

Journal of Integer Sequences, Vol. 17 (2014), Article 14.10.5

n-Color Odd Self-Inverse Compositions

Yu-hong Guo¹ School of Mathematics and Statistics Hexi University Gansu, Zhangye, 734000 P. R. China gyh70010163.com

Abstract

An *n*-color odd self-inverse composition is an *n*-color self-inverse composition with odd parts. In this paper, we obtain generating functions, explicit formulas, and recurrence formulas for *n*-color odd self-inverse compositions.

1 Introduction

In the classical theory of partitions, compositions were first defined by MacMahon [9] as ordered partitions. For example, there are 5 partitions and 8 compositions of 4. The partitions are 4, 31, 22, 211, 1111 and the compositions are 4, 31, 13, 22, 211, 121, 112, 1111.

Agarwal and Andrews [1] defined an *n*-color partition as a partition in which a part of size *n* can come in *n* different colors. They denoted different colors by subscripts: n_1 , n_2, \ldots, n_n . In analogy with MacMahon's ordinary compositions, Agarwal [2] defined an *n*-color composition as an *n*-color ordered partition. Thus, for example, there are 8 *n*-color compositions of 3, viz.,

$$3_1, 3_2, 3_3, 2_11_1, 2_21_1, 1_12_1, 1_12_2, 1_11_11_1.$$

More properties of n-color compositions were given in [3, 5].

Definition 1. ([9]) A composition is said to be self-inverse when the parts of the composition read from left to right are identical with the parts when read from right to left.

¹This work is supported by the National Natural Science Foundation of China (Grant No. 11461020) and the Fund of the Education Department of Gansu Province (No. 2010-04.)

In analogy with the definition above for classical self-inverse compositions, Narang and Agarwal [10] defined an *n*-color self-inverse composition and gave some properties of them.

Definition 2. ([10]) An *n*-color odd composition is an *n*-color composition with odd parts.

For example there are 8 *n*-color self-inverse compositions of 4, viz.,

 $4_1, 4_2, 4_3, 4_4, 2_12_1, 2_22_2, 1_12_11_1, 1_12_21_1.$

In 2010, the author [6] also defined an n-color even self-inverse composition and gave some properties.

Definition 3. ([6]) An *n*-color even composition is an *n*-color composition whose parts are even.

Definition 4. ([6]) An *n*-color even composition whose parts read from left to right are identical with when read from right to left is called an *n*-color even self-inverse composition.

Thus, for example, there are 8 *n*-color even self-inverse compositions of 4, viz.,

$$4_1, 4_2, 4_3, 4_4, 2_12_1, 2_12_2, 2_22_1, 2_22_2.$$

And there are 6 *n*-color even self-inverse compositions of 4, viz.,

$$4_1, 4_2, 4_3, 4_4, 2_12_1, 2_22_2$$

Recently, the author [7] studied *n*-color odd compositions.

Definition 5. ([7]) An *n*-color odd composition is an *n*-color composition whose parts are odd.

Thus, for example, there are 7 *n*-color odd compositions of 4, viz.,

 $3_11_1, 3_21_1, 3_31_1, 1_13_1, 1_13_2, 1_13_3, 1_11_11_11_1$

In this paper, we shall study n-color odd self-inverse compositions.

Definition 6. An *n*-color odd composition whose parts read from left to right are identical with when read from right to left is called an *n*-color odd self-inverse composition.

Thus, for example, there are 4 *n*-color odd self-inverse compositions of 6, viz.,

$$3_13_1, 3_23_2, 3_33_3, 1_11_11_11_11_11_1$$

In section 2 we shall give explicit formulas, recurrence formulas, generating functions for n-color odd self-inverse compositions.

The author [7] proved the following theorems.

Theorem 7. ([7]) Let $C_o(m,q)$ and $C_o(q)$ denote the enumerative generating functions for $C_o(m,\nu)$ and $C_o(\nu)$, respectively, where $C_o(m,\nu)$ is the number of n-color odd compositions of ν into m parts and $C_o(\nu)$ is the number of n-color odd compositions of ν . Then

$$C_o(m,q) = \frac{q^m (1+q^2)^m}{(1-q^2)^{2m}},\tag{1}$$

$$C_o(q) = \frac{q+q^3}{1-q-2q^2-q^3+q^4},$$
(2)

$$C_o(m,\nu) = \sum_{i+j=\frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j},$$
(3)

$$C_o(\nu) = \sum_{m \le \nu} \sum_{i+j=\frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j}.$$
 (4)

where $(\nu - m)$ is even, and $(\nu - m) \ge 0$; $0 \le i, j$ are integers.

Theorem 8. ([7]) Let $C_o(\nu)$ denote the number of n-color odd compositions of ν . Then

$$C_o(1) = 1, C_o(2) = 1, C_o(3) = 4, C_o(4) = 7 \text{ and}$$

$$C_o(\nu) = C_o(\nu - 1) + 2C_o(\nu - 2) + C_o(\nu - 3) - C_o(\nu - 4) \text{ for } \nu > 4.$$

2 Main results

In this section, we first prove the following explicit formulas for the number of n-color odd self-inverse compositions.

Theorem 9. Let $S(O, \nu)$ denote the number of n-color odd self-inverse compositions of ν . Then

(1)
$$S(O, 2\nu + 1) = (2\nu + 1) + \sum_{t=1}^{2\nu-1} \sum_{m \le \frac{2\nu+1-t}{2}} \sum_{i+j=\frac{2\nu+1-t-2m}{4}} t\binom{2m+i-1}{2m-1} \binom{m}{j},$$

where $\nu = 0, 1, 2, \ldots$; $t = 2k + 1, k = 0, 1, 2, \ldots, (\nu - 1)$; $0 \le \frac{2\nu + 1 - t - 2m}{2}$ is even; $0 \le i, j$ are integers.

(2)
$$S(O, 2\nu) = \sum_{m \le \nu} \sum_{i+j=\frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j},$$

where $0 \leq \nu - m$ is even, and $0 \leq i, j$ are integers.

Proof. (1) Obviously, an odd number which is $2\nu + 1$ ($\nu = 0, 1, 2, ...$) can have odd selfinverse *n*-color compositions only when the number of parts is odd. There are $2\nu + 1$ *n*-color odd self-inverse compositions when the number of parts is only one. An odd self-inverse compositions of $2\nu + 1$ into 2m + 1 ($m \ge 1$) parts can be read as a central part, say, t(where t is odd) and two identical odd *n*-color compositions of $\frac{2\nu+1-t}{2}$ into m parts on each side of the central part. The number of odd *n*-color compositions of $\frac{2\nu+1-t}{2}$ into m parts is $C_o(m, \frac{2\nu+1-t}{2})$ by equation (3). Now the central part can appear in t ways. Therefore, the number of *n*-color odd self-inverse compositions of $2\nu + 1$ is

$$S(O, 2\nu + 1) = (2\nu + 1) + \sum_{t=1}^{2\nu - 1} \sum_{m \le \frac{2\nu + 1 - t}{2}} tC_o\left(m, \frac{2\nu + 1 - t}{2}\right)$$
$$= (2\nu + 1) + \sum_{t=1}^{2\nu - 1} \sum_{m \le \frac{2\nu + 1 - t}{2}} \sum_{i+j=\frac{2\nu + 1 - t - 2m}{4}} t\binom{2m + i - 1}{2m - 1} \binom{m}{j}.$$

(2) For even numbers 2ν ($\nu = 1, 2, ...$), we can have odd self-inverse *n*-color compositions only when the number of parts is even, and the two identical odd *n*-color compositions are exactly odd *n*-color compositions of ν , from equation (4) we see that the number of these is

$$\sum_{m \le \nu} \sum_{i+j=\frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j}$$

Hence, the number of *n*-color odd self-inverse compositions of 2ν is

$$S(O, 2\nu) = \sum_{m \le \nu} \sum_{i+j=\frac{\nu-m}{2}} \binom{2m+i-1}{2m-1} \binom{m}{j}.$$

We complete the proof of this theorem.

From the proof of this theorem we can see that odd n have n-color odd self-inverse compositions where the number of parts is odd. And even n have n-color odd self-inverse compositions where the number of parts is even. Let $S_o(\nu, m)$ denote the number of n-color odd self-inverse compositions of ν into m parts. Then we can get the following formula easily.

$$S_o(2k+1,2l+1) = \sum_{t=1}^{2k-1} \sum_{i+j=\frac{2k+1-t-2l}{4}} \binom{2l+i-1}{2l-1} \binom{l}{j}.$$

where t is odd, k, l are integers and $k, l \ge 0$.

$$S_o(2k, 2l) = \sum_{i+j=\frac{k-l}{2}} \binom{2l+i-1}{2l-1} \binom{l}{j}.$$

		-		.)							
ν m ν	1	3	5	7	9	11	13	15	17	19	s_{ν}
1	1	0	0	0	0	0	0	0	0	0	1
3	3	1	0	0	0	0	0	0	0	0	4
5	5	3	1	0	0	0	0	0	0	0	9
7	7	8	3	1	0	0	0	0	0	0	19
9	9	16	11	3	1	0	0	0	0	0	40
11	11	29	25	16	3	1	0	0	0	0	83
13	13	49	56	34	17	3	1	0	0	0	173
15	15	72	110	96	43	20	3	1	0	0	360
17	17	104	206	200	143	52	23	3	1	0	749
19	19	145	346	442	317	199	61	26	3	1	1559

Table 1: $S_o(\nu, m)$ when both ν and m are odd

where k, l are integers and $k, l \ge 0$.

Now $S_o(\nu, m)$ with $\nu, m = 1, 2, \dots, 20$ is given in Tables 1 and 2.

From Tables 1 and 2 we can see the recurrence formulas for the number of the *n*-color odd self-inverse compositions of ν . So we prove the following recurrence relations.

ν m ν	2	4	6	8	10	12	14	16	18	20	t_{ν}
2	1	0	0	0	0	0	0	0	0	0	1
4	0	1	0	0	0	0	0	0	0	0	1
6	3	0	1	0	0	0	0	0	0	0	4
8	0	6	0	1	0	0	0	0	0	0	7
10	5	0	9	0	1	0	0	0	0	0	15
12	0	19	0	12	0	1	0	0	0	0	32
14	7	0	42	0	15	0	1	0	0	0	65
16	0	44	0	74	0	18	0	1	0	0	137
18	9	0	138	0	115	0	21	0	1	0	284
20	0	85	0	316	0	165	0	24	0	1	591

Table 2: $S_o(\nu, m)$ when both ν and m are even

Theorem 10. Let s_{ν} and t_{ν} denote the number of n-color odd self-inverse compositions for $2\nu + 1$ and 2ν , respectively. Then

(1)
$$s_0 = 1, \ s_1 = 4, \ s_2 = 9, \ s_3 = 19$$
 and
 $s_{\nu} = s_{\nu-1} + 2s_{\nu-2} + s_{\nu-3} - s_{\nu-4}$ for $\nu > 3$
(2) $t_1 = 1, \ t_2 = 1, \ t_3 = 4, \ t_4 = 7$ and
 $t_{\nu} = t_{\nu-1} + 2t_{\nu-2} + t_{\nu-3} - t_{\nu-4}$ for $\nu > 4$.

Proof. (Combinatorial) (1) To prove that $s_{\nu} = s_{\nu-1} + 2s_{\nu-2} + s_{\nu-3} - s_{\nu-4}$, we split the *n*-color odd self-inverse compositions enumerated by $s_{\nu} + s_{\nu-4}$ into four classes:

(A) s_{ν} with 1_1 on both ends.

(B) s_{ν} with 3_3 on both ends.

(C) s_{ν} with h_t on both ends, h > 1, $1 \le t \le h - 2$ and *n*-color odd self-inverse compositions of $2\nu + 1$ of form $(2\nu + 1)_u$, $1 \le u \le 2\nu - 3$.

(D) s_{ν} with h_t on both ends except 3_3 , h > 1, $h - 1 \le t \le h$, $(2\nu + 1)_u$, $2\nu - 2 \le u \le 2\nu + 1$ and those enumerated by $s_{\nu-4}$.

We transform the *n*-color odd self-inverse compositions in class (A) by deleting 1_1 on both ends. This produces *n*-color odd self-inverse compositions enumerated by $s_{\nu-1}$. Conversely, for any *n*-color odd composition enumerated by $s_{\nu-1}$ we add 1_1 on both ends to produce the elements of the class (A). In this way we establish that there are exactly $s_{\nu-1}$ elements in the class (A).

Similarly, we can produce $s_{\nu-3}$ *n*-color odd self-inverse compositions in class (B) by deleting 3_3 on both ends.

Next, we transform the *n*-color odd self-inverse compositions in class (C) by subtracting 2 from h, that is, replacing h_t by $(h-2)_t$ and subtracting 4 from $2\nu + 1$ of $(2\nu + 1)_u$, $1 \leq u \leq 2\nu - 3$. This transformation also establishes the fact that there are exactly $s_{\nu-2}$ elements in class (C).

Finally, we transform the elements in class (D) as follows: Subtract 2_2 from h_t on both ends, that is, replace h_t by $(h-2)_{(t-2)}$, h > 3, $h-1 \le t \le h$, while replace h_t by $(h-2)_{(t-1)}$ when h = 3, t = 2. We will get those *n*-color odd self-inverse compositions of $2\nu - 3$ with h_t on both ends, $h-1 \le t \le h$ except self-inverse odd compositions in one part. We also replace $(2\nu+1)_u$ by $(2\nu-3)_{u-4}$, $2\nu-2 \le u \le 2\nu+1$. To get the remaining *n*-color odd compositions from $s_{\nu-4}$ we add 2 to both ends, that is, replace h_t by $(h+2)_t$. For *n*-color odd self-inverse compositions into one part we add 4, that is, replace $(2\nu-7)_t$ by $(2\nu-3)_t$, $1 \le t \le 2\nu - 7$. We see that the number of *n*-color odd self-inverse compositions in class (D) is also equal to $s_{\nu-2}$. Hence, we have $s_{\nu} + s_{\nu-4} = s_{\nu-1} + 2s_{\nu-2} + s_{\nu-3}$. viz., $s_{\nu} = s_{\nu-1} + 2s_{\nu-2} + s_{\nu-3} - s_{\nu-4}$.

(2) From Theorem 8 and Theorem 9, we obtain the recurrence formula of t_{ν} easily. Thus, we complete the proof.

We easily get the following generating functions by the recurrence relations.

Corollary 11.

(1)
$$\sum_{\nu=0}^{\infty} s_{\nu}q^{\nu} = \frac{(1+q)^3}{1-q-2q^2-q^3+q^4}.$$

(2)
$$\sum_{\nu=1}^{\infty} t_{\nu}q^{\nu} = \frac{q+q^3}{1-q-2q^2-q^3+q^4}.$$

3 Acknowledgments

The author would like to thank the referee for his/her suggestions and comments which have improved the quality of this paper.

References

- A. K. Agarwal and G. E. Andrews, Rogers-Ramanujan identities for partition with 'n copies of n', J. Combin. Theory Ser. A 45 (1987), 40–49.
- [2] A. K. Agarwal, N-colour compositions, Indian J. Pure Appl. Math. 31 (2000), 1421– 1427.
- [3] A. K. Agarwal, An analogue of Euler's identity and new combinatorial properties of n-colour compositions, J. Comput. Appl. Math. 160 (2003), 9–15.
- [4] G. E. Andrews, *The Theory of Partitions*, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1998.
- [5] Yu-Hong Guo, Some identities between partitions and compositions, Acta Math. Sinica (Chin. Ser.) 50 (2007), 707–710.
- [6] Yu-Hong Guo, N-colour even self-inverse compositions, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), 27–33.
- [7] Yu-Hong Guo, Some *n*-color compositions, *J. Integer Sequences* **15** (2012), Article 12.1.2.
- [8] B. Hopkins, Spotted tilling and n-color compositions, Integers 12B (2012/13), Article A6.
- [9] P. A. MacMahon, Combinatory Analysis, AMS Chelsea Publishing, 2001.
- [10] G. Narang and A. K. Agarwal, N-colour self-inverse compositions, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 257–266.

2010 Mathematics Subject Classification: 05A17. Keywords: n-color odd self-inverse composition, generating function, explicit formula, recurrence formula.

Received November 18 2013; revised versions received May 5 2014; September 16 2014. Published in *Journal of Integer Sequences*, November 4 2014.

Return to Journal of Integer Sequences home page.