb has recently been generalized in
several directions. One generalization is found in [8], another in Chapter 4 of [1], and again
another in [2], where congruences involving sums of ratios Vt/Ut of Lucas sequences taken
modulo m2, where m may be composite, not necessarily prime, were considered.

Theorem 2 was stated in a mildly generalized form in both papers [1] and [2], in part
because it led to the further generalizations found in these papers. In anticipation of yet
further tentative generalizations we wish to prove a more general version of Theorem 3,
namely
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Theorem 4. Let ν ≥ 1 be an odd integer. Let U(P,Q) and V (P,Q) be a pair of Lucas
sequences and p ∤ Q be a prime number of maximal rank ρ with respect to U(P,Q). Assume
further that p − 1 ∤ ν ± 1 if ν ≥ 3 and p − 1 ∤ ν + 1 if ν = 1. Then, for all integers k, we
have that

S :=

(k+1)ρ−1
∑

t=kρ+1

V ν
t

Uν
t

≡ 0 (mod p2).

Note that if p ≥ ν + 4 then p − 1 ∤ ν ± 1 when ν ≥ 3 and p − 1 ∤ ν + 1 when ν = 1 so
that Theorem 4 implies Theorem 3 by setting k = 0.

A secondary purpose of our note is to indicate how one can obtain further results that
combine the approach taken in [2], i.e., congruences with composite moduli m of maximal
ranks, with the general odd exponents ν ≥ 1 of the present paper. This is done in the third
and final section.

Throughout this note we assume familiarity with Lucas sequences. The introduction
of the paper [2] contains references to Lucas theory and useful remarks and definitions
concerning ranks of primes and integers, and congruences of rational numbers modulo an
integer m.

2 Proof of Theorem 4

We begin by a few lemmas and remarks.

Lemma 5. Let ν ≥ 1 be an odd integer, p be a prime number and x and y be two rational
integers whose sum is divisible by p. Then there is a rational integer c, which may depend
on ν, such that

xν + yν ≡ c(xy)(ν−1)/2(x+ y) (mod p2). (3)

Proof. Choosing c = 1 we see that (3) holds for ν = 1. We proceed by strong induction on
ν. So given ν ≥ 3 we assume that for each i = 1, . . . , (ν − 1)/2, we have

xν−2i + yν−2i ≡ ci(xy)
(ν−2i−1)/2(x+ y) (mod p2),

for some ci ∈ Z.
Expanding (x + y)ν by Newton’s formula and pairing terms in xkyν−k with terms in

xν−kyk, we find that

xν + yν = (x+ y)ν −
(

ν

1

)

xy(xν−2 + yν−2)−
(

ν

2

)

x2y2(xν−4 + yν−4)

− · · · −
(

ν

(ν − 1)/2

)

(xy)(ν−1)/2(x+ y).

The term (x+y)ν is divisible by p2 and, by the inductive hypothesis, each term (xy)i(xν−2i+
yν−2i) is congruent to ci(xy)

(ν−1)/2(x + y) modulo p2 for some integer ci. Hence, putting
c = −∑

ci
(

ν
i

)

, i = 1, . . . , (ν − 1)/2, the lemma follows.
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Lemma 6. Let p be an odd prime and e ≥ 0 be an integer such that p− 1 ∤ e if e ≥ 1. Then
the sum

∑p
t=1 t

e is divisible by p.

Proof. If e is 0, then the result is trivial. Assume e ≥ 1. If g is a primitive root modulo p, then
ge 6≡ 1 (mod p). But

∑p
t=1 t

e ≡
∑p

t=1(gt)
e (mod p). Hence, p divides (ge − 1)

∑p
t=1 t

e.

Given a pair U , V of Lucas sequences with parameters (P,Q) we denote the discriminant
P 2 − 4Q by D and recall a few relevant identities. For all integers s and t, we have

2Us+t = UsVt + UtVs, (4)

4Qt = V 2
t −DU2

t , (5)

2QtUs−t = UsVt − UtVs, (6)

2QtVs−t = VsVt −DUsUt. (7)

We are ready for a proof of Theorem 4.

Proof. All unmarked sums are taken with indices running from kρ+ 1 to (k+ 1)ρ− 1. Also
we put r := (2k + 1)ρ. Then we see that

S =
1

2

∑

(

V ν
t

Uν
t

+
V ν
r−t

Uν
r−t

)

=
1

2

∑ V ν
t U

ν
r−t + Uν

t V
ν
r−t

Uν
t U

ν
r−t

.

Put x = VtUr−t and y = UtVr−t. Then, by equation (4), x + y = 2Ur, which is divisible by
p. Thus, by Lemma 5, we have for some integer c

V ν
t U

ν
r−t + Uν

t V
ν
r−t ≡ 2cUr(VtUr−tUtVr−t)

(ν−1)/2 (mod p2).

Therefore, if p2 | cUr, then S ≡ 0 (mod p2). So we assume p2 ∤ cUr. Then S ≡ 0 (mod p2)
if and only if p divides

∑ (VtUr−tUtVr−t)
(ν−1)/2

Uν
t U

ν
r−t

. (8)

By the subtraction formulas (6) and (7), we find that

(2Ur−t)
(ν−1)/2 ≡ (−1)(ν−1)/2Q−(ν−1)t/2U

(ν−1)/2
t V (ν−1)/2

r (mod p), and

(2Vr−t)
(ν−1)/2 ≡ Q−(ν−1)t/2V

(ν−1)/2
t V (ν−1)/2

r (mod p).

Thus, there exist integers λ1 and λ2, prime to p and not dependent on t, such that modulo p
the numerator of the t-th term in (8) is equal to λ1Q

−(ν−1)tUν−1
t V ν−1

t , while its denominator
is equal to λ2Q

−νtU2ν
t since (2Ur−t)

ν ≡ −Q−νtUν
t V

ν
r (mod p). Indeed, by (5), p ∤ Vr. Thus,

p2 divides S iff

p divides
∑ QtV ν−1

t

Uν+1
t

.

4



By (5) we see that 4QtV ν−1
t = V ν+1

t −DU2
t V

ν−1
t . Hence, S is zero modulo p2 iff p divides

∑ V ν+1
t

Uν+1
t

−D
∑ V ν−1

t

Uν−1
t

. (9)

Note that since p is an odd prime and p ∤ Q, if s and t are distinct integers that belong
to the interval (kρ, (k + 1)ρ), then Vs/Us and Vt/Ut are distinct modulo p by (6). Also, if D
is a quadratic residue modulo p, then Vt/Ut and ±

√
D are not congruent modulo p by (5).

If ρ is p+1, then, as t varies from k(p+1)+1 to k(p+1)+p, Vt/Ut (mod p) runs through
all of Z/pZ. Thus, by Lemma 6, as ν 6≡ ±1 (mod p− 1), we find that both sums appearing
in (9) are divisible by p. The same divisibilities hold if ρ is p, since, then, only the residue 0
(mod p) is absent from each of the two sums. If ρ is p− 1, then, as t varies from kρ + 1 to
kρ + p − 2, Vt/Ut (mod p) runs through all of Z/pZ but ±

√
D (mod p). Hence we deduce

respectively that

∑

(

Vt

Ut

)ν±1

+ (
√
D)ν±1 + (−

√
D )ν±1 ≡ 0 (mod p).

So we find that

∑ V ν+1
t

Uν+1
t

−D
∑ V ν−1

t

Uν−1
t

≡ (0− 2D(ν+1)/2)−D(0− 2D(ν−1)/2) ≡ 0 (mod p).

Remark 7. If D = 0, then the hypothesis p− 1 ∤ ν + 1 suffices.

3 Two more theorems

Given a Lucas sequence U(P,Q) and an integer m prime to Q we denote the rank of m in
U by ρ(m).

By the definition which was introduced and motivated in [2], we say that a composite
integer m ≥ 1 has maximal rank with respect to a Lucas sequence U(P,Q) if every prime
power dividingm has maximal rank and the ranks of any two such prime powers are relatively
prime. A power pa has maximal rank in U(P,Q) iff p has maximal rank and the rank ρ(pa)
is equal to pa−1ρ(p).

Here, unlike in the paper [2], we will not look for an exhaustive theorem dealing with
sums of terms V ν

t /U
ν
t modulo squares of integers of maximal rank, but the partial results

we will state and sketch will be enough to see how one could obtain such congruences.
We start by an extension of Theorem 4 to prime powers. The case ν = 1 is in fact a

corollary of Theorem 12 of [2].
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Theorem 8. Let ν ≥ 1 be an odd integer and U , V be a pair of Lucas sequences with
parameters P and Q. Suppose p ∤ Q is a prime satisfying p > (ν+3)/2, p 6= ν and p 6= ν+2.
Assume pa has maximal rank for some integer a ≥ 1. Then for all integers k we have

S :=
∑

t∈I

V ν
t

Uν
t

≡ 0 (mod p2a),

where I is the set of integers in
(

kρ(pa), (k + 1)ρ(pa)
)

\ ρ(p)Z.

Proof. The proof is actually an extension of that of Theorem 4. It is easy to upgrade Lemma
5. Suppose pa | x+ y. Then for each odd integer ν ≥ 1 there is a rational integer c such that

xν + yν ≡ c(xy)(ν−1)/2(x+ y) (mod p2a). (10)

Note that the sum S contains pa−1
(

ρ(p)−1
)

terms. We now have r = (2k+1)ρ(pa). So 2cUr

is at least divisible by pa. So we will be through if we can show that the sum corresponding
to the sum in (8) is 0 (mod pa). But that will be true if the expression in (9) is also 0
(mod pa), where now both sums are taken over all integers t in I. At this point note that
Lemma 6 can also be upgraded so that

∑pa

t=1 t
e ≡ 0 (mod pa) provided, again, p − 1 ∤ e.

Indeed, if g is a primitive root modulo pa, then it reduces to a primitive root modulo p, so
p ∤ ge − 1 if p− 1 ∤ e and this gives the lemma. Note that as t varies through I all Vt/Ut are
distinct modulo pa. If ρ(p) is p+ 1, then since the cardinality of I is pa we deduce that

∑

t∈I

(

Vt

Ut

)ν±1

≡
∑

t∈Z/pa

tν±1 ≡ 0 (mod pa).

If ρ(p) is p then Vt is never 0 (mod p) and the terms Vt/Ut (mod pa) run through all invertible
elements of Z/paZ as t runs through I. Thus g being a primitive root modulo pa and ϕ being
Euler’s totient function, we find that

∑

t∈I

(

Vt

Ut

)ν±1

≡
ϕ(pa)−1
∑

t=0

g(ν±1)t =
g(ν±1)ϕ(pa) − 1

gν±1 − 1
≡ 0 (mod pa),

since g(ν±1) − 1 is not divisible by p. This argument is not valid if ν = 1 and the exponent
of g is ν − 1. But in that case the result nevertheless holds because

D
∑

t∈I

(

Ut

Vt

)ν−1

= D · |I| ≡ 0 (mod pa),

so the expression in (9) is 0 (mod pa).
If ρ(p) is p − 1, then I contains pa − 2pa−1 elements. So Vt/Ut (mod pa) runs through

all Z/pa except ±
√
D + ip (mod pa) for i = 1, 2, . . . , pa−1. Hence, (Vt/Ut)

2 (mod pa) hits
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each nonzero quadratic residue in Z/pa twice except all D+ ip, for i = 1, . . . , pa−1, as t runs
through I. Therefore,

∑

t∈I

(

Vt

Ut

)ν+1

≡
pa
∑

i=1

(i2)(ν+1)/2 − 2

pa−1

∑

j=1

(D + jp)(ν+1)/2 (mod pa).

Now
pa−1

∑

j=1

(D + jp)(ν+1)/2 =

(ν+1)/2
∑

u=0

(

(ν + 1)/2

u

)

D(ν+1)/2−upu
pa−1

∑

j=1

ju.

As p−1 > (ν+1)/2, pa−1 |
∑pa−1

j=1 ju and, unless u = 0, pa | pu
∑pa−1

j=1 ju. Hence, as p 6= ν+2,
we have

∑

t∈I

(

Vt

Ut

)ν+1

≡ 0− 2D(ν+1)/2pa−1 (mod pa).

Since a similar argument is valid for ν−1 instead of ν+1 we see that
∑

t∈I
V ν+1
t

Uν+1
t

−D
∑

t∈I
V ν−1
t

Uν−1
t

is congruent to

(0− 2pa−1D(ν+1)/2)−D(0− 2pa−1D(ν−1)/2) = 0 (mod pa).

Theorem 9. Let ν ≥ 1 be an odd integer and U , V be a pair of Lucas sequences with
parameters P and Q. Suppose m is a positive integer prime to Q of maximal rank. Assume
further that each prime factor p of m satisfies p > (ν +3)/2, p 6= ν and p 6= ν +2. Then for
all integers k we have

S :=
∑

t∈I

V ν
t

Uν
t

≡ 0 (mod m2),

where I is the set of integers in
(

kρ(m), (k + 1)ρ(m)
)

\
⋃

p|m ρ(p)Z.

The proof we sketch is similar to, but simpler than that of Theorem 14 of the paper [2].

Proof. Assume for simplicity that k = 0. We proceed by induction on the number of distinct
prime factors of m. If m is a prime power, then this is Theorem 8. Say m = pan, where p ∤ n
is prime and n > 1. It suffices to show that S ≡ 0 (mod n2). Note that since n has maximal
rank the theorem will hold for n by the inductive hypothesis. Write S as S∗ − S∗∗, where

S∗ :=

ρ(pa)−1
∑

i=0

(i+1)ρ(n)−1
∑

t=iρ(n)+1
ρ(q) ∤ t, if q|n

(

Vt

Ut

)ν

,
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and

S∗∗ :=

pa−1ρ(n)
∑

t=1
ρ(q) ∤ t, if q|n

(

Vρ(p)t

Uρ(p)t

)ν

=

pa−1−1
∑

i=0

U−ν
ρ(p)

(i+1)ρ(n)−1
∑

t=iρ(n)+1
ρ(q) ∤ t, if q|n

(

V ′
t

U ′
t

)ν

,

where the sequences U ′
t = Uρ(p)t · U−1

ρ(p) and V ′
t = Vρ(p)t are the Lucas sequences associated

with (P ′, Q′) = (Vρ(p), Q
ρ(p)) and the letter q stands for a prime. Note that all inner sums in

S∗ are 0 (mod n2) and that, as n has maximal rank with respect to U ′, the same is true, by
our inductive hypothesis again, of the inner sums of S∗∗.

Example 10. Consider the Lucas sequences U and V with parameters P = 1 and Q = −9.
Then D = 37, ρ(7) = 6 and ρ(37) = 37. Thus, m = 259 = 7 · 37 has maximal rank. Hence,
by Theorem 9, we have for ν = 1, 3 or 9

∑

t

(

Vt

Ut

)ν

≡ 0 (mod 72 · 372),

where t runs over all integers between 1 and 222 = 6 · 37 except for multiples of 6 or 37.
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