Combinatorial Expressions Involving Fibonacci, Hyperfibonacci, and Incomplete Fibonacci Numbers

Hacène Belbachir and Amine Belkhir
USTHB, Faculty of Mathematics
RECITS Laboratory, DG-RSDT
BP 32, El Alia
16111 Bab Ezzouar, Algiers
Algeria
hbelbachir@usthb.dz
hacenebelbachir@gmail.com
abelkhir@usthb.dz
ambelkhir@gmail.com

Abstract

We give a combinatorial interpretation, an explicit formula and some other properties of hyperfibonacci numbers. Further, we deduce relationships between Fibonacci, hyperfibonacci, and incomplete Fibonacci numbers.

1 Introduction

The hyperfibonacci numbers $F_{n}^{(r)}$ introduced recently by Dil and Mező [5]. There are defined by the relation

$$
\begin{equation*}
F_{n}^{(r)}=\sum_{k=0}^{n} F_{k}^{(r-1)}, \text { with } F_{n}^{(0)}=F_{n} \quad \text { and } F_{0}^{(r)}=0, \quad F_{1}^{(r)}=1, \tag{1}
\end{equation*}
$$

where r is a positive integer and F_{n} is the n-th Fibonacci number defined recursively by

$$
F_{n}=F_{n-1}+F_{n-2}, \text { for } n \geq 2, \text { and } F_{0}=0, F_{1}=1
$$

The double recurrence relation for the hyperfibonacci numbers is given by

$$
\begin{equation*}
F_{n}^{(r)}=F_{n-1}^{(r)}+F_{n}^{(r-1)} . \tag{2}
\end{equation*}
$$

The Fibonacci number F_{n+1} counts the number of tilings of a $(1 \times n)$-board with cells labeled $1,2, \ldots, n$ using (1×1)-squares and (1×2)-dominoes. We follow the notation introduced by Benjamin and Quinn [4] and define $f_{n}=F_{n+1}$ and get $f_{n}=f_{n-1}+f_{n-2}$ with $f_{0}=f_{1}=1$.

Figure 1: Tilings of length 1,2 and 3 using squares and dominoes.
The following lemma will be used to establish our results.
Lemma 1. [4] The number of n-tilings using exactly k dominoes is

$$
\begin{equation*}
\binom{n-k}{k}, \quad(k=0,1, \ldots,\lfloor n / 2\rfloor) \tag{3}
\end{equation*}
$$

where $\lfloor n\rfloor$ is the integer part of n.
From Lemma 1, Benjamin and Quinn [4] gave a closed form for f_{n} by summing over all values of k, the number of ways to tile an n-board with squares and dominoes is

$$
\begin{equation*}
f_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n-k}{k} . \tag{4}
\end{equation*}
$$

Our aim is to investigate, as the authors do for generalized Fibonacci and Lucas sequences [1, 2], the tilings approach to give a combinatorial interpretation for hyperfibonacci numbers. More precisely, in Section 2, a combinatorial interpretation of hyperfibonacci numbers is presented. In Section 3, we give a closed form for hyperfibonacci numbers. Finally, in Section 4, we provide a combinatorial interpretation for incomplete Fibonacci numbers and we establish a relation between incomplete Fibonacci numbers and hyperfibonacci numbers.

2 Combinatorial interpretation

In this section, we present combinatorial interpretation for hyperfibonacci numbers. Later, we derive a relation involving hyperfibonacci and Fibonacci numbers.

Theorem 2. Let $f_{n}^{(r)}$ counts the number of ways to tile an $(n+2 r)$-board with at least r dominoes. Then $f_{0}^{(r)}=1, f_{n}^{(0)}=f_{n}$, and for $n \geq 2$,

$$
\begin{equation*}
f_{n}^{(r)}=f_{n-1}^{(r)}+f_{n}^{(r-1)} . \tag{5}
\end{equation*}
$$

Proof. We start by verifying the initial conditions. For $n=0$, there is one $2 r$-tiling with at least r dominoes, and for $r=0$, there are $f_{n} n$-tilings with at least 0 dominoes (there is no restriction on the number of dominoes). Now, if $n \geq 2$, an $(n+2 r)$-board can either end with a square or with a domino. If it ends with a square, then the remaining $(n+2 r-1)$ board can be tiled with at least r dominoes in $f_{n-1}^{(r)}$ ways. If it ends with a domino, then the remaining $(n+2 r-2)$-board can be tiled with at least $r-1$ dominoes in $f_{n}^{(r-1)}$ ways.

As $f_{0}^{(r)}=F_{1}^{(r)}=1$ and $f_{n}^{(0)}=F_{n+1}^{(0)}=F_{n+1}$, it seen that for $n \geq 0$, we have $f_{n}^{(r)}=F_{n+1}^{(r)}$. Letting $f_{-1}^{(r)}=0$, because there is not $(2 r-1)$-tiling with at least r dominoes. Now, we have a combinatorial interpretation for the hyperfibonacci numbers.

Theorem 3. For $n, r \geq 0, F_{n+1}^{(r)}=f_{n}^{(r)}$ counts the number of ways to tile an $(n+2 r)$-board with at least r dominoes.

The first few values of $f_{n}^{(r)}$ are as follows:

n	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$f_{n}^{(0)}$	1	1	2	3	5	8	13	21	34	55	89
$f_{n}^{(1)}$	1	2	4	7	12	20	33	54	88	143	232
$f_{n}^{(2)}$	1	3	7	14	26	46	79	133	221	364	594
$f_{n}^{(3)}$	1	4	11	25	51	97	179	309	530	894	1490

Table 1: Some values of $f_{n}^{(r)}$

Theorem 4. For $n \geq 0$, and $r \geq 1$, we have

$$
\begin{equation*}
f_{n}^{(r)}=\sum_{k=r-1}^{\lfloor n / 2\rfloor+r-1}(n+2 r-k-1) f_{n}^{(r-1)} . \tag{6}
\end{equation*}
$$

Proof. The number of ways to tile a board of length $n+2 r-2$ with at least $r-1$ dominoes is $f_{n}^{(r-1)}$. Now, to obtain an $(n+2 r)$-tilings with at least r dominoes from an $(n+2 r-2)$-tilings with at least $r-1$ dominoes, it suffices to add a domino. Let k $(r-1 \leq k \leq\lfloor n / 2\rfloor+r-1)$ be the number of dominos in an $(n+2 r-2)$-tilings, then it contains $n+2 r-2 k-2$ squares, so there are $n+2 r-k-2$ tiles in the $(n+2 r-2)$-tilings. The number of ways to place a domino in an $(n+2 r-2)$-tiling with $k(r-1 \leq k \leq\lfloor n / 2\rfloor+r-1)$ dominoes is $n+2 r-k-1$.

The hyperfibonacci numbers $f_{n}^{(r)}$ can be expressed as a sum of a product of binomial coefficients and Fibonacci numbers.

Theorem 5. For $n \geq 0$, and $r \geq 1$, we have

$$
\begin{equation*}
f_{n}^{(r)}=\sum_{k=0}^{n}\binom{n+r-k-1}{r-1} f_{k} . \tag{7}
\end{equation*}
$$

Proof. Let $k+1, k+2(0 \leq k \leq n)$ be the position of the r-th (from the right) domino, then there are f_{k} ways to tile the first k cells, and there are $\binom{n+r-k-1}{r-1}$ ways to tile cells from $k+3$ to $n+2 r$ with exactly $r-1$ dominoes. Thus, there are $\binom{n+r-k-1}{r-1} f_{k}(n+2 r)$-tilings with the r-th domino covering cells $k+1, k+2$. Summing over k, we get relation (7).

From the relation (7), the following convolution is derived, the hyperfibonacci numbers are obtained as a convolution between the anti-diagonal terms of Pascal's triangle and the Fibonacci numbers.

Corollary 6. For $n \geq 0$, and $r \geq 1$, we have

$$
\begin{equation*}
f_{n}^{(r)}=\sum_{k=0}^{n}\binom{r-1+k}{k} f_{n-k} . \tag{8}
\end{equation*}
$$

3 Closed form for hyperfibonacci numbers

The following theorem gives an explicit expression of $f_{n}^{(r)}$ in terms of binomial coefficients.
Theorem 7. For $n \geq 0$, and $r \geq 1$, we have

$$
\begin{equation*}
f_{n}^{(r)}=\sum_{k=r}^{\lfloor n / 2\rfloor+r}\binom{n+2 r-k}{k} \tag{9}
\end{equation*}
$$

Proof. An $(n+2 r)$-tiling with at least r dominoes can contains k dominoes where $k=$ $r, r+1, \ldots,\lfloor n / 2\rfloor+r$. Using Lemma 1, the number of $(n+2 r)$-tilings with exactly k dominoes is $\binom{n+2 r-k}{k}$. Summing over k we get (9).

The relation (9) is a truncated diagonal sum of Pascal's Triangle. This allow us to state the following:

Theorem 8. For $n \geq 0$, and $r \geq 1$, we have

$$
\begin{equation*}
f_{n}^{(r)}=f_{n+2 r}-\sum_{k=0}^{r-1}\binom{n+2 r-k}{k} \tag{10}
\end{equation*}
$$

Remark 9. For $n \geq 0$, we have some special cases

$$
\begin{gather*}
f_{n}^{(1)}=\sum_{k=0}^{n} f_{k}=f_{n+2}-1 . \tag{11}\\
f_{n}^{(2)}=\sum_{k=0}^{n}(k+1) f_{n-k}=f_{n+4}-n-4 . \tag{12}
\end{gather*}
$$

4 Relationships between the hyperfibonacci and incomplete Fibonacci numbers

We give a combinatorial interpretation for the incomplete Fibonacci numbers. This allow us to obtain a relationship involving the Fibonacci, hyperfibonacci, and incomplete Fibonacci numbers.

Filipponi [6] defined the incomplete Fibonacci numbers $F_{n}(k)$ by the following relation for $n \geq 0$

$$
\begin{equation*}
F_{n+1}(k)=\sum_{j=0}^{k}\binom{n-j}{j} \quad\left(0 \leq k \leq\left\lfloor\frac{n+1}{2}\right\rfloor\right) . \tag{13}
\end{equation*}
$$

Theorem 10. Let $f_{n}(k)$ counts the number of ways to tile an n-board with at most k dominoes. Then

$$
\begin{equation*}
f_{n}(k)=\sum_{j=0}^{k}\binom{n-j}{j} \quad\left(0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\right) . \tag{14}
\end{equation*}
$$

Proof. It follows from Lemma 1, by summing over j.
Note that, if we take $k=\left\lfloor\frac{n}{2}\right\rfloor$, then the $f_{n}(k)$ is reduced to the Fibonacci number f_{n}.
Theorem 11. For $n \geq 0$, we have

$$
\begin{equation*}
f_{n}(k)=f_{n-1}(k)+f_{n-2}(k-1), \tag{15}
\end{equation*}
$$

with $f_{n}(0)=f_{0}(k)=1$.

Proof. An n-tilings with at most k dominoes either ends with a square or a domino. If it ends with a square, there are $f_{n-1}(k)$ ways to tile the first $n-1$ cells with at most k dominoes and if it ends with a domino, there are $f_{n-2}(k-1)$ ways to tile the first $n-2$ cells with at most $k-1$ dominoes.

The following theorem gives a combinatorial interpretation for incomplete Fibonacci numbers.

Theorem 12. For $n, k \geq 0$ with $0 \leq k \leq\lfloor n / 2\rfloor$, we have $F_{n+1}(k)=f_{n}(k)$. That is, $F_{n+1}(k)$ counts the number of ways to tile an n-board with at most k dominoes.

From relations (13) and (15), we obtain the following non-homogenous second order recurrence relation as stated by Filipponi [6].

For $n \geq 0$, we have

$$
\begin{equation*}
f_{n}(k)=f_{n-1}(k)+f_{n-2}(k)-\binom{n-k}{k} . \tag{16}
\end{equation*}
$$

Using the approach of Benjamin et al., we recover Filipponi's formula [6].
Theorem 13. For $n \geq 0$, we have

$$
\begin{equation*}
f_{n+2 h}(k+h)=\sum_{j=0}^{h}\binom{h}{j} f_{n+j}(k+j) \quad\left(0 \leq k \leq \frac{n-h}{2}\right) . \tag{17}
\end{equation*}
$$

Proof. The left hand side counts the number of ways to tile an $(n+2 h)$-board with at most $k+h$ dominoes. Now, we show that the right hand side counts the same tilings by conditioning on the number of dominoes that appear among the first h tiles. There are $\binom{h}{j}$ ways to select j positions for the dominoes among the first h tiles and $f_{n+h-j}(k+h-j)$ ways to tile remaining $n+h-j$ cells with at most $k+h-j$ dominoes.

Using (10) and (14), we give a relation between Fibonacci numbers, incomplete Fibonacci numbers and hyperfibonacci numbers.

Corollary 14. For integers $n, r \geq 0$, we have

$$
\begin{equation*}
f_{n+2 r}=f_{n}^{(r)}+f_{n+2 r}(r-1) . \tag{18}
\end{equation*}
$$

This states that, for given nonnegative integers n and r, every Fibonacci number can be written as a combination of an incomplete Fibonacci number and an hyperfibonacci number.

5 Acknowledgments

The authors thank the anonymous referee for the throughout reading of the manuscript and valuable comments.

References

[1] H. Belbachir and A. Belkhir. Identities related to generalized Fibonacci numbers via tiling approach, submitted.
[2] H. Belbachir and A. Belkhir. Tiling approach to obtain identities for generalized Fibonacci and Lucas numbers, Ann. Math. Inform., 41 (2013), 13-17.
[3] A. T. Benjamin, J. J. Quinn, and F. E. Su. Phased tilings and generalized Fibonacci identities. Fibonacci Quart. 38 (2000), 282-288.
[4] A. T. Benjamin and J. J. Quinn. Proofs That Really Count: The Art of Combinatorial Proof, Mathematical Association of America, 2003.
[5] A. Dil and I. Mező. A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput. 206 (2008), 942-951.
[6] P. Filipponi. Incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo 45 (1996) 37-56.

2000 Mathematics Subject Classification: Primary 11B39; Secondary 05B45; 05A19; 11B37. Keywords: Fibonacci number, hyperfibonacci number, tiling, bijective proofs, incomplete Fibonacci number.
(Concerned with sequences $\underline{A 000045}, \underline{A 000071}$, and $\underline{\text { A136431.) }}$

Received October 2 2013; revised version received January 22 2014. Published in Journal of Integer Sequences, February 162014.

Return to Journal of Integer Sequences home page.

