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Abstract

Let z be a real quadratic irrational. We compare the asymptotic behavior of
Dedekind sums S(pk, qk) belonging to convergents pk/qk of the regular continued frac-
tion expansion of z with that of Dedekind sums S(sj/tj) belonging to convergents sj/tj
of the negative regular continued fraction expansion of z. Whereas the three main cases
of this behavior are closely related, a more detailed study of the most interesting case
(in which the Dedekind sums remain bounded) exhibits some marked differences, since
the cluster points depend on the respective periods of these expansions. We show in
which cases cluster points of S(sj , tj) can coincide with cluster points of S(pk, qk). An
important tool for our purpose is a criterion that says which convergents sj/tj of z are
convergents pk/qk.

1 Introduction and results

Let z be a real irrational number. We consider the regular continued fraction expansion

z = a0 +
1

a1 +
1

a2 + · · ·

= ⌊a0, a1, a2, . . .⌋,
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which is defined by the following algorithm:

z0 = z, a0 = ⌊z0⌋, zj+1 = 1/(zj − aj), aj+1 = ⌊zj+1⌋, j ≥ 0.

The convergents p0/q0, p1/q1, p2/q2, . . . of this expansion are given by

p−1 = 1, q−1 = 0, p0 = a0, q0 = 1, pk+1 = ak+1pk + pk−1, qk+1 = ak+1qk + qk−1, k ≥ 0.

For the sake of simplicity we call these convergents the ⌊ ⌋-convergents of z.
We will compare the regular continued fraction expansion of z with the negative regular

continued fraction expansion

z = c0 −
1

c1 −
1

c2 − · · ·

= ⌈c0, c1, c2, . . .⌉,

which is defined by the algorithm

z0 = z, c0 = ⌈z0⌉, zj+1 = 1/(cj − zj), cj+1 = ⌈zj+1⌉, j ≥ 0.

The convergents s0/t0, s1/t1, s2/t2, . . . of this expansion are given by

s−1 = 1, t−1 = 0, s0 = c0, t0 = 1, sj+1 = cj+1sj − sj−1, tj+1 = cj+1tj − tj−1, j ≥ 0.

They are called the ⌈ ⌉-convergents of z. Note that cj ≥ 2 for all j ≥ 1, and cj ≥ 3 for
infinitely many indices j ≥ 0 (see [8]). Henceforth we call this continued fraction expansion
simply the negative regular expansion. This expansion has aroused some interest due to the
work of Hirzebruch and Zagier about class numbers of quadratic fields (see [6], [7, p. 136]).

It is well-known that ⌊ ⌋-convergents of z have optimal approximation properties which
⌈ ⌉-convergents have not, unless they happen to be ⌊ ⌋-convergents (see [4, p. 44 ff.]). In
general, ⌈ ⌉-convergents are only intercalary fractions of ⌊ ⌋-convergents: If

pk
qk

and
pk+1

qk+1

=
ak+1pk + pk−1

ak+1qk + qk−1

are two adjacent ⌊ ⌋-convergents of z, then the intercalary fractions are

pk + pk−1

qk + qk−1

,
2pk + pk−1

2qk + qk−1

, . . . ,
(ak+1 − 1)pk + pk−1

(ak+1 − 1)qk + qk−1

.

They also approximate z successively, but not as well as ⌊ ⌋-convergents do.
It is, therefore, desirable to be able to decide whether a ⌈ ⌉-convergent is a ⌊ ⌋-convergent.

We give the following criterion.

Theorem 1. Let z = ⌈c0, c1, c2, . . .⌉ be an irrational number and sj/tj, j ≥ 1, a ⌈ ⌉-
convergent of z. Then sj/tj is a ⌊ ⌋-convergent of z iff cj+1 ≥ 3. In particular, the sequence

sj/tj, j ≥ 1, contains infinitely many ⌊ ⌋-convergents of z.
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Example 2. Let z = e = 2.71828 · · · be Euler’s number, whose regular continued fraction
expansion is

⌊2, 1, 2k, 1⌋∞k=1 = ⌊2, 1, 2, 1, 1, 4, 1, 1, 6, 1, . . .⌋,
where we have used Perron’s notation (see [4, p. 124]). By means of the transition formula

⌊a0, a1, a2, a3, a4, . . .⌋ = ⌈a0 + 1, 2(a1−1), a2 + 2, 2(a3−1), a4 + 2, . . .⌉ (1)

(see [1, p. 93]) one easily obtains

e = ⌈3, 4k, 3, 2(4k−1)⌉∞k=1 = ⌈3, 4, 3, 2(3), 3, 8, 3, 2(7), . . .⌉;

here 2(j) stands for a sequence of j numbers 2. According to Theorem 1, the ⌈ ⌉-convergents
s1
t1

=
11

4
,
s5
t5

=
87

32
,
s6
t6

=
193

71
,
s7
t7

=
1457

536
,
s15
t15

=
23225

8544
,
s16
t16

=
49171

18089
,
s17
t17

=
566827

208524

are ⌊ ⌋-convergents of e. Indeed, if the latter are denoted by pk/qk, k ≥ 0, we find that the
above ⌈ ⌉-convergents coincide with p3/q3, p5/q5, . . . , p15/q15, respectively. As intercalary
fractions we have, for instance, s2/t2 = (p4 + p3)/(q4 + q3) or s8/t8 = (p10 + p9)/(q10 + q9).

The main application of Theorem 1 in this paper is a comparative study of the asymptotic
behavior of Dedekind sums with arguments near quadratic irrationals. For an integer a and
a natural number b let

s(a, b) =
b

∑

k=1

((k/b))((ak/b))

be the classical Dedekind sum, where

((x)) =

{

x− ⌊x⌋ − 1/2, if x ∈ Rr Z;

0, if x ∈ Z

(see, for instance, [5, p. 1]). We work with S(a, b) = 12s(a, b) instead of s(a, b) and compare
the asymptotic behavior of the Dedekind sums S(pk, qk) of a quadratic irrational z with the
asymptotic behavior of S(sj, tj) when k and j tend to infinity. Theorem 1 has the effect that
the asymptotic behavior is, roughly speaking, the same in both cases.

For a quadratic irrational z both expansions are periodic, i.e.,

z = ⌊a0, a1, . . . aq, b1, b2, . . . , bl⌋ = ⌈c0, c1, . . . cr, d1, . . . , dm⌉,

where (b1, . . . , bl) and (d1, . . . , dm) are the respective periods (see [8, Satz 14, Satz 15]). Here
l and m are smallest possible. In addition, q and r are smallest possible for this choice of l
and m. In the purely periodic case, we put q = −1 and r = −1. Further, let

L =

{

l, if l is even;

2l, if l is odd.
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Then (b1, . . . , bL) is also a period of the regular continued fraction expansion of z. If l is odd,
it has the form (b1, . . . , bl, b1, . . . , bl). The three cases of Theorem 3 (below) are connected
with the values of

B = (−1)q
L
∑

j=1

(−1)j−1bj and D =
1

m

m
∑

j=1

dj.

It should be noted that B = 0 if l is odd or if the period (b1, . . . , bl) is palindromic.

Theorem 3. In the above setting, B > 0, B = 0, B < 0 iff D < 3, D = 3, D > 3,
respectively. Suppose that j and k tend to ∞. Then

both S(pk, qk) and S(sj, tj) tend to ∞ if B > 0 (or D < 3),
these quantities remain bounded if B = 0 (or D = 3),
and they tend to −∞ if B < 0 (or D > 3).

In the remainder of this section we assume B = 0, i.e., D = 3. In the paper [2] it has been
shown that the Dedekind sums S(pk, qk) accumulate near L cluster points Uh, h = 1, . . . , L.
They are given by

Uh = A+ (−1)q
h

∑

k=1

(−1)k−1bk +

{

z + 1/uh − 3, if q + h is odd ;

z − 1/uh, if q + h is even.
(2)

Here A =
∑q

k=0(−1)k−1ak and uh = ⌊bh, bh−1, . . . , b1, bL, bL−1, . . . , bh+1⌋ is a purely periodic
quadratic irrational, h = 1, . . . , L. On the other hand, we shall see that the Dedekind sums
S(sj, tj) accumulate near cluster points Vi, i = 1, . . . ,m. They are given by

Vi = C +
i

∑

j=1

(3− dj) + z − 1/vi − 3, (3)

where C =
∑r

j=0(3 − cj) and vi = ⌈di, di−1, . . . , d1, dm, dm−1, . . . , di+1⌉ is also a quadratic
irrational, i = 1, . . . ,m. In the purely periodic cases, we have A = 0 and C = 0.

Theorem 4. In the above setting, the cluster points Uh, h = 1, . . . , L, are pairwise distinct,

as are the cluster points Vi, i = 1, . . . ,m.

The following theorem concerns cluster points Vi which coincide with cluster points Uh.

Theorem 5. Let (d1, . . . , dm) be the period of the negative regular expansion of z. Let

i ∈ {1, . . . ,m} be such that di+1 ≥ 3 (if i = m this means d1 ≥ 3). Then the cluster point Vi

coincides with some cluster point Uh such that q + h is odd. A cluster point Uh with q + h
even cannot coincide with a cluster point Vi.

Remark 6. One can show that the period obtained from (b1, . . . , bL) by means of the tran-
sition formula (1) is shortest possible among the possible periods of the negative regular
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expansion of z — but we abstain from doing this here. Accordingly, there are L/2 in-
dices i ∈ {1, . . . ,m} such that di+1 ≥ 3, the corresponding values of di+1 being either
b1 + 2, b3 + 2, . . . , bL−1 + 2 or b2 + 2, b4 + 2, . . . , bL + 2. Hence there are L/2 coincidences of
cluster points Vi with cluster points Uh. This means that each cluster point Uh, q + h odd,
coincides with such a Vi. So we have a fairly complete picture: The cluster points Uh, q + h
odd, coincide with the cluster points Vi, di+1 ≥ 3. Moreover, there are no coincidences of
cluster points Uh, q + h even, and cluster points Vi.

Example 7. Let z = 1/
√
53 = ⌊0, 7, 3, 1, 1, 3, 14⌋ = ⌈1, 2(6), 5, 3, 2, 2, 16, 2, 2, 3, 5, 2(13)⌉.

Since l = 5 is odd, the sequences S(pk, qk) and S(sj, tj) remain bounded. Because we
have five (= L/2) entries ≥ 3 in the period of the negative regular expansion of z, we have
five common cluster points, namely V1 = U2 = (636 + 60

√
53)/371 = 2.89166 · · · , V4 =

U4 = (−159 + 54
√
53)/53 = 4.41747 · · · , V7 = U6 = (−2862 + 60

√
53)/371 = −6.53690 · · · ,

V8 = U8 = (−1749 + 57
√
53)/212 = −6.29261 · · · , and V22 = U10 = (477 + 57

√
53)/212 =

4.20738 · · · . As we expect, there are no further coincidences between the remaining 17 cluster
point Vi and the remaining 5 cluster points Uh, although these points may lie close together,
like V12 = (−13833 + 97

√
53)/2332 = −5.62900 · · · and U7 = (−1749 − 46

√
53)/371 =

−5.61694 · · · .

2 Proofs

Proof of Theorem 1. Let zj+1 denote the (j+1)th complete quotient of the negative regular
expansion of z. Accordingly,

z =
zj+1sj − sj−1

zj+1tj − tj−1

.

This gives

z − sj
tj

=
sjtj−1 − sj−1tj
tj(zj+1tj − tj−1)

.

Here we use sjtj−1 − sj−1tj = −1 (see [8, formula (4)]) and obtain
∣

∣

∣

∣

z − sj
tj

∣

∣

∣

∣

=
1

tj(zj+1tj − tj−1)
=

1

t2j
· tj
zj+1tj − tj−1

. (4)

We need the regular continued fraction expansion sj/tj = ⌊a0, . . . , an⌋. However, we do not
require an ≥ 2; hence we may assume that n is odd. Let p0/q0, . . . , pn/qn be the convergents
of this expansion, in particular, sj/tj = pn/qn. Now we can apply a criterion of Legendre
(see [4, p. 39]) to the identity (4); thereby, we see that sj/tj is a ⌊ ⌋-convergent of z, iff

tj
zj+1tj − tj−1

<
qn

qn + qn−1

. (5)

Let s∗ ∈ {1, . . . , tj − 1} denote the inverse of sj mod tj, i.e., sjs
∗ ≡ 1 mod tj (observe

j ≥ 1). Since sjtj−1− sj−1tj = −1, we see that tj−1 ≡ −s∗ mod tj, and 1 ≤ tj−1 < tj implies
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tj−1 = tj − s∗. On the other hand, sj = pn and tj = qn, which yields

sjqn−1 − pn−1tj = (−1)n−1 = 1

(see [4, p. 25]). Accordingly, qn−1 = s∗. Therefore, the condition (5) is equivalent to

zj+1tj − (tj − s∗) > tj + s∗, i.e., to zj+1 > 2.

Recall that zj+1 > 2 iff cj+1 ≥ 3. Recall, further, that cj+1 ≥ 3 holds for infinitely many
indices j. Thereby, we obtain the desired result.

Proof of Theorem 3. Let z = ⌊a0, a1, . . . aq, b1, b2, . . . , bl⌋ = ⌈c0, c1, . . . cr, d1, . . . , dm⌉ be as
above. In [2] we studied the asymptotic behavior of S(pk, qk) for the ⌊ ⌋-convergents pk/qk
of z. Indeed, if k = q + nL+ h, n ≥ 0, h ∈ {1, . . . , L},

S(pk, qk) = A+ nB + (−1)q
h

∑

j=1

(−1)j−1bj +

{

(pk + qk−1)/qk − 3, if k is odd ;

(pk − qk−1)/qk, if k is even.
(6)

Here A and B are as in Section 1. Since pk/qk → z for k → ∞ and 0 ≤ qk−1/qk ≤ 1 for
k ≥ 0, this gives

S(pk, qk) → ∞ if B > 0,

S(pk, qk) remains bounded if B = 0, and (7)

S(pk, qk) → −∞ if B < 0.

A similar asymptotic behavior takes place for the Dedekind sums S(sj, tj) belonging to the
⌈ ⌉-convergents sj/tj of z. Indeed, a formula of Hirzebruch, Zagier and Myerson (see [3])
says

S(sj, tj) =

j
∑

k=0

(3− ck) + (sj − tj−1)/tj − 3,

where we have written z = ⌈c0, c1, c2, . . .⌋ disregarding the period. Hence we have, for
j = r + nm+ i, n ≥ 0, i ∈ {1, . . . ,m},

S(sj, tj) = C + nm(3−D) +
i

∑

k=0

(3− ck) + (sj − tj−1)/tj − 3, (8)

where C and D are as in Section 1. Observe sj/tj → z for j → ∞ and 0 ≤ tj−1/tj ≤ 1 for
j ≥ 0 (see [8, Satz 4, Satz 1]). Then we obtain

S(sj, tj) → ∞ if D < 3,

S(sj, tj) remains bounded if D = 3, and (9)

S(sj, tj) → −∞ if D > 3.
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By Theorem 1, the sequence sj/tj contains infinitely many ⌊ ⌋-convergents pk/qk of z. There-
fore, the asymptotic behavior of S(pk, qk) for these convergents of z in the sense of (7) must
be the same as in the sense of (9). This, however, yields Theorem 3, in particular, the
connection between B and D.

Remark 8. The relation between the quantities B and D can also be proved in a simple and
direct way by means of the transition formula (1).

Proof of Theorem 4. In the paper [2] we deduced formula (2) from (6). In exactly the same
way one can deduce (3) from (8). First we show that the cluster points Vi, i = 1, . . . ,m, are
pairwise distinct. Suppose that Vi = Vj for some i, j ∈ {1, . . . ,m}. This implies

1/vi = 1/vj + a, for some a ∈ Z.

Since vi, vj are both > 1, we have 0 < 1/vi, 1/vj < 1, whence a = 0 and vi = vj follows.
Since m is smallest possible, vi and vj have different negative regular expansions if i 6= j.
Therefore, i = j.

In the case of the cluster points Uh, h = 1, . . . , L, the proof is slightly more subtle.
Suppose, first, that l is odd. Then the values 1/uh, h = 1, 3, . . . , l, and 1/ul+h = 1/uh,
h = 2, 4, . . . , l − 1, appear with the same sign in (2), whereas 1/uh, h = 2, 4, . . . , l − 1, and
1/ul+h = 1/uh, h = 1, 3, . . . , l, appear with the opposite sign. If 1/uh and 1/uk have the
same sign, one can argue as in the case of the cluster points Vi, since uh, uk are both > 1.
So we are left with the case

1/uh = −1/uk + a, a ∈ Z.

Since 0 < 1/uh, 1/uk < 1, this is only possible with a = 1. Accordingly, we obtain

uh = (1− 1/uk)
−1 = 1 + 1/(uk − 1).

Now uk = ⌊bk, bk−1, . . . , b1, bl, bl−1, . . . , bk+1⌋. If bk > 1, we obtain

1 + 1/(uk − 1) = ⌊1, bk − 1, bk−1, . . . , b1, bl, . . . , bk⌋ = uh = ⌊bh, . . . , b1, bl, . . . , bh+1⌋.

However, uh is purely periodic with period length l, and so must be 1 + 1/(uk − 1). But if
we compare the second entry bk − 1 with the second entry that follows the period, we get
the contradiction bk − 1 = bk. If bk = 1, we obtain

1 + 1/(uk − 1) = ⌊bk−1 + 1, bk−2, . . . , b1, bl, . . . , bk−1⌋.

Again, 1+1/(uk−1) must be purely periodic with period length l, which gives the impossible
relation bk−1 + 1 = bk−1.

If l = L is even, we proceed in a similar way: We have the same sign in (2) for 1/uh,
h = 1, 3, . . . , L − 1, and the opposite sign for 1/uh, h = 2, 4, . . . , L and, thus, can rule out
the corresponding identities if the signs are equal. In the case 1/uh = −1/uk + a, a ∈ Z, we
argue as above.
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Proof of Theorem 5. Let h ∈ {1, . . . , L}. We say that the ⌊ ⌋-convergent pk/qk belongs to
the ⌊ ⌋-class h, if k = q + nL + h for some n ≥ 0. For the ⌊ ⌋-convergents pk/qk belonging
to this class, the corresponding Dedekind sums S(pk, qk) converge against the cluster point
Uh — as we have shown in the paper [2]. In the same way we say that the ⌈ ⌉-convergent
sj/tj belongs to the ⌈ ⌉-class i, i ∈ {1, . . . ,m}, if j = r + nm + i for some n ≥ 0. For ⌈ ⌉-
convergents sj/tj belonging to this class, the corresponding Dedekind sums S(sj, tj) converge
against the cluster point Vi.

Let i ∈ {1, . . . ,m} be such that di+1 ≥ 3 (if i = m, d1 ≥ 3). By Theorem 1, each
convergent sj/tj of the ⌈ ⌉-class i equals some ⌊ ⌋-convergent pk/qk. Since sj/tj > z, k must
be odd. Up to finitely many exceptions, these convergents sj/tj must belong to exactly one
⌊ ⌋-class h — otherwise the convergent sequence S(sj, tj) would have more than one cluster
point. Accordingly, S(sj, tj) converges against Uh = Vi for this h. Because q + h ≡ k mod 2
for all pk/qk in the ⌊ ⌋-class h, we see that q + h is odd.

Finally, suppose that q + h is even and Uh = Vi for some i ∈ {1, . . . ,m}. By (2) and (3),
−1/uh = −1/vi + a, a ∈ Z. As in the proof of Theorem 4, we conclude uh = vi. Now

uh = ⌊bh, bh−1, . . . , b1, bL, . . . bh+1⌋ = ⌈bh + 1, 2(bh−1−1), bh−2 + 2, . . . , 2(bh+1−1), bh + 2⌉.

Since vi = ⌈di, di−1, . . . , d1, dm, . . . di+1⌉ is purely periodic, we see that bh + 1 must be equal
to bh + 2, which is impossible.
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