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Abstract

By considering the famous identity on the convolution of the central binomial co-
efficients

∑

i+j=n

(

2i

i

)(

2j

j

)

= 4n

in terms of pairs of ℓ-subsets of 2ℓ-sets, we obtain a new bijective proof and new
identities that can be seen as refinements.

1 Introduction

Thirty years ago, at the end of a captivating article on “natural interpretations” of spe-
cial identities dealing with natural numbers, Marta Sved confesses herself defeated by the
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following identity
∑

i+j=n

(

2i

i

)(

2j

j

)

= 4n , (1)

which she could not prove combinatorially, and “invites the reader to try his bit” [6]. After-
wards, in a “recount of the letters” received “offering solutions to the problem”, she tells us
that Paul Erdős “was quick to point out to [her] that Hungarian mathematicians tackled it
in the thirties: P. Veress proposing and G. Hajós solving it” [7] and that “all solutions are
based, with some variations, on the count of lattice paths, or equivalently (1, 0) sequences”.

In fact, it is well-known that
(

2ℓ
ℓ

)

counts the number of paths from (0, 0) to (ℓ, ℓ), where ℓ
is a positive integer and each step in the path is of the form (1, 0) or (0, 1) (see, for instance,
the book of Stanley [5, Exercise 1.3]). But there is another way of looking at this identity,
perhaps even more natural, where

(

2ℓ
ℓ

)

really (and naturally) stands for the number of ℓ-
subsets of a 2ℓ-set, and so where in the left-hand side of (1) we count the pairs (A,B) such
that A is an i-subset of {1, . . . , 2i} and B is a j-subset of {1, . . . , 2j}.

In the meantime, different types of proofs appeared [1, 2, 3]. Yet, after thirty years, we
believe we present here the first bijective proof of (1) not based on lattice paths. Instead, it
is based on properties of these pairs; and it is of algorithmic nature.

We represent such pairs graphically. For example, we have the representation

R =
1 O O O 5 1 X X X 5 6
6 7 O O 10 X X 9 X 11 12

for
(

{2, 3, 4, 8, 9}, {2, 3, 4, 7, 8, 10}
)

,

formed by a 5-subset of {1, . . . , 10} and a 6-subset of {1, . . . , 12}. In this example, there
are two “towers” with two symbols O, in the third and fourth column of the left-hand side,
and two “towers” with two symbols X, in the second and fourth column of the six remaining

columns. If there were no towers, all columns would be of one of four types

(

O
,

O
,

X
or

X

)

. But not all the 4n choices of n of such columns would occur, since in our case

they are ordered, meaning that any column with an O must precede any column with an X.
The idea behind our proof is to show that there are exactly as many ordered configurations

with towers as there are configurations without towers where at least one column marked
with an X precedes one column marked with an O. More precisely, we build a bijection ϕ
that maps an ordered configuration with k towers to a configuration without towers where
exactly k columns marked with one X precede a column with one O.

The number of configurations with p columns and i towers is 2p−2i
(

p
i

)(

p−i
i

)

. When p ∈ N0

and i is an integer with 0 ≤ 2i ≤ p, these numbers form the triangle read by rows in sequence
A051288 of [8], whereas the triangle T defined by

T (p, i) =

(

p

i

)(

p− i

i

)

,
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for p ∈ N0 and i ≤ p, is read by rows in A089627. The first eleven rows of T (for n =
0, 1, . . . , 10) are as follows:

1
1, 0
1, 2, 0
1, 6, 0, 0
1, 12, 6, 0, 0
1, 20, 30, 0, 0, 0
1, 30, 90, 20, 0, 0, 0
1, 42, 210, 140, 0, 0, 0, 0
1, 56, 420, 560, 70, 0, 0, 0, 0
1, 72, 756, 1680, 630, 0, 0, 0, 0, 0
1, 90, 1260, 4200, 3150, 252, 0, 0, 0, 0, 0

As a consequence of our bijection, we shall see in Corollary 8 that, for any fixed natural
number n, if we define sequence Ap as the convolution of sequence

(

T (p, i)
)

i∈N0

with
(

T (n−

p, i)
)

i∈N0

, the sum Sn of Ap for 0 ≤ p ≤ n is row n of A229032 of [8], given by Sn(k) =

4k
(

n+1
2k+1

)

. In other words, if 0 ≤ 2k ≤ n ,

n
∑

p=0

k
∑

i=0

(

p

i

)(

p− i

i

)(

n− p

k − i

)(

n− p− k + i

k − i

)

= 4k
(

n+ 1

2k + 1

)

. (2)

Note that if T (n, k) is defined as in A085841 of [8] and n is even then Sn(k) = T (n/2, k).
On the other hand, if T (n, k) is defined as in A105070 then Sn(k) = 2kT (n+ 1, k).

Example 1 (n = 10).

A0 = ( 1, 90, 1260, 4200, 3150, 252, 0, · · · )
A1 = ( 1, 72, 756, 1680, 630, 0, 0, · · · )
A2 = ( 1, 58, 532, 1400, 1190, 140, 0, · · · )
A3 = ( 1, 48, 462, 1400, 840, 0, 0, · · · )
A4 = ( 1, 42, 456, 1280, 780, 120, 0, · · · )
A5 = ( 1, 40, 460, 1200, 900, 0, 0, · · · )
A6 = ( 1, 42, 456, 1280, 780, 120, 0, · · · )
A7 = ( 1, 48, 462, 1400, 840, 0, 0, · · · )
A8 = ( 1, 58, 532, 1400, 1190, 140, 0, · · · )
A9 = ( 1, 72, 756, 1680, 630, 0, 0, · · · )
A10 = ( 1, 90, 1260, 4200, 3150, 252, 0, · · · )
S10 = (11, 660, 7392, 21120, 14080, 1024, 0, · · · )

2 The main theorem

Let [0] = ∅, and [n] = {1, 2, . . . , n} for a positive integer n. For every pair (A,B) such that
A is an i-subset of [2i], B is a j-subset of [2j], and i + j = n, represent each element of A
by a naught (O) in a 2 × i rectangle of cells numbered from left to right and from top to
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bottom, and each element of B similarly by a cross (X) in a 2× j rectangle. Finally, join the
rectangles in a 2× n rectangle R. Note that we consider also the cases with i = 0 or j = 0,
where the respective symbol does not appear.

Definition 2. A 2×n rectangle, where exactly n of the 2n cells are marked with one of two
symbols, O and X, with the restriction that columns with both symbols do not exist, is called
a configuration (or n-configuration). The columns with no marked cells are empty columns

and the columns with two marked cells are towers. Both are called even columns and the
columns with exactly one marked cell are called odd. We say that a pair of consecutive
columns with cells marked X and O, respectively, is a descent. An ordered configuration C of

type (i, j) is the concatenation of an i-configuration with no cells marked with an X with a
j-configuration with no cells marked with an O, where i and j are nonnegative integers. The
i-configuration is the O-region of C and the j-configuration is the X-region. Finally, the set
of ordered n-configurations is denoted by On and the set of n-configurations without towers
is denoted by NT n.

Note that the ordered configurations are exactly the configurations that represent the
pairs (A,B) as defined above. By definition, the number of towers and the number of empty
columns in each of the two original subrectangles are equal. Since there are four types of
odd columns, |NT n| = 4n and (1) states that |On| = |NT n|.

In this article we define (recursively) a bijection ϕ : On → NT n that leaves the ordered
configurations without towers invariant. More precisely, we prove that if R is an ordered

configuration with k towers, then ϕ(R) is a configuration without towers with exactly k
descents.

The main idea behind the proof is simple: suppose that k = 1, so that we have only one
tower and one empty column or one empty column and one tower, in positions ℓ and m, say,
respectively (ℓ < m), necessarily both in the O-region or both in the X-region, and possibly
some odd columns between them, also necessarily with the symbol of the region. We want
to transform R into ϕ(R) where there is exactly one descent, in a way that will allow us to
retrieve R.

The columns with position p ∈ {ℓ, ℓ + 1, . . . ,m} form the coding region. We assume
that the cells outside this region will not be changed. Note that we must encode, first, the
symbol of the tower/region; second, whether the tower precedes the empty column or the
empty column precedes the tower; third, the values of ℓ and m; and last, the position, above
or below, of the marked cell in each odd column of the coding region. For the first two
requirements, in first analysis we follow the scheme below (see rules (a)–(c) of Definition 4)
for replacing the pair tower/empty column by the descent

ϕ :
O

O
7→

X O
;

O

O
7→

O

X
;

X

X
7→

X

O
;

X

X
7→

X O
. (3)

Then, in the coding region, after encoding, before the cross of the descent there should
only be crosses, and after the naught only naughts. But note that in the O-region there
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might also be naughts after the coding region, and that in the X-region there might also
be crosses before it. Hence, we must define two procedures, φO and φX, where the descent
will occupy the last cells of the coding region if the original cells are naughts, and the first
ones if they are crosses. This meets the third requirement. Finally, in both cases, we could
simply keep the positions of the odd cells in their columns in the coding region, except that
this might change our encoding of the descent. In this case we should reverse these positions
(see rule 1(f) and 1(g) of Definition 4).

It is easy to see that these rules, formalized below, are sufficient for encoding the cases
where the towers and the empty columns can be organized in consecutive pairs tower/empty
column or empty column/tower.

But we may have, for instance,
O O O

O O
. There is a beautiful solution for encod-

ing these configurations, where we first look only at the even columns and apply recursively
the previous procedure. Consider, for a k-configuration C, the 2k-configuration formed only
of odd columns D, where each column of C of form X

Y
is “expanded” in D so as to obtain

X
X

Y
Y
. Let us say that D is “compressed” in C. Then, C is a configuration without tow-

ers if and only if in D the even columns, if any, occur in consecutive pairs tower/empty
column or empty column/tower. This means that we may apply recursively the previous
procedure to any configuration R. First, consider only the even columns of R, forming S,
say. S is compressed in S ′. Suppose that now we may apply the previous procedure to S ′,
being its even columns already organized in consecutive pairs tower/empty column or empty
column/tower, and that, by doing it, we obtain T ′. Now, expand the columns of T ′ in T as
before and replace every odd column of R by the corresponding column of T . Finally, use
the former procedure throughout the new configuration, coding zone by coding zone. For
instance,

O O

O O
7→

O

O

by(3)
7→

X O
7→

X O

X O

O O O

O O
7→

X O O

X O

by(3)
7→

X O O O

X

We formalize all these concepts in the following definitions.

Definition 3. Given an n-configuration R with k towers, let R′ be the 2k-configuration
obtained from R by removing all the odd columns. For a 2k-configuration S without odd
columns, if we delete one of the two equal rows of S and then rearrange the remaining 2k
cells by placing, for every 1 ≤ i ≤ k, cell 2i under cell 2i − 1, we obtain a k-configuration
S↓ called the compression of S. The depth of R, d(R), is defined recursively by d(R) = 0
if R has no towers, and by d(R) = d

(

R′
↓

)

+ 1 otherwise. In the opposite direction, given
a k-configuration T , we form a string of 2k cells by reading the cells of T top-to-bottom,
left-to-right. Then we form a 2k-configuration, called the expansion of T and denoted T ↑,
by taking this string as its first and its second row.
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For example, for the 11-configuration R above, R′ =
1 O O 4 X X 3 4

O O X X
, R′

↓ =

1 O X 3
O 4 X 4

and
(

R′
↓

)′

↓
=

X
. On the other side,

X

O

↑

=
X O

X O
. Note

that all these three last operations, when applied to an ordered configuration, still give
an ordered configuration. Note also that we have d(R) = 1 exactly in the cases where, as
before, the towers and the empty columns can be organized in consecutive pairs tower/empty

column or empty column/tower. On the other hand, for example, d

(

O O O

O O

)

=

d

(

O

O

)

+ 1 = 2.

Definition 4. Let R be an n-configuration where the internal columns, all but the first and
the last columns, if they exist, are odd and marked with the same symbol, either O or X. Use
the following rules to define, in each column of φO(R) and φX(R), the position and symbol of
the marked cell, where we denote the ith-column of an n-configuration R by (R)i . Note that
if an internal column is marked with X we do not define φO(R), and if an internal column is
marked with O we do not define φX(R).

(a) Let φO(R) := R and φX(R) := R.

(b) Replace both (φO(R))1 and (φX(R))1 by
X

if the tower of R is
O

O
, or by

X
if the

tower of R is
X

X
.

(c) Replace both (φO(R))n and (φX(R))n by
O

if the last column of R is empty, or by

O
if the last column of R is a tower.

(d) For 1 < i < n, replace the O in (φO(R))i by an X in the same position.

(e) For 1 < i < n, replace the X in (φX(R))i by an O in the same position.

(f) If (φO(R))n−1 6= (φO(R))1, reverse the position of the marked cell in (φO(R))i (from
top to bottom and from bottom to top), for each i ∈ {1, . . . , n− 1}.

(g) If (φX(R))2 6= (φX(R))n, reverse the position of the marked cell in (φX(R))i (from top
to bottom and from bottom to top), for each i ∈ {2, . . . , n}.

It is important to note that if R is formed by a tower and an empty column, in either
order, then both φO(R) and φX(R) are ϕ(R) as defined in (3), namely

ϕ :
O

O
7→

X O
;

O

O
7→

O

X
;

X

X
7→

X

O
;

X

X
7→

X O
.
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Definition 5. Suppose that T is a configuration without towers. Remember that a pair of
consecutive (odd) columns marked with X and O, in this order, is a descent; the number of
descents is descT . Hence, T is ordered exactly when descT = 0. Let T ∗ be the (2 descT )-
configuration formed by the consecutive descents. For example,

O X X X O X X X

O X O O O

∗

=
X O X

O
.

Given a descent of T , the O-interval of the descent is the subrectangle that contains the
descent and all consecutive columns marked with X on the left-hand side, and the X-interval
of the descent is the subrectangle that contains the descent and all consecutive columns
marked with O on the right-hand side. In the former example, the O-interval of the first

descent is
X X X O

X
whereas the X-interval is

X O

O
. Note that if we apply φO,

for example, to a suitable configuration R and obtain T , then desc(T ) = 1, the (two) even
columns of R are encoded in T ∗ according to (3), and their position in R, as well as the odd
columns of R, follow from rules (d) and (f). In other words, we may invert φO and φX. For

example, φ−1
O

(

X X X O

X

)

=
O O X

O X
and φ−1

X

(

X O

O

)

=
X

X X
.

Theorem 6. For every natural number n there is a bijection ϕ = ϕn : On → Tn that maps

the ordered configurations with k towers, where 0 ≤ 2k ≤ n, to the configurations without

towers with exactly k descents.

Proof.

Definition of ϕ. Let R ∈ On be of type t = (i, j). If R has no towers (i.e., d(R) = 0), we
define ϕ(R) = R.

If d(R) ≥ 1, we first consider a configuration T defined as follows. If d(R) = 1, then
T = R. Otherwise, we consider ϕ(R′

↓), which, having no towers, has depth zero. Note that

d(R′
↓) < d(R) and, if S = (ϕ(R′

↓))
↑ and T is the configuration obtained from R by replacing

each even column by the corresponding even column of S, then d(T ) = d(S) = 1. Finally
ϕ(R) is obtained by applying φO to each segment tower-empty column or empty column-
tower of T , according to Definition 4, in the first i columns, and by applying φX likewise in
the last j columns. See Example 7.

Bijectivity of ϕ. Given a configuration U without towers, we show that there exists a
unique ordered configuration R such that U = ϕ(R) as defined above. The proof proceeds
by induction on desc(U). Note that if desc(U) = 0 then U is ordered (and without towers),
and so U = ϕ(U); on the other hand, if R has any tower than desc

(

ϕ(R)
)

6= 0, by the
previous definition.

Suppose that desc(U) ≥ 1 and let V be obtained from U∗ by using ϕ−1 (as defined
in (3)) in each descent. Consider Ũ = V↓ and note that desc Ũ < desc U , and so, by
induction, Ũ = ϕ(R̃) for a unique ordered configuration R̃ of type (ℓ,m). Now, note that if
U = ϕ(R) for some ordered configuration R then R′

↓ = R̃ and V = S as defined above, since
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ϕ(V ) = U∗. Thus we may recover T by considering the O-intervals of the first ℓ descents of
U and by replacing it by its image by φ−1

O
, and similarly by considering the X-intervals of

the remaining m descents and by replacing it by its image by φ−1
X
. Finally, R is obtained

from T by replacing the even columns by the corresponding even columns of R′.

Example 7. Let again R =
O O O X X X

O O X X X
. Then, as before, R′

↓ =

O X

O X
and so ϕ(R′

↓) =
O X

O O
and S =

O O X O

O O X O
. Now,

T =
O O O X X O

O O X X O
and

ϕ(R) =
X O X O O

X X O X O X
.

Let now U =
X X O X O X X X

O O O X X
. Then U∗ =

X O O

X

encodes V =
X O

X O
since Ũ =

X O
encodes

O

O
(note the double bars), which

contains no descents. Hence, we have

ϕ−1

(

X X O X O X X X

O O O X X

)

=

O O O O X X X

O O O O O X

The algorithm behind the proof has been implemented in Mathematica [4].

3 Consequences

As pointed out before, we obtain directly (1) from Theorem 6.

Corollary 8. For every non-negative integer number n,

∑

i+j=n
i,j≥0

(

2i

i

)(

2j

j

)

= 4n. � (1)

Corollary 9. For every integer numbers n and k, if 0 ≤ 2k < n then

n
∑

p=0

k
∑

i=0

(

p

i

)(

p− i

i

)(

n− p

k − i

)(

n− p− k + i

k − i

)

= 4k
(

n+ 1

2k + 1

)

(2)
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and for every integer i with 0 ≤ i ≤ k ,

n
∑

p=0

(

p

i

)(

p− i

i

)(

n− p

k − i

)(

n− p− k + i

k − i

)

=

(

2i

i

)(

2k − 2i

k − i

)(

n+ 1

2k + 1

)

. (4)

Proof. By considering all the possible positions of the i white towers and of the corresponding
i empty columns within the p columns of the white region, where 2i ≤ p ≤ n, and proceeding
similarly for the black region, we obtain that the number of ordered configurations with k
towers is

Tk(n) =
n
∑

p=0

k
∑

i=0

2p−2i

(

p

i

)(

p− i

i

)

2n−p−2(k−i)

(

n− p

k − i

)(

n− p− k + i

k − i

)

= 2n−2k

n
∑

p=0

k
∑

i=0

(

p

i, i, 2p− 2i

)(

n− p

k − i, k − i, n− p− 2k + 2i

)

.

On the other hand, the number of configurations without towers and with exactly k descents
is

2n
(

n+ 1

2k + 1

)

,

since we may mark in each column either the top cell or the bottom one, and since the
marked cells may be characterized by a subset of [n+ 1], either the set S ⊆ [n] of positions
of the first cell marked with X, the first cell marked with O on its right-hand side, and so
on, if the last column of the configuration is marked with X, or the set S ∪ {n + 1} if the
last column of the configuration is marked with O. This number equals Tk(n) by Theorem 6,
which proves combinatorially (2).

For proving (4), note that U = ϕ(R) if and only if U∗ = ϕ(R′), and that when R runs
through the set of ordered configurations with a given number i of O-towers (and k − i
X-towers) then R′

↓ runs through all
(

2i
i

)(

2k−2i
k−i

)

ordered configurations of type (i, k − i).

It is perhaps worth noting that Corollary 9 may be thought of as a refinement of Corol-
lary 8, in the precise sense that, since an n-configuration can have at most ⌊n/2⌋ towers,
∑

i+j=n

(

2i
i

)(

2j
j

)

=
∑⌊n/2⌋

k=0 Tk(n). In particular,
∑⌊n/2⌋

k=0

(

n+1
2k+1

)

= 2n. In fact, the expression

on the left-hand side counts the number of subsets of {1, 2, . . . , n + 1} of odd size, and, by
Pascal’s formula,

(

n+1
2k+1

)

=
(

n
2k+1

)

+
(

n
2k

)

.
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