Some Identities for Fibonacci and Incomplete Fibonacci p-Numbers via the Symmetric Matrix Method

M. Cetin Firengiz
Department of Mathematics
Faculty of Education
University of Baskent
Baglica, Ankara
Turkey
mcetin@baskent.edu.tr
Dursun Tasci and Naim Tuglu
Department of Mathematics
University of Gazi
Teknikokullar, 06500, Ankara
Turkey
dtasci@gazi.edu.tr
naimtuglu@gazi.edu.tr

Abstract

We obtain some new formulas for the Fibonacci and Lucas p-numbers, by using the symmetric infinite matrix method. We also give some results for the Fibonacci and Lucas p-numbers by means of the binomial inverse pairing.

1 Introduction

Dil and Mező [3] defined the symmetric infinite matrix method. For sequences $\left(a_{n}\right)$ and (a^{n}), the recursive formula

$$
\begin{align*}
& a_{n}^{0}=a_{n}, \quad a_{0}^{n}=a^{n} \quad(n \geq 0) \\
& a_{n}^{k}=a_{n-1}^{k}+a_{n}^{k-1} \quad(n \geq 1, k \geq 1) \tag{1}
\end{align*}
$$

gives the associated symmetric infinite matrix [3]:

$$
\left(\begin{array}{cccccccc}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & & a_{n}^{k-1} & \cdot & & \\
\cdot & \downarrow & \cdot & \cdot \\
\cdot & \cdot & a_{n-1}^{k} & \rightarrow & a_{n}^{k} & \cdot & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right)
$$

Proposition 1. [3] If the relation (1) holds, the entry a_{n}^{k} of the corresponding symmetric infinite matrix is

$$
\begin{equation*}
a_{n}^{k}=\sum_{i=1}^{k}\binom{n+k-i-1}{n-1} a_{0}^{i}+\sum_{j=1}^{n}\binom{k+n-j-1}{k-1} a_{j}^{0} . \tag{2}
\end{equation*}
$$

For two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$, the well-known binomial inverse pair [9] is given by the relations

$$
\begin{gather*}
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} \tag{3}\\
a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} b_{k} . \tag{4}
\end{gather*}
$$

Stakhov and Rozin [6] defined the Fibonacci p-numbers $F_{p}(n)$ by the following recurrence relation for $n>p$

$$
\begin{equation*}
F_{p}(n)=F_{p}(n-1)+F_{p}(n-p-1) \tag{5}
\end{equation*}
$$

with initial conditions

$$
F_{p}(0)=0, F_{p}(n)=1 \quad(n=1,2, \ldots, p)
$$

and the Lucas p-numbers $L_{p}(n)$ by the following recurrence relation for $n>p$

$$
\begin{equation*}
L_{p}(n)=L_{p}(n-1)+L_{p}(n-p-1) \tag{6}
\end{equation*}
$$

with initial conditions

$$
L_{p}(0)=p+1, L_{p}(n)=1 \quad(n=1,2, \ldots, p) .
$$

Note that for the case $p=1$, the sequences of Fibonacci and Lucas p-numbers reduce to the well-known Fibonacci and Lucas sequences $\left\{F_{n}\right\},\left\{L_{n}\right\}$, respectively. See $[?, 1,5,9]$ or more details about the Fibonacci and Lucas p-numbers.

Tasci and Cetin-Firengiz [7] introduced the incomplete Fibonacci and Lucas p-numbers. The incomplete Fibonacci p-numbers $F_{p}^{k}(n)$ and the incomplete Lucas p-numbers $L_{p}^{k}(n)$ are defined by

$$
F_{p}^{k}(n)=\sum_{j=0}^{k}\binom{n-j p-1}{j} \quad\left(n=1,2, \ldots ; 0 \leq k \leq\left\lfloor\frac{n-1}{p+1}\right\rfloor\right)
$$

and

$$
L_{p}^{k}(n)=\sum_{j=0}^{k} \frac{n}{n-j p}\binom{n-j p}{j} \quad\left(n=1,2, \ldots ; 0 \leq k \leq\left\lfloor\frac{n}{p+1}\right\rfloor\right) .
$$

We note that $F_{1}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(n)=F_{n}, L_{1}^{\left\lfloor\frac{n}{2}\right\rfloor}(n)=L_{n}$ and $F_{1}^{k}(n)=F_{n}(k), L_{1}^{k}(n)=L_{n}(k)$, where $\left\{F_{n}(k)\right\}$ and $\left\{L_{n}(k)\right\}$ are the sequences of incomplete Fibonacci and Lucas numbers, respectively. The same authors [7] gave the following properties of the incomplete Fibonacci and Lucas p-numbers:

$$
\begin{equation*}
\sum_{j=0}^{h}\binom{h}{j} F_{p}^{k+j}(n+p(j-1))=F_{p}^{k+h}(n+(p+1) h-p) \tag{7}
\end{equation*}
$$

for $0 \leq k \leq \frac{n-p-h-1}{p+1}$,

$$
\begin{equation*}
\sum_{j=0}^{h}\binom{h}{j} L_{p}^{k+j}(n+p(j-1))=L_{p}^{k+h}(n+(p+1) h-p) \tag{8}
\end{equation*}
$$

for $0 \leq k \leq \frac{n-p-h}{p+1}$.
In this paper, we give the generalization of some results of [3]. Some properties for the Fibonacci and Lucas p-numbers are obtained via the symmetric method. The results of incomplete Fibonacci and Lucas p-numbers are given by using binomial inverse pair as used for the Euler-Seidel matrix [2, 3].

2 Applications of symmetric infinite matrix

2.1 Applications for the Fibonacci and Lucas p-numbers

Let us consider the initial sequences $a_{n}^{0}=F_{p}(n-1)$ and $a_{0}^{n}=F_{p}(n(p+1)-1), n \geq 1$. Thus the following infinite matrix is given for the special case

$$
\left(\begin{array}{ccccc}
0 & F_{p}(0) & F_{p}(1) & F_{p}(2) & \cdots \\
F_{p}(p) & F_{p}(p+1) & F_{p}(p+2) & F_{p}(p+3) & \cdots \\
F_{p}(2 p+1) & F_{p}(p p+2) & F_{p}(2 p+3) & F_{p}(2 p+4) & \cdots \\
F_{p}(3 p+2) & F_{p}(3 p+3) & F_{p}(3 p+4) & F_{p}(3 p+5) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Proposition 2. The Fibonacci p-numbers satisfy the relation

$$
\begin{equation*}
\sum_{i=1}^{n} F_{p}(i(p+1)-1)=F_{p}(n(p+1)) \tag{9}
\end{equation*}
$$

Proof. For $a_{n}^{0}=F_{p}(n-1)$ and $a_{0}^{n}=F_{p}(n(p+1)-1), n \geq 1$. We have $a_{1}^{1}=F_{p}(p+1), a_{1}^{2}=$ $F_{p}(2 p+2)$. Suppose that the equation holds for $n>1$. Now we show that the equation holds for $(n+1)$. Thus we get using (1) and (5)

$$
\begin{aligned}
a_{1}^{n+1} & =a_{0}^{n+1}+a_{1}^{n} \\
& =F_{p}((n+1)(p+1)-1)+F_{p}(n(p+1)) \\
& =F_{p}(n(p+1)+p)+F_{p}(n(p+1)) \\
& =F_{p}(n(p+1)+p+1) \\
& =F_{p}((n+1)(p+1)) .
\end{aligned}
$$

By considering (2), we have

$$
\begin{aligned}
a_{1}^{n} & =\sum_{i=1}^{n}\binom{n-i}{0} a_{0}^{i}+\sum_{j=1}^{1}\binom{n-j}{n-1} a_{j}^{0} \\
& =\sum_{i=1}^{n} F_{p}(i(p+1)-1)+a_{1}^{0} \\
& =\sum_{i=1}^{n} F_{p}(i(p+1)-1)+F_{p}(0) .
\end{aligned}
$$

Then, we can obtain

$$
F_{p}(n(p+1))=\sum_{i=1}^{n} F_{p}(i(p+1)-1) .
$$

Taking $p=1$ in (9), we get $F_{2 n}=\sum_{i=1}^{n} F_{2 i-1}$ in [4].
Stakhov and Rozin [6] gave the equation $F_{p}(1)+F_{p}(2)+\cdots+F_{p}(n)=F_{p}(n+p+1)-1$ for the Fibonacci p-numbers. The following proposition shows that the formula can be obtained via the symmetric method.

Proposition 3. The Fibonacci p-numbers are

$$
\begin{equation*}
\sum_{j=1}^{n} F_{p}(j-1)=F_{p}(p+n)-1 \tag{10}
\end{equation*}
$$

Proof. Let $a_{n}^{0}=F_{p}(n-1)$ and $a_{0}^{n}=F_{p}(n(p+1)-1), n \geq 1$. If we take $n=1$ and $n=2$, then $a_{1}^{1}=F_{p}(p+1), a_{2}^{1}=F_{p}(p+2)$. Suppose that the equation holds for $n>1$. We show that the equation holds for $(n+1)$. We have by (1) and (5)

$$
\begin{aligned}
a_{n+1}^{1} & =a_{n}^{1}+a_{n+1}^{0} \\
& =F_{p}(p+n)+F_{p}(n) \\
& =F_{p}(p+n+1) .
\end{aligned}
$$

Using (2), we can write

$$
\begin{aligned}
a_{n}^{1} & =\sum_{i=1}^{1}\binom{n-i}{n-1} a_{0}^{i}+\sum_{j=1}^{n}\binom{n-j}{0} a_{j}^{0} \\
& =a_{0}^{1}+\sum_{j=1}^{n} a_{j}^{0} \\
& =F_{p}(p)+\sum_{j=1}^{n} F_{p}(j-1),
\end{aligned}
$$

which completes the proof.
When $p=1$ in (10), we obtain $\sum_{i=1}^{n} F_{i}=F_{n+2}-1$ in [4].
In particular, let $a_{n}^{0}=L_{p}(n-1)$ and $a_{0}^{n}=L_{p}(n(p+1)-1), n \geq 1$. This case gives the following infinite matrix

$$
\left(\begin{array}{ccccc}
0 & L_{p}(0) & L_{p}(1) & L_{p}(2) & \cdots \\
L_{p}(p) & L_{p}(p+1) & L_{p}(p+2) & L_{p}(p+3) & \cdots \\
L_{p}(2 p+1) & L_{p}(2 p+2) & L_{p}(2 p+3) & L_{p}(2 p+4) & \cdots \\
L_{p}(3 p+2) & L_{p}(3 p+3) & L_{p}(3 p+4) & L_{p}(3 p+5) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Similar results for the Lucas p-numbers can be obtained likewise. Therefore we omit the proofs of Proposition 4 and 5

Proposition 4. The Lucas p-numbers $L_{p}(n)$ satisfy the following relation

$$
\begin{equation*}
\sum_{i=1}^{n} L_{p}(i(p+1)-1)=L_{p}(n(p+1))-(p+1) \tag{11}
\end{equation*}
$$

Proposition 5. We have

$$
\begin{equation*}
\sum_{j=1}^{n} L_{p}(j-1)=L_{p}(p+n)-1 \tag{12}
\end{equation*}
$$

If $p=1$ in (11) and (12), we get the well known identities $\sum_{i=1}^{n} L_{2 i-1}=L_{2 n}-2$ and $\sum_{i=1}^{n} L_{i}=L_{n+2}-3$.

2.2 Applications for the incomplete Fibonacci and Lucas p-numbers

In this subsection, we get similar formulas for (7) and (8) by using the binomial inverse pair.
Let $a_{n}^{0}=F_{p}^{k+n}(t+p(n-1))$. From (3) we have

$$
a_{0}^{n}=\sum_{j=0}^{n}\binom{n}{j} F_{p}^{k+j}(t+p(j-1)) .
$$

By using (7)

$$
a_{0}^{n}=F_{p}^{k+n}(t+(p+1) n-p)
$$

Therefore, the dual formula of (7) is obtained from (4)

$$
\begin{equation*}
F_{p}^{k+n}(t+p(n-1))=\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} F_{p}^{k+j}(t+(p+1) j-p) \tag{13}
\end{equation*}
$$

for $0 \leq k \leq \frac{t-p-n-1}{p+1}$. Similarly, let us take $a_{n}^{0}=L_{p}^{k+n}(t+p(n-1))$. Then (3) can be rewritten as

$$
a_{0}^{n}=\sum_{j=0}^{n}\binom{n}{j} L_{p}^{k+j}(t+p(j-1)) .
$$

By (8)

$$
a_{0}^{n}=L_{p}^{k+n}(t+(p+1) n-p) .
$$

Finally, using (4), we obtain the dual formula (8)

$$
\begin{equation*}
L_{p}^{k+n}(t+p(n-1))=\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} L_{p}^{k+j}(t+(p+1) j-p) \tag{14}
\end{equation*}
$$

for $0 \leq k \leq \frac{t-p-n}{p+1}$.
For $p=1$ in (13) and (14), we get the properties of incomplete Fibonacci and Lucas numbers in [3].

References

[1] M. Basu and B. Prasad, Coding theory on the m-extension of the Fibonacci p-numbers, Chaos Solitons Fractals 42 (2009), 2522-2530.
[2] D. Dumont, Matrices d'Euler-Seidel, Séminaire Lotharingien de Combinatoire, 1981, B05c. Available electronically at http://www.emis.de/journals/SLC/opapers/s05dumont.pdf.
[3] A. Dil and I. Mező, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput. 206 (2008), 942-951.
[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.
[5] E. G. Kocer, N. Tuglu, and A. Stakhov, On the m-extension of the Fibonacci and Lucas p-numbers, Chaos Solitons Fractals 40 (2009), 1890-1906.
[6] A. Stakhov and B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos Solitons Fractals 27 (2006), 1162-1177.
[7] D. Tasci and M. Cetin-Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Model. 52 (2010), 1763-1770.
[8] N. Tuglu, E. G. Kocer, and A. Stakhov, Bivariate Fibonacci like p-polynomials, Appl. Math. Comput. 217 (2011), 10239-10246.
[9] J. Riordan, Combinatorial Identities, Wiley, 1968.

2010 Mathematics Subject Classification: Primary 11B73; Secondary 11B83.
Keywords: Symmetric infinite matrix, Fibonacci p-number, Lucas p-number, incomplete Fibonacci p-number.
(Concerned with sequences A000032 and A000045.)

Received August 16 2013; revised versions received November 17 2013; December 172013. Published in Journal of Integer Sequences, January 62014.

Return to Journal of Integer Sequences home page.

