Journal of Integer Sequences, Vol. 17 (2014), Article 14.2.6

Constructing Exponential Riordan Arrays from Their A and Z Sequences

Paul Barry
School of Science
Waterford Institute of Technology
Ireland
pbarry@wit.ie

Abstract

We show how to construct an exponential Riordan array from a knowledge of its A and Z sequences. The effect of pre- and post-multiplication by the binomial matrix on the A and Z sequences is examined, as well as the effect of scaling the A and Z sequences. Examples are given, including a discussion of related Sheffer orthogonal polynomials.

1 Introduction

One of the most fundamental results concerning Riordan arrays is that they have a sequence characterization $[13,18]$. This normally involves two sequences, called the A-sequence and the Z-sequence. For exponential Riordan arrays [9] (see Appendix), this characterization is equivalent to the fact that the production matrix [11] of an exponential array $[g, f]$, with A-sequence $A(t)$ and Z-sequence $Z(t)$ has bivariate generating function

$$
e^{z t}(Z(t)+A(t) z) .
$$

In this case we have

$$
A(t)=f^{\prime}(\bar{f}(t)), \quad Z(t)=\frac{g^{\prime}(\bar{f}(t))}{g(\bar{f}(t))}
$$

Examples of exponential Riordan arrays and their production matrices may be found in the On-Line Encyclopedia of Integer Sequences [19, 20]. In that database, sequences are referred to by their A-numbers. For known sequences, we shall adopt this convention in this note.

A natural question to ask is the following. If we are given two suitable power series $A(t)$ and $Z(t)$, can we recover the corresponding exponential Riordan array $[g(t), f(t)]$ whose A and Z sequences correspond to the given power series $A(t)$ and $Z(t)$?

The next two simple results provide a means of doing this.
Lemma 1. For an exponential Riordan array $[g(t), f(t)]$ with A-sequence $A(t)$, we have

$$
\frac{d}{d t} \bar{f}(t)=\frac{1}{A(t)}
$$

Proof. By definition of the compositional inverse, we have

$$
f(\bar{f}(t))=t
$$

Differentiating this with respect to t, we obtain

$$
f^{\prime}(\bar{f}(t)) \frac{d}{d t} \bar{f}(t)=1
$$

or

$$
\frac{d}{d t} \bar{f}(t)=\frac{1}{f^{\prime}(\bar{f}(t))}=\frac{1}{A(t)}
$$

Lemma 2. For an exponential Riordan array $[g(t), f(t)]$ with A-sequence $A(t)$ and Z-sequence $Z(t)$, we have

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}
$$

Proof. We have

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{g^{\prime}(\bar{f}(t))}{g(\bar{f}(t))} \frac{d}{d t} \bar{f}(t)=Z(t) \frac{1}{A(t)}=\frac{Z(t)}{A(t)}
$$

Thus if we can easily carry out the reversion from $\bar{f}(t)$ to $f(t)$, a knowledge of $A(t)$ and $Z(t)$, along with the equations

$$
\begin{equation*}
\frac{d}{d t} \bar{f}(t)=\frac{1}{A(t)}, \quad \frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)} \tag{1}
\end{equation*}
$$

will allow us to find $f(t)$ and $g(t)$. The steps to achieve this are as follows.

- Using the equation $\frac{d}{d t} \bar{f}(t)=\frac{1}{A(t)}$, solve for $\bar{f}(t)$.
- Revert $\bar{f}(t)$ to get $f(t)$.
- Sove the equation $\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}$ and take the exponential to get $g(\bar{f}(t))$.
- Solve for $g(t)$ by substituting $f(t)$ in place of t in the last found expression.

Constants of integration may be determined using such conditions as $\bar{f}(0)=f(0)=0$, and $g(0)=1$.

Example 3. We seek to find $[g(t), f(t)]$ where

$$
A(t)=\frac{1}{1+t}, \quad Z(t)=-\frac{1}{1+t} .
$$

We start by solving the equation

$$
\frac{d}{d t} \bar{f}(t)=1+t
$$

Since $\bar{f}(0)=0$, we find that

$$
\bar{f}(t)=t+\frac{t^{2}}{2}=t\left(1+\frac{t}{2}\right) .
$$

We revert this to get

$$
f(t)=\sqrt{1+2 t}-1
$$

We now solve the equation

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}=-1 .
$$

Thus we find that

$$
\ln (g(\bar{f}(t)))=-t \Rightarrow g(\bar{f}(t))=e^{-t}
$$

Thus (since $\bar{f}(f(t))=t$) we get

$$
g(t)=e^{-f(t)}=e^{1-\sqrt{1+2 t}}
$$

Hence the exponential Riordan array with the given A and Z sequences is

$$
[g, f]=\left[e^{1-\sqrt{1+2 t}}, \sqrt{1+2 t}-1\right]
$$

We note that

$$
[g, f]^{-1}=\left[e^{t}, t+\frac{t^{2}}{2}\right]
$$

which is the Pascal-like matrix A100862 [6].
In like manner, we can show that

$$
A(t)=\frac{1}{1+2 t}, \quad Z(t)=-\frac{1}{1+2 t}
$$

corresponds to the exponential Riordan array

$$
[g, f]=\left[e^{\frac{1-\sqrt{1+4 t}}{2}}, \frac{\sqrt{1+4 t}-1}{2}\right],
$$

whose inverse

$$
[g, f]^{-1}=\left[e^{t}, t+t^{2}\right]
$$

is Pascal-like [6]. In general, if $A(t)=-Z(t)=\frac{1}{1+r t}$, then

$$
[g, f]=\left[e^{\frac{1}{r}(1-\sqrt{1+2 r t})}, \frac{1}{r}(\sqrt{1+2 r t}-1)\right] .
$$

Then

$$
[g, f]^{-1}=\left[e^{t}, t+r \frac{t^{2}}{2}\right]
$$

is a Pascal-type matrix.

2 Effect of the binomial transform

The next proposition shows the effect of changing $Z(t)$ to $Z(t)+1$ and to $Z(t)+A(t)$, respectively. We recall that the binomial matrix $B=\left[e^{t}, t\right]$.

Proposition 4. Let $[g, f]$ be an exponential Riordan array with A and Z sequences $A(t)$ and $Z(t)$ respectively. Then the exponential Riordan array $B \cdot[g, f]$ has A and Z sequences $A(t)$ and $Z(t)+1$ respectively, while the exponential Riordan array $[g, f] \cdot B$ has A and Z sequences $A(t)$ and $Z(t)+A(t)$ respectively.

Proof. Firstly, we let the exponential Riordan array [h, l] have A and Z sequences $A(t)$ and $Z(t)+1$ respectively. Then we have $\frac{d}{d t} \bar{l}(t)=\frac{1}{A(t)}$, which implies that $l(t)=f(t)$ (since $l(0)=f(0)=0)$. Now

$$
\frac{d}{d t} \ln (h(\bar{l}(t)))=\frac{d}{d t} \ln (h(\bar{f}(t)))=\frac{Z(t)+1}{A(t)}=\frac{Z(t)}{A(t)}+\frac{1}{A(t)} .
$$

Thus

$$
\ln (h(\bar{f}(t)))=\ln (g(\bar{f}(t)))+\bar{f}(t) \Rightarrow h(\bar{f}(t))=g(\bar{f}(t)) e^{\bar{f}(t)} .
$$

We obtain that

$$
h(t)=g(t) l^{t}
$$

and so

$$
[h(t), l(t)]=\left[e^{t} g(t), f(t)\right]=\left[e^{t}, t\right] \cdot[g(t), f(t)]=B \cdot[g(t), f(t)] .
$$

Secondly, we now assume that the exponential Riordan array $[h, l]$ have A and Z sequences $A(t)$ and $Z(t)+A(t)$ respectively. As before, we see that $l(t)=f(t)$. Also,

$$
\frac{d}{d t} \ln (h(\bar{l}(t)))=\frac{d}{d t} \ln (h(\bar{f}(t)))=\frac{Z(t)+A(t)}{A(t)}=\frac{Z(t)}{A(t)}+1 .
$$

Thus

$$
\ln (h(\bar{f}(t)))=\ln (g(\bar{f}(t)))+t \Rightarrow h(\bar{f}(t))=g(\bar{f}(t)) e^{t} .
$$

Now substituting $f(t)$ for t gives us

$$
h(t)=e^{f(t)} g(t)
$$

Thus

$$
[h, l]=\left[e^{f(t)} g(t), f(t)\right]=[g(t), f(t)] \cdot\left[e^{t}, t\right]=[g(t), f(t)] \cdot B .
$$

We shall see examples of these results in the next section.

3 Effect of Scaling

In this section, we will assume that the exponential Riordan array with A and Z sequences $A(t)$ and $Z(t)$, respectively, is given by $[g(t), f(t)]$. We wish to characterize the exponential Riordan array $\left[g^{*}(t), f^{*}(t)\right]$ whose A and Z sequences are $A^{*}(t)=r A(t)$ and $Z^{*}(t)=s Z(t)$ respectively.

Proposition 5. We have

$$
\left[g^{*}(t), f^{*}(t)\right]=\left[g(r t)^{\frac{s}{r}}, r f(t)\right] .
$$

Proof. We have

$$
\frac{d}{d t} \bar{f}^{*}(t)=\frac{1}{r A}=\frac{1}{r} \frac{d}{d t} \bar{f}(t)
$$

Thus

$$
\bar{f}^{*}(t)=\frac{1}{r} \bar{f}(t) \Rightarrow f^{*}(t)=r f(t)
$$

Then

$$
\frac{d}{d t} \ln \left(g^{*}\left(\overline{f^{*}}(t)\right)\right)=\frac{s Z}{r A}=\frac{s}{r} \frac{d}{d t} \ln (g(\bar{f}(t)))
$$

and so

$$
\ln \left(g^{*}\left(\bar{f}^{*}(t)\right)\right)=\frac{s}{r} \ln (g(\bar{f}(t)))=\ln \left(g(\bar{f}(t))^{\frac{s}{r}}\right) .
$$

Thus

$$
g^{*}\left(\bar{f}^{*}(t)\right)=g(\bar{f}(t))^{\frac{s}{r}} \Rightarrow g^{*}\left(\frac{1}{r} \bar{f}(t)\right)=g(\bar{f}(t))^{\frac{s}{r}} \Rightarrow g^{*}\left(\frac{1}{r} t\right)=g(t)^{\frac{s}{r}},
$$

or

$$
g^{*}(t)=g(r t)^{\frac{s}{r}} .
$$

Example 6. We let

$$
A(t)=1+t, \quad Z(t)=1+2 t .
$$

We find that the corresponding exponential array is

$$
[g, f]=\left[e^{2 e^{t}-t-2}, e^{t}-1\right]
$$

which begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
3 & 3 & 1 & 0 & 0 & 0 & \cdots \\
9 & 13 & 6 & 1 & 0 & 0 & \cdots \\
35 & 59 & 37 & 10 & 1 & 0 & \cdots \\
153 & 301 & 230 & 85 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

with production matrix which begins

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
2 & 2 & 1 & 0 & 0 & 0 & \ldots \\
0 & 4 & 3 & 1 & 0 & 0 & \ldots \\
0 & 0 & 6 & 4 & 1 & 0 & \ldots \\
0 & 0 & 0 & 8 & 5 & 1 & \ldots \\
0 & 0 & 0 & 0 & 10 & 6 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

We now take

$$
A^{*}(t)=3(1+t), \quad Z^{*}(t)=5(1+2 t)
$$

The corresponding exponential Riordan array is then given by

$$
\left[g^{*}(t), f^{*}(t)\right]=\left[\left(e^{2 e^{3 t}-3 t-2}\right)^{\frac{5}{3}}, 3\left(e^{t}-1\right)\right]
$$

This array begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
5 & 3 & 0 & 0 & 0 & 0 & \cdots \\
55 & 33 & 9 & 0 & 0 & 0 & \cdots \\
665 & 543 & 162 & 27 & 0 & 0 & \cdots \\
9895 & 9033 & 3573 & 702 & 81 & 0 & \cdots \\
165185 & 170103 & 76410 & 19575 & 2835 & 243 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

with production matrix which begins

$$
\left(\begin{array}{ccccccc}
5 & 3 & 0 & 0 & 0 & 0 & \ldots \\
10 & 8 & 3 & 0 & 0 & 0 & \ldots \\
0 & 20 & 11 & 3 & 0 & 0 & \ldots \\
0 & 0 & 30 & 14 & 3 & 0 & \ldots \\
0 & 0 & 0 & 40 & 17 & 3 & \ldots \\
0 & 0 & 0 & 0 & 50 & 20 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

4 Further examples

Example 7. We take the Stirling number related choice of

$$
A(t)=1+t, \quad Z(t)=1+t
$$

From

$$
\frac{d}{d t} \bar{f}(t)=\frac{1}{1+t},
$$

we obtain

$$
\bar{f}(t)=\ln (1+t) \Rightarrow f(t)=e^{t}-1
$$

Then from

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}=1
$$

we obtain

$$
\ln (g(\bar{f}(t)))=t \Rightarrow g(\bar{f}(t))=e^{t}
$$

and hence

$$
g(t)=e^{e^{t}-1}
$$

Thus we obtain

$$
[g, f]=\left[e^{e^{t}-1}, e^{t}-1\right]
$$

which is A049020. We have

$$
[g, f]=S_{2} \cdot B
$$

where S_{2} is the matrix of Stirling numbers of the second kind (A048993) and B is the binomial matrix (A007318). The production array of $[g, f]$ is given by

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & 0 & \ldots \\
0 & 2 & 3 & 1 & 0 & 0 & \ldots \\
0 & 0 & 3 & 4 & 1 & 0 & \ldots \\
0 & 0 & 0 & 4 & 5 & 1 & \ldots \\
0 & 0 & 0 & 0 & 5 & 6 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Since this production matrix is tri-diagonal, the inverse matrix $[g, f]^{-1}$ is the coefficient array of a family of orthogonal polynomials [4, 3]. The family in question is the family of Charlier polynomials, which has the Bell numbers (with e.g.f. $e^{e^{t}-1}$) as moments. The Charlier polynomials satisfy the three-term recurrence

$$
P_{n}(t)=(t-n) P_{n-1}(t)-(n-1) P_{n-2}(t)
$$

with $P_{0}(t)=1, P_{1}(t)=t-1$.
Example 8. We take

$$
A(t)=1+t \quad Z(t)=1+t+t^{2}
$$

Again, we find that

$$
f(t)=e^{t}-1
$$

Then

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}=\frac{1+t+t^{2}}{1+t}
$$

and hence

$$
\ln (g(\bar{f}(t)))=\frac{t^{2}}{2}+\ln (1+t)
$$

Thus

$$
g(\bar{f}(t))=e^{\frac{t^{2}}{2}}(1+t)
$$

and so

$$
g(t)=e^{\frac{\left(e^{t}-1\right)^{2}}{2}}\left(1+e^{t}-1\right)=e^{t} e^{\frac{\left(e^{t}-1\right)^{2}}{2}}
$$

In this case, the production matrix is four-diagonal and begins

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & 0 & \ldots \\
2 & 2 & 3 & 1 & 0 & 0 & \ldots \\
0 & 6 & 3 & 4 & 1 & 0 & \ldots \\
0 & 0 & 12 & 4 & 5 & 1 & \ldots \\
0 & 0 & 0 & 20 & 5 & 6 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The exponential Riordan array

$$
[g, f]=\left[e^{t} e^{\frac{\left(e^{t}-1\right)^{2}}{2}}, e^{t}-1\right]
$$

begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & 3 & 1 & 0 & 0 & 0 & \cdots \\
7 & 10 & 6 & 1 & 0 & 0 & \cdots \\
29 & 45 & 31 & 10 & 1 & 0 & \cdots \\
136 & 241 & 180 & 75 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

The row sums of this array are the Dowling numbers A007405.
We note that the exponential Riordan array

$$
B^{-1} \cdot[g, f]=\left[e^{-t}, t\right] \cdot[g, f]=\left[e^{\frac{\left(e^{t}-1\right)^{2}}{2}}, e^{t}-1\right]
$$

has

$$
A(t)=1+t \quad Z(t)=t+t^{2}
$$

This array begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 1 & 0 & 0 & 0 & \cdots \\
3 & 4 & 3 & 1 & 0 & 0 & \cdots \\
10 & 19 & 13 & 6 & 1 & 0 & \cdots \\
45 & 91 & 75 & 35 & 10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

The first column of this array is A060311, while its row sums are given by A004211. The production matrix of this array begins

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & 0 & 0 & 0 & \ldots \\
2 & 2 & 2 & 1 & 0 & 0 & \ldots \\
0 & 6 & 3 & 3 & 1 & 0 & \ldots \\
0 & 0 & 12 & 4 & 4 & 1 & \ldots \\
0 & 0 & 0 & 20 & 5 & 5 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

where we see that the effect of the inverse binomial matrix is to subtract 1 from the diagonal.

In this example, we have $Z(t)=1+t+t^{2}=A(t)+t^{2}$. Thus the exponential Riordan array $[g, f]$ is equal to the product

$$
[h, l] \cdot B
$$

where the exponential Riordan array $[h, l]$ has A and Z sequences of $1+t$ and t^{2}, respectively.
Example 9. We take

$$
A(t)=1+t^{2}, \quad Z(t)=1+t+t^{2}
$$

Then Thus

$$
f(t)=\tan (t)
$$

Now

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}=\frac{1+t+t^{2}}{1+t^{2}}=1+\frac{t}{1+t^{2}},
$$

and so

$$
\ln (g(\bar{f}(t)))=\ln \sqrt{1+t^{2}}+t .
$$

Thus

$$
g(\bar{f}(t))=e^{t} \sqrt{1+t^{2}} \Rightarrow g(t)=e^{\tan (t)} \sqrt{1+\tan ^{2}(t)}=\frac{e^{\tan (t)}}{\cos (t)}
$$

Thus the sought-for exponential Riordan array is given by

$$
[g, f]=\left[e^{\tan (t)} \sec (t), \tan (t)\right]
$$

This matrix begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & 2 & 1 & 0 & 0 & 0 & \cdots \\
6 & 8 & 3 & 1 & 0 & 0 & \cdots \\
20 & 32 & 20 & 4 & 1 & 0 & \cdots \\
92 & 156 & 100 & 40 & 5 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

with production matrix that begins

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & 0 & 0 & 0 & \ldots \\
2 & 4 & 1 & 1 & 0 & 0 & \ldots \\
0 & 6 & 9 & 1 & 1 & 0 & \ldots \\
0 & 0 & 12 & 16 & 1 & 1 & \ldots \\
0 & 0 & 0 & 20 & 25 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

The first column is $\underline{\text { A009244. We note that we have the following factorization }}$

$$
[g, f]=\left[e^{\tan (t)} \sec (t), \tan (t)\right]=[\sec (t), \tan (t)] \cdot B
$$

Thus we can say that the exponential Riordan array $[\sec (t), \tan (t)]$, which begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 0 & 1 & 0 & 0 & 0 & \cdots \\
0 & 5 & 0 & 1 & 0 & 0 & \cdots \\
5 & 0 & 14 & 0 & 1 & 0 & \cdots \\
0 & 61 & 0 & 30 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

has A sequence defined by $1+t^{2}$ and Z sequence defined by t. Thus its production matrix is given by

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 4 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 9 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 16 & 0 & 1 & \ldots \\
0 & 0 & 0 & 0 & 25 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

We can infer from this that the inverse array

$$
[\sec (t), \tan (t)]^{-1}=\left[\frac{1}{\sqrt{1+t^{2}}}, \tan ^{-1}(t)\right]
$$

is the coefficient array of the family of orthogonal polynomials

$$
P_{n}(t)=t P_{n-1}(t)-(n-1)^{2} P_{n-2}(t),
$$

with $P_{0}(t)=1$ and $P_{1}(t)=t$.
Example 10. In this example, we let

$$
A(t)=1+t, \quad Z(t)=\frac{1}{1-t}
$$

As before, we get $f(t)=e^{t}-1$. Now

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}=\frac{1}{1-t^{2}},
$$

and hence

$$
\ln (g(\bar{f}(t)))=\frac{1}{2} \ln \left(\frac{1+t}{1-t}\right) .
$$

We infer that

$$
g(t)=\sqrt{\frac{e^{t}}{2-e^{t}}}
$$

The function $g(t)$ generates the sequence A014307 which begins

$$
1,1,2,7,35,226,1787,16717,180560,2211181,30273047, \ldots
$$

It has many combinatorial interpretations $[7,15,17]$.
The exponential Riordan array

$$
[g, f]=\left[\sqrt{\frac{e^{t}}{2-e^{t}}}, e^{t}-1\right]
$$

begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & 3 & 1 & 0 & 0 & 0 & \cdots \\
7 & 10 & 6 & 1 & 0 & 0 & \cdots \\
35 & 45 & 31 & 10 & 1 & 0 & \cdots \\
226 & 271 & 180 & 75 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

with production matrix that begins

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & 0 & \ldots \\
2 & 2 & 3 & 1 & 0 & 0 & \ldots \\
6 & 6 & 3 & 4 & 1 & 0 & \ldots \\
24 & 24 & 12 & 4 & 5 & 1 & \ldots \\
120 & 120 & 60 & 20 & 5 & 6 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

In general, the exponential Riordan array with

$$
A(t)=1+t, \quad Z(t)=\frac{r}{1-t}
$$

is given by

$$
[g, f]=\left[\left(\frac{e^{t}}{2-e^{t}}\right)^{r / 2}, e^{t}-1\right]
$$

Example 11. For this example, we take

$$
A(t)=e^{-t}, \quad Z(t)=e^{t}
$$

Then

$$
\frac{d}{d t} \bar{f}(t)=\frac{1}{A(t)}=\frac{1}{e^{-t}}=e^{t},
$$

and so we get

$$
\bar{f}(t)=e^{t}+C=e^{t}-1
$$

since $\bar{f}(0)=0$. Thus

$$
f(t)=\ln (1+t)
$$

Now

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}=\frac{e^{t}}{e^{-t}}=e^{2 t}
$$

and so

$$
\ln (g(\bar{f}(t)))=\frac{e^{2 t}}{2}-\frac{1}{2} \Rightarrow g(\bar{f}(t))=e^{\frac{1}{2}\left(e^{2 t}-1\right)} .
$$

Substituting $f(t)$ for t we get

$$
g(t)=e^{\frac{1}{2}\left(e^{2 \ln (1+t)}-1\right)}=e^{t+\frac{t^{2}}{2}} .
$$

Thus

$$
[g, f]=\left[e^{t+\frac{t^{2}}{2}}, \ln (1+t)\right]
$$

We note that if we have

$$
A(t)=Z(t)=e^{-t}
$$

then we obtain

$$
[g, f]=[1+t, \ln (1+t)] .
$$

Interestingly, this last exponential Riordan array has a production matrix that is equal the ordinary Riordan array

$$
\left(\frac{1+2 t}{1+t}, \frac{t}{1+t}\right)
$$

with its first row removed.

5 Orthogonal polynomials

When $Z(t)=\alpha+\beta t$ and $A(t)=1+\gamma t+\delta t^{2}$, the production matrix of the corresponding exponential Riordan array $[g, f]$ is tri-diagonal, beginning as follows.

$$
\left(\begin{array}{ccccccc}
\alpha & 1 & 0 & 0 & 0 & 0 & \cdots \\
\beta & \alpha+\gamma & 1 & 0 & 0 & 0 & \cdots \\
0 & 2(\beta+\delta) & \alpha+2 \gamma & 1 & 0 & 0 & \cdots \\
0 & 0 & 3(\beta+2 \delta) & \alpha+3 \gamma & 1 & 0 & \cdots \\
0 & 0 & 0 & 4(\beta+3 \delta) & \alpha+4 \gamma & 1 & \cdots \\
0 & 0 & 0 & 0 & 5(\beta+4 \delta) & \alpha+5 \gamma & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

As a consequence, $[g, f]^{-1}$ is the coefficient array of the family of orthogonal polynomials $P_{n}(t)$ defined by the three-term recurrence $[8,12,21]$

$$
P_{n}(t)=(t-(\alpha+(n-1) \gamma)) P_{n-1}(t)-(n-1)(\beta+(n-2) \delta) P_{n-2}(t),
$$

with $P_{0}(t)=1$ and $P_{1}(t)=x-\alpha$. These are precisely the Sheffer orthogonal polynomials [1, 13].

Example 12. We take the case of

$$
A(t)=1+t+t^{2}, \quad Z(t)=1+t
$$

We have

$$
\frac{d}{d t} \bar{f}(t)=\frac{1}{1+t+t^{2}} .
$$

Choosing the constant of integration so that $\bar{f}(0)=0$, we get

$$
\bar{f}(t)=\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 t+1}{\sqrt{3}}\right)-\frac{\pi}{3 \sqrt{3}} .
$$

Thus

$$
\begin{aligned}
f(t) & =\frac{\sqrt{3}}{2} \tan \left(\frac{\sqrt{3} t}{2}+\frac{\pi}{6}\right)-\frac{1}{2} \\
& =\frac{2 \sin \left(\frac{\sqrt{3} t}{2}\right)}{\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)-\sin \left(\frac{\sqrt{3} t}{2}\right)} \\
& =\frac{2 \tan \left(\frac{\sqrt{3} t}{2}\right)}{\sqrt{3}-\tan \left(\frac{\sqrt{3} t}{2}\right)} .
\end{aligned}
$$

We now have

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}=\frac{1+t}{1+t+t^{2}}
$$

and hence

$$
\ln (g(\bar{f}(t)))=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 t+1}{\sqrt{3}}\right)+\frac{1}{2} \ln \left(1+t+t^{2}\right)-\frac{\pi}{6 \sqrt{3}} .
$$

From this we infer that

$$
g(t)=\frac{\sqrt{3} e^{\frac{x}{2}}}{\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)-\sin \left(\frac{\sqrt{3} t}{2}\right)} .
$$

The function $g(t)$ generates the sequence A049774, which counts the number of permutations of n elements not containing the consecutive pattern 123.

The sought-for matrix is thus

$$
[g, f]=\left[\frac{\sqrt{3} e^{\frac{x}{2}}}{\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)-\sin \left(\frac{\sqrt{3} t}{2}\right)}, \frac{2 \sin \left(\frac{\sqrt{3} t}{2}\right)}{\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)-\sin \left(\frac{\sqrt{3} t}{2}\right)}\right]
$$

This exponential Riordan array is A182822, which begins

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & 3 & 1 & 0 & 0 & 0 & \cdots \\
5 & 12 & 6 & 1 & 0 & 0 & \cdots \\
17 & 53 & 39 & 10 & 1 & 0 & \cdots \\
70 & 279 & 260 & 95 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

with production matrix that begins

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & 0 & \ldots \\
0 & 4 & 3 & 1 & 0 & 0 & \ldots \\
0 & 0 & 9 & 4 & 1 & 0 & \ldots \\
0 & 0 & 0 & 16 & 5 & 1 & \ldots \\
0 & 0 & 0 & 0 & 25 & 6 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example 13. We change the previous example slightly by taking

$$
A(t)=1+2 t+t^{2}=(1+t)^{2}, \quad Z(t)=1+t
$$

Then we have

$$
\frac{d}{d t} \bar{f}(t)=\frac{1}{(1+t)^{2}} \Rightarrow \bar{f}(t)=-\frac{1}{1+t}+1=\frac{t}{1+t}
$$

This means that

$$
f(t)=\frac{t}{1-t}
$$

Now we have

$$
\frac{d}{d t} \ln (g(\bar{f}(t)))=\frac{Z(t)}{A(t)}=\frac{1}{1+t},
$$

and hence

$$
\ln (g(\bar{f}(t)))=\ln (1+t) \Rightarrow g(\bar{f}(t))=1+t
$$

This implies that

$$
g(t)=1+f(t)=1+\frac{t}{1-t}=\frac{1}{1-t} .
$$

Thus

$$
[g, f]=\left[\frac{1}{1-t}, \frac{t}{1-t}\right]
$$

Thus $[g, f]^{-1}$ is the coefficient array of the Laguerre polynomials [5].
We finish by noting that the simple addition of t to $A(t)$ has allowed us to go from the relatively complicated exponential Riordan array

$$
\left[\frac{\sqrt{3} e^{\frac{x}{2}}}{\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)-\sin \left(\frac{\sqrt{3} t}{2}\right)}, \frac{2 \sin \left(\frac{\sqrt{3} t}{2}\right)}{\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)-\sin \left(\frac{\sqrt{3} t}{2}\right)}\right]
$$

to the simple exponential Riordan array

$$
\left[\frac{1}{1-t}, \frac{t}{1-t}\right] .
$$

6 Appendix: exponential Riordan arrays

The exponential Riordan group $[6,9,11]$, is a set of infinite lower-triangular integer matrices, where each matrix is defined by a pair of generating functions $g(t)=g_{0}+g_{1} t+g_{2} t^{2}+\cdots$ and $f(t)=f_{1} t+f_{2} t^{2}+\cdots$ where $g_{0} \neq 0$ and $f_{1} \neq 0$. We usually assume that

$$
g_{0}=f_{1}=1
$$

The associated matrix is the matrix whose i-th column has exponential generating function $g(t) f(t)^{i} / i$! (the first column being indexed by 0). The matrix corresponding to the pair f, g is denoted by $[g, f]$. The group law is given by

$$
[g, f] \cdot[h, l]=[g(h \circ f), l \circ f] .
$$

The identity for this law is $I=[1, t]$ and the inverse of $[g, f]$ is $[g, f]^{-1}=[1 /(g \circ \bar{f}), \bar{f}]$ where \bar{f} is the compositional inverse of f.

If \mathbf{M} is the matrix $[g, f]$, and $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is an integer sequence with exponential generating function $\mathcal{U}(t)$, then the sequence $\mathbf{M u}$ has exponential generating function $g(t) \mathcal{U}(f(t))$. Thus the row sums of the array $[g, f]$ have exponential generating function given by $g(t) e^{f(t)}$ since the sequence $1,1,1, \ldots$ has exponential generating function e^{t}.

As an element of the group of exponential Riordan arrays, the binomial matrix \mathbf{B} with (n, k)-th element $\binom{n}{k}$ is given by $\mathbf{B}=\left[e^{t}, t\right]$. By the above, the exponential generating function of its row sums is given by $e^{t} e^{t}=e^{2 t}$, as expected ($e^{2 t}$ is the e.g.f. of 2^{n}).

To each exponential Riordan array $L=[g, f]$ is associated $[10,11]$ a matrix P called its production matrix, which has bivariate g.f. given by

$$
e^{z t}(Z(t)+A(t) z)
$$

where

$$
A(t)=f^{\prime}(\bar{f}(t)), \quad Z(t)=\frac{g^{\prime}(\bar{f}(t))}{g(\bar{f}(t))}
$$

We have

$$
P=L^{-1} \bar{L}
$$

where $\bar{L}[16,22]$ is the matrix L with its top row removed.
The ordinary Riordan group is described in [18].

References

[1] W. A. Al-Salam, Characterization theorems for orthogonal polynomials, in P. Nevai, ed., Orthogonal Polynomials: Theory and Practice, NATO ASI Series, 294 (1990), pp. 1-24.
[2] P. Barry, Eulerian polynomials as moments, via exponential Riordan arrays, J. Integer Seq., 14 (2011), Article 11.9.5.
[3] P. Barry, Riordan arrays, orthogonal polynomials as moments, and Hankel transforms, J. Integer Seq., 14 (2011), Article 11.2.2.
[4] P. Barry and A. Hennessy, Meixner-type results for Riordan arrays and associated integer sequences, J. Integer Seq., 13 (2010), Article 10.9.4.
[5] P. Barry, Some observations on the Lah and Laguerre transforms of integer sequences, J. Integer Sequences, 10 (2007), Article 07.4.6.
[6] P. Barry, On a family of generalized Pascal triangles defined by exponential Riordan array, J. Integer Seq., 10 (2007), Article 07.3.5.
[7] D. Callan, Klazar trees and perfect matchings. European J. Combin., 31 (2010), 12651282.
[8] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978.
[9] E. Deutsch and L. Shapiro, Exponential Riordan Arrays, Lecture Notes, Nankai University, 2004, available electronically at http://www.combinatorics.net/ppt2004/Louis\ W.\ Shapiro/shapiro.htm.
[10] E. Deutsch, L. Ferrari, and S. Rinaldi, Production matrices, Adv. in Appl. Math. 34 (2005), 101-122.
[11] E. Deutsch, L. Ferrari, and S. Rinaldi, Production matrices and Riordan arrays, http://arxiv.org/abs/math/0702638v1, February 222007.
[12] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press, Oxford, 2003.
[13] T. X. He, The characterization of Riordan arrays and Sheffer-type polynomial sequences, J. Comb. Math. Comb. Comput., 82 (2012), 249-268.
[14] A. Hennessy and P. Barry, Generalized Stirling numbers, exponential Riordan arrays, and orthogonal polynomials, J. Integer Seq., 14 (2011), Article 11.8.2.
[15] M. Klazar, Twelve countings with rooted plane trees, European J. Combin., 18 (1997), 195-210.
[16] P. Peart and W.-J. Woan, Generating functions via Hankel and Stieltjes matrices, J. Integer Seq., 3 (2000), Article 00.2.1.
[17] Q. Ren, Ordered partitions and drawings of rooted plane trees, preprint, http://arxiv.org/abs/1301.6327.
[18] L. W. Shapiro, S. Getu, W.-J. Woan, and L. C. Woodson, The Riordan group, Discr. Appl. Math., 34 (1991), 229-239.
[19] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2013.
[20] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Notices Amer. Math. Soc., 50 (2003), 912-915.
[21] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc., 1975.
[22] H. S. Wall, Analytic Theory of Continued Fractions, AMS Chelsea Publishing, 2000.

2010 Mathematics Subject Classification: Primary 11C20; Secondary 11B83, 15B36, 33C45.
Keywords: exponential Riordan array, A sequence, Z sequence, production matrix, orthogonal polynomial.
(Concerned with sequences A004211, A007318, A007405, A009244, A014307, A048993, A049020, A049774, A060311, A100862, and A182822.)

Received October 8 2013; revised version received December 30 2013. Published in Journal of Integer Sequences, January 62014.

Return to Journal of Integer Sequences home page.

