n-Color Odd Self-Inverse Compositions

Yu-hong Guo ${ }^{1}$
School of Mathematics and Statistics
Hexi University
Gansu, Zhangye, 734000
P. R. China
gyh7001@163.com

Abstract

An n-color odd self-inverse composition is an n-color self-inverse composition with odd parts. In this paper, we obtain generating functions, explicit formulas, and recurrence formulas for n-color odd self-inverse compositions.

1 Introduction

In the classical theory of partitions, compositions were first defined by MacMahon [9] as ordered partitions. For example, there are 5 partitions and 8 compositions of 4 . The partitions are $4,31,22,211,1111$ and the compositions are $4,31,13,22,211,121,112,1111$.

Agarwal and Andrews [1] defined an n-color partition as a partition in which a part of size n can come in n different colors. They denoted different colors by subscripts: n_{1}, n_{2}, \ldots, n_{n}. In analogy with MacMahon's ordinary compositions, Agarwal [2] defined an n-color composition as an n-color ordered partition. Thus, for example, there are $8 n$-color compositions of 3 , viz.,

$$
3_{1}, 3_{2}, 3_{3}, 2_{1} 1_{1}, 2_{2} 1_{1}, 1_{1} 2_{1}, 1_{1} 2_{2}, 1_{1} 1_{1} 1_{1}
$$

More properties of n-color compositions were given in $[3,5]$.
Definition 1. ([9]) A composition is said to be self-inverse when the parts of the composition read from left to right are identical with the parts when read from right to left.

[^0]In analogy with the definition above for classical self-inverse compositions, Narang and Agarwal [10] defined an n-color self-inverse composition and gave some properties of them.

Definition 2. ([10]) An n-color odd composition is an n-color composition with odd parts.
For example there are $8 n$-color self-inverse compositions of 4 , viz.,

$$
4_{1}, 4_{2}, 4_{3}, 4_{4}, 2_{1} 2_{1}, 2_{2} 2_{2}, 1_{1} 2_{1} 1_{1}, 1_{1} 2_{2} 1_{1} .
$$

In 2010, the author [6] also defined an n-color even self-inverse composition and gave some properties.

Definition 3. ([6]) An n-color even composition is an n-color composition whose parts are even.

Definition 4. ([6]) An n-color even composition whose parts read from left to right are identical with when read from right to left is called an n-color even self-inverse composition.

Thus, for example, there are $8 n$-color even self-inverse compositions of 4 , viz.,

$$
4_{1}, 4_{2}, 4_{3}, 4_{4}, 2_{1} 2_{1}, 2_{1} 2_{2}, 2_{2} 2_{1}, 2_{2} 2_{2}
$$

And there are $6 n$-color even self-inverse compositions of 4 , viz.,

$$
4_{1}, 4_{2}, 4_{3}, 4_{4}, 2_{1} 2_{1}, 2_{2} 2_{2} .
$$

Recently, the author [7] studied n-color odd compositions.
Definition 5. ([7]) An n-color odd composition is an n-color composition whose parts are odd.

Thus, for example, there are $7 n$-color odd compositions of 4 , viz.,

$$
3_{1} 1_{1}, 3_{2} 1_{1}, 3_{3} 1_{1}, 1_{1} 3_{1}, 1_{1} 3_{2}, 1_{1} 3_{3}, 1_{1} 1_{1} 1_{1} 1_{1} .
$$

In this paper, we shall study n-color odd self-inverse compositions.
Definition 6. An n-color odd composition whose parts read from left to right are identical with when read from right to left is called an n-color odd self-inverse composition.

Thus, for example, there are $4 n$-color odd self-inverse compositions of 6 , viz.,

$$
3_{1} 3_{1}, 3_{2} 3_{2}, 3_{3} 3_{3}, 1_{1} 1_{1} 1_{1} 1_{1} 1_{1} 1_{1} .
$$

In section 2 we shall give explicit formulas, recurrence formulas, generating functions for n-color odd self-inverse compositions.

The author [7] proved the following theorems.

Theorem 7. ([7$]$) Let $C_{o}(m, q)$ and $C_{o}(q)$ denote the enumerative generating functions for $C_{o}(m, \nu)$ and $C_{o}(\nu)$, respectively, where $C_{o}(m, \nu)$ is the number of n-color odd compositions of ν into m parts and $C_{o}(\nu)$ is the number of n-color odd compositions of ν. Then

$$
\begin{align*}
& C_{o}(m, q)=\frac{q^{m}\left(1+q^{2}\right)^{m}}{\left(1-q^{2}\right)^{2 m}} \tag{1}\\
& C_{o}(q)=\frac{q+q^{3}}{1-q-2 q^{2}-q^{3}+q^{4}} \tag{2}\\
& C_{o}(m, \nu)=\sum_{i+j=\frac{\nu-m}{2}}\binom{2 m+i-1}{2 m-1}\binom{m}{j}, \tag{3}\\
& C_{o}(\nu)=\sum_{m \leq \nu} \sum_{i+j=\frac{\nu-m}{2}}\binom{2 m+i-1}{2 m-1}\binom{m}{j} . \tag{4}
\end{align*}
$$

where $(\nu-m)$ is even, and $(\nu-m) \geq 0 ; 0 \leq i, j$ are integers.
Theorem 8. ([7]) Let $C_{o}(\nu)$ denote the number of n-color odd compositions of ν. Then

$$
\begin{aligned}
& C_{o}(1)=1, C_{o}(2)=1, C_{o}(3)=4, C_{o}(4)=7 \text { and } \\
& C_{o}(\nu)=C_{o}(\nu-1)+2 C_{o}(\nu-2)+C_{o}(\nu-3)-C_{o}(\nu-4) \text { for } \nu>4 .
\end{aligned}
$$

2 Main results

In this section, we first prove the following explicit formulas for the number of n-color odd self-inverse compositions.

Theorem 9. Let $S(O, \nu)$ denote the number of n-color odd self-inverse compositions of ν. Then

$$
\text { (1) } S(O, 2 \nu+1)=(2 \nu+1)+\sum_{t=1}^{2 \nu-1} \sum_{m \leq \frac{2 \nu+1-t}{2}} \sum_{i+j=\frac{2 \nu+1-t-2 m}{4}} t\binom{2 m+i-1}{2 m-1}\binom{m}{j} \text {, }
$$

where $\nu=0,1,2, \ldots ; \quad t=2 k+1, k=0,1,2, \ldots,(\nu-1) ; 0 \leq \frac{2 \nu+1-t-2 m}{2}$ is even; $0 \leq i, j$ are integers.

$$
\text { (2) } S(O, 2 \nu)=\sum_{m \leq \nu} \sum_{i+j=\frac{\nu-m}{2}}\binom{2 m+i-1}{2 m-1}\binom{m}{j} \text {, }
$$

where $0 \leq \nu-m$ is even, and $0 \leq i, j$ are integers.

Proof. (1) Obviously, an odd number which is $2 \nu+1(\nu=0,1,2, \ldots)$ can have odd selfinverse n-color compositions only when the number of parts is odd. There are $2 \nu+1 n$-color odd self-inverse compositions when the number of parts is only one. An odd self-inverse compositions of $2 \nu+1$ into $2 m+1(m \geq 1)$ parts can be read as a central part, say, t (where t is odd) and two identical odd n-color compositions of $\frac{2 \nu+1-t}{2}$ into m parts on each side of the central part. The number of odd n-color compositions of $\frac{2 \nu+1-t}{2}$ into m parts is $C_{o}\left(m, \frac{2 \nu+1-t}{2}\right)$ by equation (3). Now the central part can appear in t ways. Therefore, the number of n-color odd self-inverse compositions of $2 \nu+1$ is

$$
\begin{aligned}
S(O, 2 \nu+1) & =(2 \nu+1)+\sum_{t=1}^{2 \nu-1} \sum_{m \leq \frac{2 \nu+1-t}{2}} t C_{o}\left(m, \frac{2 \nu+1-t}{2}\right) \\
& =(2 \nu+1)+\sum_{t=1}^{2 \nu-1} \sum_{m \leq \frac{2 \nu+1-t}{2}} \sum_{i+j=\frac{2 \nu+1-t-2 m}{4}} t\binom{2 m+i-1}{2 m-1}\binom{m}{j} .
\end{aligned}
$$

(2) For even numbers $2 \nu(\nu=1,2, \ldots)$, we can have odd self-inverse n-color compositions only when the number of parts is even, and the two identical odd n-color compositions are exactly odd n-color compositions of ν, from equation (4) we see that the number of these is

$$
\sum_{m \leq \nu} \sum_{i+j=\frac{\nu-m}{2}}\binom{2 m+i-1}{2 m-1}\binom{m}{j} .
$$

Hence, the number of n-color odd self-inverse compositions of 2ν is

$$
S(O, 2 \nu)=\sum_{m \leq \nu} \sum_{i+j=\frac{\nu-m}{2}}\binom{2 m+i-1}{2 m-1}\binom{m}{j} .
$$

We complete the proof of this theorem.
From the proof of this theorem we can see that odd n have n-color odd self-inverse compositions where the number of parts is odd. And even n have n-color odd self-inverse compositions where the number of parts is even. Let $S_{o}(\nu, m)$ denote the number of n-color odd self-inverse compositions of ν into m parts. Then we can get the following formula easily.

$$
S_{o}(2 k+1,2 l+1)=\sum_{t=1}^{2 k-1} \sum_{i+j=\frac{2 k+1-t-2 l}{4}}\binom{2 l+i-1}{2 l-1}\binom{l}{j} .
$$

where t is odd, k, l are integers and $k, l \geq 0$.

$$
S_{o}(2 k, 2 l)=\sum_{i+j=\frac{k-l}{2}}\binom{2 l+i-1}{2 l-1}\binom{l}{j}
$$

Table 1: $S_{o}(\nu, m)$ when both ν and m are odd

ν	m	3	5	7	9	11	13	15	17	19	s_{ν}
1	1	0	0	0	0	0	0	0	0	0	1
3	3	1	0	0	0	0	0	0	0	0	4
5	5	3	1	0	0	0	0	0	0	0	9
7	7	8	3	1	0	0	0	0	0	0	19
9	9	16	11	3	1	0	0	0	0	0	40
11	11	29	25	16	3	1	0	0	0	0	83
13	13	49	56	34	17	3	1	0	0	0	173
15	15	72	110	96	43	20	3	1	0	0	360
17	17	104	206	200	143	52	23	3	1	0	749
19	19	145	346	442	317	199	61	26	3	1	1559

where k, l are integers and $k, l \geq 0$.
Now $S_{o}(\nu, m)$ with $\nu, m=1,2, \ldots, 20$ is given in Tables 1 and 2.
From Tables 1 and 2 we can see the recurrence formulas for the number of the n-color odd self-inverse compositions of ν. So we prove the following recurrence relations.

Table 2: $S_{o}(\nu, m)$ when both ν and m are even

ν	2	4	6	8	10	12	14	16	18	20	t_{ν}
2	1	0	0	0	0	0	0	0	0	0	1
4	0	1	0	0	0	0	0	0	0	0	1
6	3	0	1	0	0	0	0	0	0	0	4
8	0	6	0	1	0	0	0	0	0	0	7
10	5	0	9	0	1	0	0	0	0	0	15
12	0	19	0	12	0	1	0	0	0	0	32
14	7	0	42	0	15	0	1	0	0	0	65
16	0	44	0	74	0	18	0	1	0	0	137
18	9	0	138	0	115	0	21	0	1	0	284
20	0	85	0	316	0	165	0	24	0	1	591

Theorem 10. Let s_{ν} and t_{ν} denote the number of n-color odd self-inverse compositions for $2 \nu+1$ and 2ν, respectively. Then
(1) $s_{0}=1, s_{1}=4, s_{2}=9, s_{3}=19$ and $s_{\nu}=s_{\nu-1}+2 s_{\nu-2}+s_{\nu-3}-s_{\nu-4} \quad$ for $\quad \nu>3$
(2) $t_{1}=1, t_{2}=1, t_{3}=4, t_{4}=7$ and $t_{\nu}=t_{\nu-1}+2 t_{\nu-2}+t_{\nu-3}-t_{\nu-4} \quad$ for $\quad \nu>4$.

Proof. (Combinatorial) (1) To prove that $s_{\nu}=s_{\nu-1}+2 s_{\nu-2}+s_{\nu-3}-s_{\nu-4}$, we split the n-color odd self-inverse compositions enumerated by $s_{\nu}+s_{\nu-4}$ into four classes:
(A) s_{ν} with 1_{1} on both ends.
(B) s_{ν} with 3_{3} on both ends.
(C) s_{ν} with h_{t} on both ends, $h>1,1 \leq t \leq h-2$ and n-color odd self-inverse compositions of $2 \nu+1$ of form $(2 \nu+1)_{u}, 1 \leq u \leq 2 \nu-3$.
(D) s_{ν} with h_{t} on both ends except $3_{3}, h>1, h-1 \leq t \leq h,(2 \nu+1)_{u}, 2 \nu-2 \leq u \leq 2 \nu+1$ and those enumerated by $s_{\nu-4}$.

We transform the n-color odd self-inverse compositions in class (A) by deleting 1_{1} on both ends. This produces n-color odd self-inverse compositions enumerated by $s_{\nu-1}$. Conversely, for any n-color odd composition enumerated by $s_{\nu-1}$ we add 1_{1} on both ends to produce the elements of the class (A). In this way we establish that there are exactly $s_{\nu-1}$ elements in the class (A).

Similarly, we can produce $s_{\nu-3} n$-color odd self-inverse compositions in class (B) by deleting 3_{3} on both ends.

Next, we transform the n-color odd self-inverse compositions in class (C) by subtracting 2 from h, that is, replacing h_{t} by $(h-2)_{t}$ and subtracting 4 from $2 \nu+1$ of $(2 \nu+1)_{u}$, $1 \leq u \leq 2 \nu-3$. This transformation also establishes the fact that there are exactly $s_{\nu-2}$ elements in class (C).

Finally, we transform the elements in class (D) as follows: Subtract 2_{2} from h_{t} on both ends, that is, replace h_{t} by $(h-2)_{(t-2)}, h>3, h-1 \leq t \leq h$, while replace h_{t} by $(h-2)_{(t-1)}$ when $h=3, t=2$. We will get those n-color odd self-inverse compositions of $2 \nu-3$ with h_{t} on both ends, $h-1 \leq t \leq h$ except self-inverse odd compositions in one part. We also replace $(2 \nu+1)_{u}$ by $(2 \nu-3)_{u-4}, 2 \nu-2 \leq u \leq 2 \nu+1$. To get the remaining n-color odd compositions from $s_{\nu-4}$ we add 2 to both ends, that is, replace h_{t} by $(h+2)_{t}$. For n-color odd self-inverse compositions into one part we add 4 , that is, replace $(2 \nu-7)_{t}$ by $(2 \nu-3)_{t}, 1 \leq t \leq 2 \nu-7$. We see that the number of n-color odd self-inverse compositions in class (D) is also equal to $s_{\nu-2}$. Hence, we have $s_{\nu}+s_{\nu-4}=s_{\nu-1}+2 s_{\nu-2}+s_{\nu-3}$. viz., $s_{\nu}=s_{\nu-1}+2 s_{\nu-2}+s_{\nu-3}-s_{\nu-4}$.
(2) From Theorem 8 and Theorem 9, we obtain the recurrence formula of t_{ν} easily. Thus, we complete the proof.

We easily get the following generating functions by the recurrence relations.

Corollary 11.

$$
\begin{align*}
& \sum_{\nu=0}^{\infty} s_{\nu} q^{\nu}=\frac{(1+q)^{3}}{1-q-2 q^{2}-q^{3}+q^{4}} \tag{1}\\
& \sum_{\nu=1}^{\infty} t_{\nu} q^{\nu}=\frac{q+q^{3}}{1-q-2 q^{2}-q^{3}+q^{4}} \tag{2}
\end{align*}
$$

3 Acknowledgments

The author would like to thank the referee for his/her suggestions and comments which have improved the quality of this paper.

References

[1] A. K. Agarwal and G. E. Andrews, Rogers-Ramanujan identities for partition with ' n copies of n ', J. Combin. Theory Ser. A 45 (1987), 40-49.
[2] A. K. Agarwal, N-colour compositions, Indian J. Pure Appl. Math. 31 (2000), 14211427.
[3] A. K. Agarwal, An analogue of Euler's identity and new combinatorial properties of n-colour compositions, J. Comput. Appl. Math. 160 (2003), 9-15.
[4] G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1998.
[5] Yu-Hong Guo, Some identities between partitions and compositions, Acta Math. Sinica (Chin. Ser.) 50 (2007), 707-710.
[6] Yu-Hong Guo, N-colour even self-inverse compositions, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), 27-33.
[7] Yu-Hong Guo, Some n-color compositions, J. Integer Sequences 15 (2012), Article 12.1.2.
[8] B. Hopkins, Spotted tilling and n-color compositions, Integers 12B (2012/13), Article A6.
[9] P. A. MacMahon, Combinatory Analysis, AMS Chelsea Publishing, 2001.
[10] G. Narang and A. K. Agarwal, N-colour self-inverse compositions, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 257-266.

2010 Mathematics Subject Classification: 05A17.

Keywords: n-color odd self-inverse composition, generating function, explicit formula, recurrence formula.

Received November 18 2013; revised versions received May 5 2014; September 162014. Published in Journal of Integer Sequences, November 42014.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ This work is supported by the National Natural Science Foundation of China (Grant No. 11461020) and the Fund of the Education Department of Gansu Province (No. 2010-04.)

