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Abstract

An n-color odd self-inverse composition is an n-color self-inverse composition with
odd parts. In this paper, we obtain generating functions, explicit formulas, and recur-
rence formulas for n-color odd self-inverse compositions.

1 Introduction

In the classical theory of partitions, compositions were first defined by MacMahon [9] as or-
dered partitions. For example, there are 5 partitions and 8 compositions of 4. The partitions
are 4, 31, 22, 211, 1111 and the compositions are 4, 31, 13, 22, 211, 121, 112, 1111.

Agarwal and Andrews [1] defined an n-color partition as a partition in which a part
of size n can come in n different colors. They denoted different colors by subscripts: n1,
n2, . . ., nn. In analogy with MacMahon’s ordinary compositions, Agarwal [2] defined an
n-color composition as an n-color ordered partition. Thus, for example, there are 8 n-color
compositions of 3, viz.,

31, 32, 33, 2111, 2211, 1121, 1122, 111111.

More properties of n-color compositions were given in [3, 5].

Definition 1. ([9]) A composition is said to be self-inverse when the parts of the composition
read from left to right are identical with the parts when read from right to left.
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In analogy with the definition above for classical self-inverse compositions, Narang and
Agarwal [10] defined an n-color self-inverse composition and gave some properties of them.

Definition 2. ([10]) An n-color odd composition is an n-color composition with odd parts.

For example there are 8 n-color self-inverse compositions of 4, viz.,

41, 42, 43, 44, 2121, 2222, 112111, 112211.

In 2010, the author [6] also defined an n-color even self-inverse composition and gave
some properties.

Definition 3. ([6]) An n-color even composition is an n-color composition whose parts are
even.

Definition 4. ([6]) An n-color even composition whose parts read from left to right are
identical with when read from right to left is called an n-color even self-inverse composition.

Thus, for example, there are 8 n-color even self-inverse compositions of 4, viz.,

41, 42, 43, 44, 2121, 2122, 2221, 2222.

And there are 6 n-color even self-inverse compositions of 4, viz.,

41, 42, 43, 44, 2121, 2222.

Recently, the author [7] studied n-color odd compositions.

Definition 5. ([7]) An n-color odd composition is an n-color composition whose parts are
odd.

Thus, for example, there are 7 n-color odd compositions of 4, viz.,

3111, 3211, 3311, 1131, 1132, 1133, 11111111.

In this paper, we shall study n-color odd self-inverse compositions.

Definition 6. An n-color odd composition whose parts read from left to right are identical
with when read from right to left is called an n-color odd self-inverse composition.

Thus, for example, there are 4 n-color odd self-inverse compositions of 6, viz.,

3131, 3232, 3333, 111111111111.

In section 2 we shall give explicit formulas, recurrence formulas, generating functions for
n-color odd self-inverse compositions.

The author [7] proved the following theorems.
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Theorem 7. ([7]) Let Co(m, q) and Co(q) denote the enumerative generating functions for
Co(m, ν) and Co(ν), respectively, where Co(m, ν) is the number of n-color odd compositions
of ν into m parts and Co(ν) is the number of n-color odd compositions of ν. Then

Co(m, q) =
qm(1 + q2)m

(1− q2)2m
, (1)

Co(q) =
q + q3

1− q − 2q2 − q3 + q4
, (2)

Co(m, ν) =
∑

i+j= ν−m

2

(

2m+ i− 1

2m− 1

)(

m

j

)

, (3)

Co(ν) =
∑

m≤ν

∑

i+j= ν−m

2

(

2m+ i− 1

2m− 1

)(

m

j

)

. (4)

where (ν −m) is even, and (ν −m) ≥ 0; 0 ≤ i, j are integers.

Theorem 8. ([7]) Let Co(ν) denote the number of n-color odd compositions of ν. Then

Co(1) = 1, Co(2) = 1, Co(3) = 4, Co(4) = 7 and

Co(ν) = Co(ν − 1) + 2Co(ν − 2) + Co(ν − 3)− Co(ν − 4) for ν > 4.

2 Main results

In this section, we first prove the following explicit formulas for the number of n-color odd
self-inverse compositions.

Theorem 9. Let S(O, ν) denote the number of n-color odd self-inverse compositions of ν.
Then

(1) S(O, 2ν + 1) = (2ν + 1) +
2ν−1
∑

t=1

∑

m≤
2ν+1−t

2

∑

i+j= 2ν+1−t−2m

4

t

(

2m+ i− 1

2m− 1

)(

m

j

)

,

where ν = 0, 1, 2, . . .; t = 2k + 1, k = 0, 1, 2, . . . , (ν − 1); 0 ≤
2ν+1−t−2m

2
is even; 0 ≤ i, j

are integers.

(2) S(O, 2ν) =
∑

m≤ν

∑

i+j= ν−m

2

(

2m+ i− 1

2m− 1

)(

m

j

)

,

where 0 ≤ ν −m is even, and 0 ≤ i, j are integers.
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Proof. (1) Obviously, an odd number which is 2ν + 1 (ν = 0, 1, 2, . . .) can have odd self-
inverse n-color compositions only when the number of parts is odd. There are 2ν+1 n-color
odd self-inverse compositions when the number of parts is only one. An odd self-inverse
compositions of 2ν + 1 into 2m + 1 (m ≥ 1) parts can be read as a central part, say, t
(where t is odd) and two identical odd n-color compositions of 2ν+1−t

2
into m parts on each

side of the central part. The number of odd n-color compositions of 2ν+1−t
2

into m parts is
Co(m, 2ν+1−t

2
) by equation (3). Now the central part can appear in t ways. Therefore, the

number of n-color odd self-inverse compositions of 2ν + 1 is

S(O, 2ν + 1) = (2ν + 1) +
2ν−1
∑

t=1

∑

m≤
2ν+1−t

2

tCo

(

m,
2ν + 1− t

2

)

= (2ν + 1) +
2ν−1
∑

t=1

∑

m≤
2ν+1−t

2

∑

i+j= 2ν+1−t−2m

4

t

(

2m+ i− 1

2m− 1

)(

m

j

)

.

(2) For even numbers 2ν (ν = 1, 2, . . .), we can have odd self-inverse n-color composi-
tions only when the number of parts is even, and the two identical odd n-color compositions
are exactly odd n-color compositions of ν, from equation (4) we see that the number of these
is

∑

m≤ν

∑

i+j= ν−m

2

(

2m+ i− 1

2m− 1

)(

m

j

)

.

Hence, the number of n-color odd self-inverse compositions of 2ν is

S(O, 2ν) =
∑

m≤ν

∑

i+j= ν−m

2

(

2m+ i− 1

2m− 1

)(

m

j

)

.

We complete the proof of this theorem.

From the proof of this theorem we can see that odd n have n-color odd self-inverse
compositions where the number of parts is odd. And even n have n-color odd self-inverse
compositions where the number of parts is even. Let So(ν,m) denote the number of n-color
odd self-inverse compositions of ν into m parts. Then we can get the following formula easily.

So(2k + 1, 2l + 1) =
2k−1
∑

t=1

∑

i+j= 2k+1−t−2l

4

(

2l + i− 1

2l − 1

)(

l

j

)

.

where t is odd, k, l are integers and k, l ≥ 0.

So(2k, 2l) =
∑

i+j= k−l

2

(

2l + i− 1

2l − 1

)(

l

j

)

.
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Table 1: So(ν,m) when both ν and m are odd
❍
❍

❍
❍
❍
❍

ν

m
1 3 5 7 9 11 13 15 17 19 sν

1 1 0 0 0 0 0 0 0 0 0 1
3 3 1 0 0 0 0 0 0 0 0 4
5 5 3 1 0 0 0 0 0 0 0 9
7 7 8 3 1 0 0 0 0 0 0 19
9 9 16 11 3 1 0 0 0 0 0 40
11 11 29 25 16 3 1 0 0 0 0 83
13 13 49 56 34 17 3 1 0 0 0 173
15 15 72 110 96 43 20 3 1 0 0 360
17 17 104 206 200 143 52 23 3 1 0 749
19 19 145 346 442 317 199 61 26 3 1 1559

where k, l are integers and k, l ≥ 0.
Now So(ν,m) with ν,m = 1, 2, . . . , 20 is given in Tables 1 and 2.
From Tables 1 and 2 we can see the recurrence formulas for the number of the n-color

odd self-inverse compositions of ν. So we prove the following recurrence relations.

Table 2: So(ν,m) when both ν and m are even
❍
❍

❍
❍
❍
❍

ν

m
2 4 6 8 10 12 14 16 18 20 tν

2 1 0 0 0 0 0 0 0 0 0 1
4 0 1 0 0 0 0 0 0 0 0 1
6 3 0 1 0 0 0 0 0 0 0 4
8 0 6 0 1 0 0 0 0 0 0 7
10 5 0 9 0 1 0 0 0 0 0 15
12 0 19 0 12 0 1 0 0 0 0 32
14 7 0 42 0 15 0 1 0 0 0 65
16 0 44 0 74 0 18 0 1 0 0 137
18 9 0 138 0 115 0 21 0 1 0 284
20 0 85 0 316 0 165 0 24 0 1 591

Theorem 10. Let sν and tν denote the number of n-color odd self-inverse compositions for
2ν + 1 and 2ν, respectively. Then

(1) s0 = 1, s1 = 4, s2 = 9, s3 = 19 and

sν = sν−1 + 2sν−2 + sν−3 − sν−4 for ν > 3

(2) t1 = 1, t2 = 1, t3 = 4, t4 = 7 and

tν = tν−1 + 2tν−2 + tν−3 − tν−4 for ν > 4.
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Proof. (Combinatorial) (1) To prove that sν = sν−1 + 2sν−2 + sν−3 − sν−4, we split the
n-color odd self-inverse compositions enumerated by sν + sν−4 into four classes:

(A) sν with 11 on both ends.
(B) sν with 33 on both ends.
(C) sν with ht on both ends, h > 1, 1 ≤ t ≤ h− 2 and n-color odd self-inverse compositions
of 2ν + 1 of form (2ν + 1)u, 1 ≤ u ≤ 2ν − 3.
(D) sν with ht on both ends except 33, h > 1, h− 1 ≤ t ≤ h, (2ν + 1)u, 2ν − 2 ≤ u ≤ 2ν + 1
and those enumerated by sν−4.

We transform the n-color odd self-inverse compositions in class (A) by deleting 11 on both
ends. This produces n-color odd self-inverse compositions enumerated by sν−1. Conversely,
for any n-color odd composition enumerated by sν−1 we add 11 on both ends to produce the
elements of the class (A). In this way we establish that there are exactly sν−1 elements in
the class (A).

Similarly, we can produce sν−3 n-color odd self-inverse compositions in class (B) by
deleting 33 on both ends.

Next, we transform the n-color odd self-inverse compositions in class (C) by subtracting
2 from h, that is, replacing ht by (h − 2)t and subtracting 4 from 2ν + 1 of (2ν + 1)u,
1 ≤ u ≤ 2ν − 3. This transformation also establishes the fact that there are exactly sν−2

elements in class (C).
Finally, we transform the elements in class (D) as follows: Subtract 22 from ht on both

ends, that is, replace ht by (h− 2)(t−2), h > 3, h− 1 ≤ t ≤ h, while replace ht by (h− 2)(t−1)

when h = 3, t = 2. We will get those n-color odd self-inverse compositions of 2ν − 3 with ht

on both ends, h−1 ≤ t ≤ h except self-inverse odd compositions in one part. We also replace
(2ν+1)u by (2ν−3)u−4, 2ν−2 ≤ u ≤ 2ν+1. To get the remaining n-color odd compositions
from sν−4 we add 2 to both ends, that is, replace ht by (h+2)t. For n-color odd self-inverse
compositions into one part we add 4 ,that is, replace (2ν − 7)t by (2ν − 3)t, 1 ≤ t ≤ 2ν − 7.
We see that the number of n-color odd self-inverse compositions in class (D) is also equal to
sν−2. Hence, we have sν + sν−4 = sν−1 + 2sν−2 + sν−3. viz., sν = sν−1 + 2sν−2 + sν−3 − sν−4.

(2) From Theorem 8 and Theorem 9, we obtain the recurrence formula of tν easily. Thus,
we complete the proof.

We easily get the following generating functions by the recurrence relations.

Corollary 11.

(1)
∞
∑

ν=0

sνq
ν =

(1 + q)3

1− q − 2q2 − q3 + q4
.

(2)
∞
∑

ν=1

tνq
ν =

q + q3

1− q − 2q2 − q3 + q4
.
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