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Abstract

Aharoni, Milner and Prikry introduced the “Prisoners and Guards” game as a two-
player game on an n× n checkerboard. At the beginning of the game, every square of
the board has a guard. At each stage in the game, for each prisoner, there must be at
least as many guards as prisoners on adjacent squares. The players take turns either
replacing a guard with a prisoner in their color or replacing one prisoner (of either
color) with a guard, then replacing two guards with prisoners in their color, subject to
the rule above. When neither player can adjust the board any further, the player with
more prisoners in their color wins. Howard, Ionascu, and Woolbright gave formulas for
the maximum number of prisoners on n × n boards. In this paper, we give formulas
for the number of prisoners in the maximum configurations of n × m boards, where
2 ≤ n < m, for n = 2, 3, and 5, upper and lower bounds that differ by less than 2 when
n = 4, and a lower bound for n = 6.

1 Introduction

Aharoni, Milner, and Prikry [1] introduced the “Prisoners and Guards” game as a two-player
game on an n × n checkerboard. At the beginning of the game, every square of the board
has a guard. At each stage in the game, for each prisoner, there must be at least as many
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guards as prisoners on adjacent squares. The players take turns either replacing a guard
with a prisoner in their color or replacing one prisoner (of either color) with a guard, then
replacing two guards with prisoners in their color, subject to the rule above. When neither
player can adjust the board any further, the player with more prisoners in their color wins.
Howard, Ionascu, and Woolbright [6] gave formulas for the maximum number of prisoners in
n× n boards. In this paper, we give formulas for the number of prisoners in the maximum
configurations of n × m boards, where 2 ≤ n < m, for n = 2, 3, and 5, upper and lower
bounds that differ by less than 2 when n = 4, and a lower bound for n = 6.

The guards in a valid board are related to a number of domination problems, including
the half domination set in the king’s graph [4], unfriendly partition [1], and global offensive
alliance [8]. See also [2, 5, 9] for related domination problems.

Following the notation used by Howard, Ionascu, and Woolbright [6], we let P (n,m)
represent the maximum number of prisoners that can appear on an n by m rectangular
board, subject to the rules that each square contains either a prisoner or a guard, and that
for every prisoner, there must be at least as many guards as prisoners on adjacent squares.
Here, squares are considered adjacent if they share an edge or a corner, so if one square is
immediately to the right, left, above, below or diagonal from the other square. For clarity,
in the figures we indicate prisoners with “P” and guards with blank squares.

2 Maximum 2× n Boards

Theorem 1. For every positive integer n such that n = 3 or n ≥ 5, the maximum number
of prisoners satisfies P (2, n) = n+ 1, while P (2, 2) = 2 and P (2, 4) = 4.

Proof. It is not difficult to see that P (2, 2) = 2. For P (2, 4), partition the board into two
2 by 2 subboards. Each subboard contains two corner squares. If there is a prisoner in one
of the corner squares, then there must be two guards in the 2 by 2 subboard to guard that
prisoner; otherwise, there must be guards in both corner squares. Thus, each 2 by 2 subboard
contains at most 2 prisoners, so P (2, 4) ≤ 4. We could, for instance, place prisoners in all
four corners to achieve P (2, 4) = 4.

Next, we show that P (2, n) ≤ n + 1 for all n ≥ 2. Suppose there is a column with two
prisoners. If it is an end-column, then each prisoner must have two guards; otherwise, each
prisoner must have three guards. In either case, the next column to the right cannot contain
two prisoners. If the next column to the right has exactly one prisoner, then there must
be another column to the right of that one with no prisoners. Thus, every time there is a
column with two prisoners, provided it is not the last (rightmost) column, we can place it
in a block with one or two columns to its right, as shown in Figure 1. Thus, except possibly
for the last column, we average at most 1 prisoner per column. The last column could have
2 prisoners. Thus, there are at most (n− 1) + 2 = n+ 1 prisoners total.

If n is odd, then we can alternate a column with two prisoners, followed by a column
with two guards, etc., in order to place n+ 1 prisoners in a 2 by n board. An arrangement
of 7 prisoners in a 2 by 6 board is shown in Figure 2. For any even value of n greater
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Figure 1: Three possible blocks that can be formed when there is a column of all prisoners.
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Figure 2: An arrangement of 7 prisoners in a 2 by 6 board.

than 6, we can add alternating columns with two prisoners, then two guards, etc., to this
configuration.

3 Maximum 3× n Boards

Theorem 2. For every positive integer n ≥ 3, the maximum number of prisoners satisfies
P (3, n) = 2n.

Proof. We might place prisoners in every square in the first and third rows, so P (3, n) ≥ 2n.
Suppose there is an arrangement with more than 2n prisoners in a 3 by n board. Then,
by the pigeonhole principle, some column must contain three prisoners. The prisoner at the
top of that column must have two guards if it is an end-column or three guards if it is not
an end-column. If it is not an end-column, two of the guards might be in the column to
the left, but at least one must be in the column to the right. Thus, the next column to the
right must have a guard in either the top or the middle row. Similarly, in order to guard
the prisoner at the bottom of the three-prisoner column, the next column to the right must
have a guard in either the middle or last row. Thus, the only way that the next column to
the right might have 2 or more prisoners is if it has a prisoner in the first and last row and a
guard in the middle. But then there must be another column to the right of that containing
three guards (see Figure 3). If there is a column with three prisoners and it is not the last
(rightmost) column, then we form a block with that column and either one column to the
right (if the column to the right has at most one prisoner) or with two columns to the right
(in the situation shown in Figure 3). Thus, each block has an average of at most 2 prisoners
per column, and each column not used in a block, except possibly the last column, has at
most 2 prisoners.

Now, the last (rightmost) column might contain three prisoners, but then the column
before it, to the left, must contain three guards. If that all-guard column is not already used
in some block, then we form a block with the last two columns. If the all-guard column
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Figure 3: A block of three columns that averages at most 2 prisoners per column
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Figure 4: The only possible blocks that end in a column with all guards.

is used in a block, then it is one of the two blocks shown in Figure 4. We include the last
column (with 3 prisoners) in this block, and the block still has on average at most 2 prisoners
per column. Since we have, on average, at most 2 prisoners per column, there cannot be
more than 2n prisoners total.

4 Maximum 4× n Boards

Theorem 3. For every positive integer n ≥ 4, the maximum number of prisoners satisfies
P (4, n) ≤

⌊

9
4
n+ 5

4

⌋

.

Proof. If every column has 2 or fewer prisoners, then P (4, n) ≤ 2n ≤
9
4
n + 5

4
. Thus, we are

only concerned about columns with 3 or more prisoners. Up to symmetry, there are only 3
possible columns with 3 or more prisoners, as shown in Figure 5.

First, we will show that if any of the columns A, B, or C appears anywhere except in
the very last (rightmost) column, then it can be combined in a block with other columns to
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Figure 5: Up to symmetry, these are the only possible columns with 3 or more prisoners.
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Figure 6: Arrangements showing the lower bounds for P (4, 4) = 9, P (4, 5) = 12, P (4, 6) =
14, P (4, 7) = 16, P (4, 8) = 19, and P (4, 9) = 21.

its right so that each block has an average of 7
3
, 9

4
, or 2 prisoners per column. Next, we will

show that at most two blocks that average 7
3
prisoners per column can appear consecutively,

and that each block or pair of consecutive blocks that averages 7
3
prisoners per column can

be combined with adjacent columns or blocks of columns to form new blocks that average
at most 9

4
prisoners per column.

First, consider a column of type A. If it is the first column on the left, then the very
next column must contain all guards, and we can form a block from these two columns. If
there is a column of type A that is not the first or last column, then the topmost prisoner
requires 3 guards, at least one of which must be in the next column to the right. Similarly,
the prisoner in the bottom row requires at least 3 guards, at least one of which must be in
the next column to the right. So the next column to the right contains at least two guards,
one in the first or second row and one in the third or fourth row. Up to symmetry, there are
6 possibilities for the column to the right of column A. In case AI, when the column to the
right contains 4 guards, we form a block from these two columns with an average of 2 < 7

3

prisoners per column. Each other case is shown in Figure 7, along with the third column
with the maximum possible number of prisoners in it. In each of these cases, we form a
block from column A and the two columns to its right, as shown in Figure 7. Each block
has three columns and at most 7 prisoners.

Now consider a column of type B. If it is the first column, then the second column can
have at most one prisoner (in the bottom row), and we can form a block from these two
columns with an average of 2 < 7

3
prisoners per column. In general, if the next column to

the right has at most one prisoner, and at least 3 guards, then we can form a block with
the column of type B and the one to the right. If the column of type B is not the first or
last column, then the prisoner in the top row requires 3 guards, at least one of whom must
be in the first or second row of the next column to the right. There are seven possibilities
for the next column to the right with at most 2 guards. Each of them is shown in Figure 8
along with the third column containing the maximum possible number of prisoners. In each
of these cases, we form a block of three columns, including the column of type B and two to
its right, with at most 7 prisoners.
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Figure 7: Possibilities for columns to the right of column A. A circled P means that there
can be one prisoner in any location within the circled region.
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Figure 8: Possibilities for columns to the right of column B. A circled P means that there
can be one prisoner in any location within the circled region.
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Figure 9: Possibilities for columns to the right of column C. A circled P means that there
can be one prisoner in any location within the circled region.
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Figure 10: A block of 4 columns in Case CII.

Finally, we consider a column of type C. If it is the first column, then the next column
to the right will have at most one prisoner, in the first or second row. We can form a block
from these two columns with on average 2 < 7

3
prisoners per column. Assuming column C

is neither the first nor the last column, the prisoner in the bottom row requires 3 guards, at
least one of whom must be in the next column to the right, in the third or fourth row. If the
next column to the right has at most one prisoner, we again form a block with the column
of type C and the column to its right, so that the block has at most 2 prisoners per column.
There are seven possibilities for the next column to the right with at least two prisoners,
as shown in Figure 9. Each is shown with the maximum possible number of prisoners in
the next column. In each case except CII, we form a block of three columns with at most
7 prisoners. In case CII, it is possible that the column of type C and the two columns to
its right have 8 prisoners, but then the configuration shown in Figure 10 is forced, and the
next column has at most one prisoner. In that case, we form a block of four columns with
an average of at most 9

4
prisoners per column.

Next, we notice that the only blocks that have more than 9
4
prisoners per column on
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average are AII, AIII, AVI, BI, BIII, BV, CI, CIV, CV, and CVI. For convenience, we will
refer to these blocks as 7

3
-blocks, since they each average 7

3
prisoners per column. Checking

each of these blocks, we can confirm that none of them could start in the first (leftmost)
column of the board. In fact, the only one of the blocks shown above (AI through AVI, BI
through BVII, and CI through CVII) which could start in the first column of the board is
AI. Blocks AVI and CVI, if they appear, must be preceded (to the left) with a column of
4 guards, each of the blocks AII, AIII, BIII, BV, CI, CIV, and CV must be preceded by a
column with at least 3 guards, and BI must be preceded by a column with at least 2 guards.
None of them end in a column with 4 guards, and only AVI and CVI end in a column with
3 guards. Furthermore, we can check on a case-by-case basis that, even though BI can be
preceded by a column with only 2 guards, it cannot be preceded by any of the other 7

3
-blocks

except for AVI and CVI. From these observations, it follows that at most 2 of these 7
3
-blocks

could appear consecutively as we move across the board from left to right, and if 2 of them
do appear consecutively, the first (rightmost) of the two must be either AVI or CVI.

Suppose that two of the 7
3
-blocks appear consecutively. Since the first (on the left) must

be AVI or CVI, the column immediately before the 2 consecutive blocks must contain 4
guards and not be part of any 7

3
-block. Considering the two consecutive 7

3
-blocks and the

column of 4 guards, we have 7 columns with a total of 14 prisoners, which averages 2 < 9
4

prisoners per column. We can include the column of 4 guards along with the two consecutive
7
3
-blocks in a new “megablock” unless the column with 4 guards is already part of a block.

It cannot be part of a 7
3
-block or a 9

4
-block (CII), but the column with 4 guards might be

part of a block that averages 2 prisoners per column (such as A1, AIV, AV, BVI, BVII, or
CVII).

So if we include both the two consecutive 7
3
-blocks and the 2-block immediately before

it in a new “megablock”, we have a total of at least 8 columns with at most 2 prisoners per
column plus 2 additional prisoners. Since 2t+2

t
≤

9
4
for t ≥ 8, the “megablock” averages at

most 9
4
prisoners per column. Unless the 2-block is AI, in fact, this new megablock has at

most 20
9
prisoners per column on average. Notice that this “megablock” ends with one of the

7
3
-blocks, so it has at least one prisoner in its last column. Hence, we maintain the property

that a block which ends with a column of 4 guards must average at most 2 prisoners per
column.

On the other hand, if a 7
3
-block appears by itself, then it is preceded by a column Ci

with at most 2 prisoners. If Ci is not part of any block or is part of a block that averages 2
prisoners per column, then we can combine Ci or the 2-block containing Ci with the 7

3
-block

to form a block with at most 9
4
prisoners per column. Notice that Ci cannot be part of a

“megablock” since the “megablocks” end with a 7
3
-block. We may assume that Ci is the last

column of CII (or any number of consecutive copies of CII) as shown in Figure 10. But then
the column proceeding CII (or the first of the consecutive copies of CII), let’s call it Cj, has
at most one prisoner. If Cj is not part of some other block, then we combine Cj with CII
(or all of the consecutive copies of CII) and the 7

3
block to form a megablock with 8 columns

and 17 prisoners. The average number of prisoners per column in the megablock is 17
8
< 9

4
.

If Cj is part of a block that averages 2 prisoners per column, then we combine that 2-block,
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Figure 11: The basis for the construction in Theorem 4.

the CII (or all of the consecutive copies of CII), and the 7
3
block to form a megablock with

on average at most 20
9
< 9

4
prisoners per column. If Cj is part of a

7
3
block, then it must be

either AVI or CVI. But in either of those cases, AVI or CVI must be preceded by a column
Ck with 4 guards, which is either not part of a block or part of a block with an average
of 2 prisoners per column. In either case, we combine Ck or the block containing Ck, the
AVI or CVI block, the CII block (or consecutive copies of CII), and the 7

3
-block to form a

“megablock” with at most 27
12

= 9
4
prisoners per column.

Thus, after forming blocks and “megablocks” if necessary, each block has at most 9
4

prisoners per column, and each column that is not in a block, other than possibly the
last column, has at most 2 prisoners. The last column could possibly have 4 prisoners,
but then the column prior to it must have 4 guards. Thus, either the last column has at
most 3 prisoners, or the next-to-last column has 4 guards and is part of a 2-block with at
least 2 columns, or the next-to-last column has 4 guards and is not part of any block. It
follows that the number of prisoners is at most the maximum of 9

4
(n − 1) + 3 = 9

4
n + 3

4
or

9
4
(n− 3) + 2(2) + 4 = 9

4
n+ 5

4
or 9

4
(n− 2) + 4 = 9

4
n−

1
2
prisoners total.

Theorem 4. For every positive integer n ≥ 4, the maximum number of prisoners satisfies
P (4, n) ≥ 9

4
n−

1
2
.

Proof. We show a recursive construction. The constructions for n = 4, 5, 6, and 7 are shown
in Figure 11. For a construction for 4t+ n, with t ≥ 1, insert t copies of the 4-column block
for CII shown in Figure 10 after the second column. Specifically, the construction uses 9

4
n

prisoners when n ∼= 0 mod 4, it uses 9
4
n −

1
4
prisoners when n ∼= 1 mod 4, it uses 9

4
n −

1
2

prisoners when n ∼= 2 mod 4, and it uses 9
4
n+ 1

4
prisoners when n ∼= 3 mod 4.
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Figure 12: The four possible columns with more than three prisoners.

5 Maximum 5× n Boards

Theorem 5. For every positive integer n ≥ 5, the maximum number of prisoners satisfies
P (5, n) = 3n.

Proof. Since prisoners can be placed in the first, third, and fifth row of a 5 by n rectangle,
P (5, n) ≥ 3n. To show that P (5, n) ≤ 3n, we will show that the average number of prisoners
per column in any legal arrangement of prisoners and guards is at most 3.

If a column has more than three prisoners, then, up to symmetry, it looks like one of the
four columns shown in Figure 12. It is easy to check that if column A, B, or C is the last
(rightmost) column, then the column before it has at most one prisoner. If column D is the
last (rightmost) column, then the column before it cannot contain any prisoners. We will
proceed by showing that if there is a column of type A, B, C, or D in a legal arrangement of
prisoners and it is not the last (rightmost) column, then it can be placed in a block with one
or two columns to its right that have fewer prisoners so that the average number of prisoners
per column in each block is at most three. Then we will consider the case when column A,
B, C, or D is the last (rightmost) column separately.

First, consider column A. If the next column to the right has two or fewer prisoners, then
we form a block of two columns, and those two columns together average 6/2 = 3 prisoners
per column. If column A is the first (leftmost) column, then the top four positions of the
next column must all contain guards, and we can always form a block of 2 columns. So we
consider the case when A is not the first or last column and the next column has at least
3 prisoners. The topmost prisoner in column A will require at least three guards, at least
one of which must be in the first or second row of the next column to the right. The third
prisoner down in column A will require at least four guards, at least one of which must be
in the second, third, or fourth row of the next column to the right. Thus, there are seven
possibilities for the next column to the right of column A that will contain three or more
prisoners (see Figure 13). Notice that in each case, there must be at least one more column
to the right. For AI, the next column to the right must contain all guards and no prisoners.
For AII, AIII, AIV, AV, and AVII, we can check that the next column to the right can have
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Figure 13: Possible columns right of column A with 3 or more prisoners. In each of these
cases, we form a block of 3 columns with the 2 columns shown and one to the right.

at most one prisoner. For AVI, the next column to the right can have at most two prisoners.
In each of the cases AI, AII, AIII, AIV, AV, and AVII, we have at most 8 prisoners in 3
columns, for an average of 8/3 < 3 prisoners per column. In case AVI, we have at most 9
prisoners in 3 columns, but in order to have all 9 prisoners, the last column must contain
two prisoners.

Next we consider column B. If the next column to the right contains two or fewer pris-
oners, then we can form a block with those two columns and the block will average at most
6/2 = 3 prisoners per column. If column B is the leftmost (first) column, then there is at
most one prisoner in the next column to the right. Thus, we consider the case when column
B is not the first (leftmost) or last (rightmost) column, and the next column to the right has
at least 3 prisoners. The topmost prisoner in column B must have at least 3 guards, at least
one of whom must be in the next column to the right. Thus, there are 9 possibilities for the
next column to the right of column B with at least 3 prisoners, as shown in Figure 14.

It is straightforward to check that in each of these nine cases, there must be another
column to the right. We will form a block of 3 columns. In cases BI and BII, the next
column to the right cannot contain any prisoners. In cases BIV, BV, BVI, BVII, and BIX,
the next column to the right can have at most one prisoner, and in cases BIII and BVIII,
the next column to the right can have at most two prisoners. In every case except BIII and
BVIII, if we group these three columns together, we have at most 8 prisoners in 3 rows,
for an average of 8/3 < 3 prisoners per column. In cases BIII and BVIII, we might have 9
prisoners in 3 columns, but only if the third column has at least two prisoners in it.

We consider case C. If the next column to the right has two or fewer prisoners, then we
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Figure 14: Possible columns right of column B with 3 or more prisoners. Again we form
blocks of 3 columns including the two columns shown and one to the right.
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Figure 15: Possible columns right of column C with 3 or more prisoners.

can group those two columns together for an average of at most 3 prisoners per column. If
column C is the first (leftmost) column, then the next column to the right can have at most
1 prisoner. We will assume that column C is neither the first (leftmost) or last (rightmost)
column and that the next column to the right has at least 3 prisoners. Since the first prisoner
in column C requires at least 3 guards, at least one of which must lie in the column to the
right, one of the top two positions in the next column to the right must contain a guard.
Similarly, one of the lower two positions must contain a guard. Up to symmetry, there are
only three possibilities for the next column to the right that will have at least three prisoners.
See Figure 15. As before, we can easily check that in each of these three cases, there must
be at least one more column to the right, and so we will form a block of 3 columns. In
cases CII and CIII, the next column to the right can have at most one prisoner, so we may
form a block of three columns with at most 8 prisoners and an average of 8/3 < 3 prisoners
per column. In Case CI, the next column may have at most two prisoners (in the top and
bottom positions). When we form a block of 3 columns, we may have at most 9 prisoners in
3 columns (exactly 3 prisoners per column). However, notice that we do not achieve exactly
3 prisoners per column unless the third column has 2 prisoners.

Finally, we consider case D. If the next column to the right has only one prisoner, then
we may form a block of two columns with an average of 3 prisoners per column. If D is
the first (leftmost) column, then the next column to the right has no prisoners. We may
assume that D is neither the first (leftmost) nor the last (rightmost) column and that the
next column to the right has at least two prisoners. In the next column to the right, one of
the top two positions must be a guard, at least one of the middle three must be a guard, and
at least one of the lower two must be a guard, to guard the top, middle, and lowest prisoners
in column D, respectively. Up to symmetry, there are seven possibilities for the next column
to the right with at least two prisoners. See Figure 16.

Once again, we can check that in each of these seven cases, there must be at least one
more column to the right, and we will form a block of 3 columns. In case DII, the next column
to the right cannot have any prisoners, and the block of three columns has 8 prisoners in
3 columns. In cases DI, DIV, DV, and DVI, the next column to the right has at most one
more prisoner. In cases DIV, DV, and DVI, we would still have only 8 prisoners in the 3
columns. In case DI, we might have 9 prisoners in 3 columns, but only if the third column
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Figure 16: Possible columns right of column D with 2 or more prisoners.
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Figure 17: Case when the last block is C and preceded by a DI block.

has a prisoner in the middle. In cases DIII and DVII, the next column to the right has at
most 2 prisoners. The block of 3 columns might have as many as 9 prisoners, but only if the
third column has exactly 2.

Thus, any column of the form A, B, C, or D, which is not the last (rightmost) column, is
now placed in a block with other columns to the right so that each block averages at most 3
prisoners per column. Finally, we consider the case when the last (right-most) column is A,
B, C, or D. First suppose the last column is A, B, or C. It is straightforward to check that
the column immediately before it has at most one prisoner. If this column is not already
included in a block with some preceding columns, then it can be placed in a block with the
last column, and the two columns together average at most 5/2 < 3 prisoners per column. If
the next-to-last column is already in a block with some earlier columns so that the block has
at most 8 prisoners in 3 columns, then the last column can be added to the block to have
12 prisoners in 4 columns, or 12/4 = 3 prisoners per column. If the next-to-last column is
already in a block so that the block has 5 prisoners in 2 columns, then the last column can
be added to the block to have 9 prisoners in 3 columns, still at most 3 prisoners per column.
Notice that if the next-to-last column is in a block of 2 columns consisting of a D column
followed by a column with exactly one prisoner, and then the last column is A, B, or C, then
the one prisoner in the next-to-last column has more prisoners than guards as neighbors,
which is a contradiction. Thus, if the next-to-last column is in a block of 2 columns, that
block must have at most 5 prisoners.

The only remaining case occurs when the next-to-last column is part of a DI block,
as shown in Figure 17. In this case, the last column had to be type C. Notice that this
configuration has 13 prisoners in only 4 columns, but it is forced to have an empty column
before it. If the empty column is not part of some block already, then it can be added to the
block and the block will have less than 3 prisoners per column. The only three-column blocks
that end in an empty column (AI, BI, BII, or DII followed by an empty column or some other
configuration with one or more prisoners missing) average at most 8/3 prisoners per column,
and the only two-column blocks that end in an empty column (such as D followed by an
empty column) average at most 5/2 prisoners per column. Thus, in this case also, when the
DI block and the final column are added to any of these blocks, the resulting configuration
averages at most 3 prisoners per column (either 21 prisoners in 7 columns or 18 prisoners in
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Figure 18: The construction for P (6, n) ≥
⌊
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⌋

.

6 columns).
Finally, we must consider the case when the final column is of type D. It must have an

empty column immediately before it. Since the arrangement of prisoners and guards can
be reflected, or the argument may be repeated left-to-right instead of right-to-left, we may
assume without loss of generality that the first column is also of type D. We will consider
the first two columns and the last column together as a single “book-end” block, consisting
of two columns of type D and one empty column. This block has 10 prisoners in 3 columns,
slightly more than an average of 3 prisoners per column. However, since n ≥ 5, there must be
other columns in between which are not in the “book-end” block. The next-to-last column
must be empty. If it is not already part of a block, it can be included in the “book-end” block
so that the “book-end” block now averages 10/4 < 3 prisoners per column. Otherwise, the
next-to-last column is part of a block with at most 8 prisoners in 3 columns or 5 prisoners in
2 columns. In either case, this block can be combined with the “book-end” block to produce
a new block with at most 18 prisoners in 6 columns or 15 prisoners in 5 columns. In either
case, we have at most 3 prisoners per column.

Thus, we cannot place more than 3n prisoners total. We can place exactly 3n prisoners
by putting prisoners in the first, third, and fifth rows. Notice that there may be other
configurations that achieve exactly 3n prisoners.

6 Maximum n×m Boards with m > n ≥ 6

Theorem 6. For every positive integer n greater than or equal to 6, the maximum number
of prisoners satisfies P (6, n) ≥

⌊

11
3
n
⌋

.

Proof. If n is a multiple of 3, repeat the three columns shown in Figure 18. If n ∼= 1 mod 3,
then add the column shown in Figure 19, and if n ∼= 2 mod 3, then add the two columns
shown in Figure 20.

16



P

P

P

Figure 19: For n ≡ 1 (mod 3), add this column to the construction for P (6, n) ≥
⌊

11
3
n
⌋

.

P

P

P

P

P

P

P

Figure 20: For n ≡ 2 (mod 3), add these columns to the construction for P (6, n) ≥
⌊
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Notice that for every odd integer n ≥ 3, an n ×m board might have prisoners in every
square of each odd-numbered row and guards in every square of each even-numbered row,
for a total of (n+1)m

2
prisoners.

Observation 7. For every odd integer n ≥ 3 and every integer m ≥ n, the maximum number
of prisoners in an n×m board P (n,m) is at least (n+1)m

2
.

Ionascu, Pritikin, and Wright [7] gave constructions for the maximum size of a half-
dependent set in an n×n king’s graph. A half-dependent set is a valid set of prisoners, since
for each vertex (square) in the set, at most half of the neighbors are in the set.

Theorem 8. [7] The maximum size of a half-dependent set in the n×n kings graph satisfies
the following lower bounds, for some constant C:

• h(K[n, n]) ≥ 3
5
n2 −

n
30

− C, if n ≡ 0 (mod 5)

• h(K[n, n)) ≥ 3
5
n2 −

4n
30

− C, if n ≡ 1 (mod 5)

• h(K[n, n]) ≥ 3
5
n2 −

2n
30

− C, if n ≡ 2 (mod 5)

• h(K[n, n]) ≥ 3
5
n2 + 3

5
, if n ≡ 3 (mod 5)

• h(K[n, n]) ≥ 3
5
n2 −

3n
30

− C, if n ≡ 4 (mod 5)

In light of this result, it is reasonable to conjecture that P (n,m) is on the order of 3
5
nm

for m ≥ n ≥ 3 and n odd.

7 Open questions

Although we have determined the maximum number of prisoners in a valid n × m board
for 1 ≤ n < m and n = 1, 2, 3, 5, provided bounds that differ by less than 2 for n = 4, and
constructively shown one configuration which achieves that maximum, we have not shown
that each configuration is the unique maximum configuration for that board. It would be
of interest, especially in playing the prisoners and guards game on rectangular boards, to
know if there are other maximum configurations. As in the case with the square boards, it
is also possible that there may be maximal configurations, in which neither player can make
a move, which are not maximum.
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