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Abstract

In a previous paper, we defined the notion of inset. In this paper, we first derive a

generating function for the number of insets in terms of one of its parameters. Using

this function, we connect insets with some important classes of integers.

We first prove that the numbers of integer partitions satisfy a system of homoge-

neous linear equations. Then we derive an explicit formula for the coefficients of the

Euler product function in terms of the number of insets. As a consequence, we express

the Euler pentagonal number theorem in terms of insets.

Finally, we derive an explicit formula for the entries of the Mahonian triangle.

1 Introduction

Janjić and Petković [1] defined the notion of an inset of a set in the following way. Let n

and q1, . . . , qn be positive integers and m and k nonnegative integers. Suppose that a set
X consists of n blocks Xi, (i = 1, 2, . . . , n), Xi having qi elements, and a block Y with m

elements. Furthermore, let Qn denote the set {q1, . . . , qn}.
An (n+ k)-inset of X is a subset S of X such that |S| = n+ k and S ∩Xi 6= ∅ for all i.

The number of (n+ k)-insets of X is denoted by
(

m,n

k,Qn

)

. In the case n = 1, when Q1 = {q1},

we write
(

m,n

k,q1

)

.

In this paper, we derive a generating function for the sequence
(

m,n

k,Qn

)

, (m = 0, 1, . . .).
This function connects the notion of insets with some well-known classes of integers.

We first establish a connection with integer partitions by proving that the numbers of
partitions, with parts in a given set, satisfy a system of homogeneous linear equations.
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Then we derive an explicit formula for the coefficients of the Euler product function in
terms of insets. We also show that the Euler pentagonal number theorem may be expressed
in terms of insets.

Finally, we derive an explicit formula for the entries of the Mahonian triangle. To our
knowledge, such a formula has not been put forward until now.

2 The generating function

Theorem 1. Let n be a positive integer, Qn = {q1, . . . , qn} a set of n positive integers, and
k a nonnegative integer such that k −

∑n

i=1(qi − 1) ≥ 0.
Then we have

∏n

i=1(1− xqi)

(1− x)n+k+1
=

∞
∑

i=0

(

i+ s, n

k,Qn

)

xi, (1)

where s = k −
∑n

i=1(qi − 1).

Proof. We prove formula (1) by induction on n.

Base case: n = 1:
Now formula (1) becomes

1− xq1

(1− x)k+2
=

∞
∑

i=0

(

i+ s, 1

k, q1

)

xi. (2)

From the binomial series

1

(1− x)k+1
=

∞
∑

i=0

(

k + i

k

)

xi,

we obtain
1− xq1

(1− x)k+2
=

∞
∑

i=0

(

k + i

k

)

xi ·

q1−1
∑

i=0

xi. (3)

We define bi = 1, (i = 0, . . . , q1 − 1), and bi = 0 otherwise. Multiplying the series on the
right-hand side of equation (3), we obtain

1− xq1

(1− x)k+2
=

∞
∑

i=0

[

i
∑

j=0

bj

(

k + i− j

k

)

]

xi. (4)

Let ai denote the coefficient of xi in (4). To complete the proof of (2) it suffices to show
that ai =

(

i+s,1
k,q1

)

for every i.
We proceed by considering two cases: i ≤ q1 − 1 and i > q1 − 1.
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1. First assume that i ≤ q1 − 1. We have

ai =

(

k + i

k

)

+

(

k + i− 1

k

)

+ · · ·+

(

k

k

)

.

Using the horizontal recurrence for the binomial coefficients, we conclude that

ai =

(

k + i+ 1

k + 1

)

.

Since s = k − q1 + 1 we have

ai =

(

s+ q1 + i

k + 1

)

.

According to formula (6) from [1], we have

(

s+ i, 1

k, q1

)

=

(

s+ i+ q1

k + 1

)

−

(

s+ i

k + 1

)

.

Since i ≤ q1 − 1, we have
(

s+i

k+1

)

=
(

k−q1+1+i

k+1

)

= 0, which implies

ai =

(

s+ i, 1

k, q1

)

, for all i = 0, . . . , q1 − 1. (5)

2. Now assume that i > q1 − 1. Then we have

ai =

(

k + i

k

)

+

(

k + i− 1

k

)

+ · · ·+

(

k + i− q1 + 1

k

)

,

which, by the same horizontal recurrence relation used earlier, implies that

ai =

(

k + i+ 1

k + 1

)

−

(

s+ i

k + 1

)

.

Using again the formula (6) in [1], we conclude that

ai =

(

s+ i, 1

k, q1

)

, for all i ≥ q1. (6)

Hence, from formulae (5) and (6), we conclude that (2) is true. This completes the proof
of the base case: n = 1.
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Inductive step: Assume that formula (1) holds for n ≥ 1 and deduce that it holds for n+ 1
as well.

In other words, assuming that Qn+1 = Qn ∪ {qn+1} and that s̄ = k −
∑n+1

i=1 (qi − 1) ≥ 0,
we need to derive the following formula from (1):

∏n+1
i=1 (1− xqi)

(1− x)n+k+2
=

∞
∑

i=0

(

i+ s̄, n+ 1

k,Qn+1

)

xi. (7)

Let s = k−
∑n

i=1(qi−1). It follows from the definition of s̄ and the fact that qn+1−1 ≥ 0
that s = s̄+ qn+1 − 1 ≥ 0.

Therefore we can apply the induction hypothesis and multiply both sides of formula (1)
by

1− xqn+1

1− x
=

qn+1−1
∑

i=0

xi,

to obtain
∏n+1

i=1 (1− xqi)

(1− x)n+k+2
=

∞
∑

i=0

(

i+ s, n

k, Qn

)

xi ·

qn+1−1
∑

i=0

xi.

We let ai denote the coefficient of xi on the right-hand side of this equation. We have

ai =
i

∑

j=0

bj

(

i+ s− j, n

k,Qn

)

, (8)

where bj = 1, (0 ≤ j ≤ qn+1 − 1), and bj = 0 otherwise.
Consider the following two cases.

1. First assume that i < qn+1 − 1. We have

ai =
i

∑

j=0

(

i+ s− j, n

k,Qn

)

.

It follows that

ai =

qn+1−1
∑

j=0

(

i+ s− j, n

k,Qn

)

−

qn+1−1
∑

j=i+1

(

i+ s− j, n

k,Qn

)

. (9)

The term
(

i+s−j, n

k, Qn

)

, (j = i+1, . . .), according to its definition in [1], equals the number

of (n+ k)-insets of a set having

i+ s− j +
n

∑

j=1

qj <

n
∑

j=1

qj + s =
n+1
∑

j=1

qj + s̄− 1,
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elements. Since n + k =
∑n+1

i=1 qi + s̄ − 1, the above inequality would mean that we
have an (n+ k)-inset in a set with less than n+ k elements, which is impossible. This
implies that

(

i+s−j,n

k,Qn

)

= 0, (j ≥ i + 1), and therefore the second sum in formula (9)
equals 0.

Hence,

ai =

qn+1−1
∑

j=0

(

i+ s− j, n

k,Qn

)

.

Note that s = s̄ + qn+1 − 1. Introducing a new index of summation t = qn+1 − 1 − j

we obtain

ai =

qn+1−1
∑

t=0

(

i+ s̄+ t, n

k,Qn

)

.

Applying formula (12) from [1], we get

ai =

(

i+ s̄, n+ 1

k,Qn+1

)

,

and the assertion (7) is true.

2. Now assume that i ≥ qn+1 − 1. In this case, according to the fact that bj = 0, (j >

qn+1 − 1), in (8), we immediately have

ai =

qn+1−1
∑

j=0

(

i+ s− j, n

k,Qn

)

,

and the formula (7) follows in the same way as in the preceding case.

This completes the proof of the inductive step and shows that the statement of the theorem
is true.

3 Some applications

We shall first interpret equation (1) in terms of integer partitions. In what follows we write
Q instead of Qn.

Let p(Q, i), (i > 0) denote the number of partitions of i, the parts of which belong to
the set Q = {q1, q2, . . . , qn}. We put p(Q, 0) = 1.

Similar as for the standard partitions we consider the expression S = 1∏n
i=1

(1−xqi )
. Then

S can be written as

S = (1 + xq1 + x2q1 · · · ) · · · (1 + xqn + x2qn + · · · ).
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It follows that
S =

∑

(a1,...,ai)

xa1q1+···+anqn ,

where ai ≥ 0, (i = 1, 2, . . . , n). We conclude that the coefficient of xk in the preceding sum
equals p(Q, k).

We conclude that
∏n

i=1(1− xqi) is the inverse of the power series
∑

∞

i=0 p(Q, i)xi.
We write equation (1) in the form

n
∏

i=1

(1− xqi) =
n+k+1
∑

i=0

(−1)i
(

n+ k + 1

i

)

xi ·
∞
∑

i=0

(

i+ s, n

k,Q

)

xi,

The degree of the polynomial on the left-hand side of the preceding equation is N =
∑n

i=1 qi. It follows that

n
∏

i=1

(1− xqi) =
N
∑

i=0

[

i
∑

j=0

(−1)i−j

(

n+ k + 1

i− j

)(

j + s, n

k,Q

)

]

xi. (10)

If we let
n
∏

i=1

(1− xqi) =
∞
∑

i=0

aix
i,

where

ai =
i

∑

j=0

(−1)i−j

(

n+ k + 1

i− j

)(

j + s, n

k,Q

)

, (i = 0, 1, . . . , N), (11)

and ai = 0 otherwise, then
∑

∞

i=0 aix
i is the inverse of

∑

∞

i=0 p(Q, i)xi.
We thus obtain

Theorem 2. The numbers p(Q, i) satisfy the following system of homogeneous linear equa-
tions

a0p(Q, 0) = 1,
∑i

j=0 ai−jp(Q, j) = 0, (i = 1, 2, . . . , N).

Next, we derive an explicit formula for coefficients of expansion of the Euler product
function

∏

∞

i=1(1− xi).

Proposition 3. Assume that
∞
∏

i=1

(1− xi) =
∞
∑

i=0

bix
i. (12)

Then,

bn =
n

∑

j=0

(−1)n−j

(

n2+n+2
2

n− j

)(

j, n
n2−n

2
, Q

)

. (13)
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Proof. We consider the particular case of equation (10), when qi = i, (i = 1, 2, . . . , n), and
s = 0. In this case, we have k =

∑n

i=1(i− 1) = n2−n
2

, and N = n2+n
2

.
The formula (10) becomes

n
∏

i=1

(1− xi) =

n2
+n

2
∑

i=0

[

i
∑

j=0

(−1)i−j

(

n2+n+2
2

i− j

)(

j, n
n2−n

2
, Q

)

]

xi.

In particular, taking i = n in the right-hand side, we obtain (13).
Note that the coefficient of xn in the expansions

∏n

i=1(1 − xi) and
∏

∞

i=1(1 − xi) are the
same, since the next factor 1 − xn+1 that would be included in the finite product will keep
all the terms of degree strictly less than n+ 1 the same.

The Euler pentagonal number theorem may be stated in terms of insets in the following
way:

Proposition 4. Let n be a positive integer. Then,

n
∑

j=0

(−1)n−j

(

n2+n+2
2

n− j

)(

j, n
n2−n

2
, Q

)

=

{

(−1)t, if n = t(3t±1)
2

;

0, otherwise.

Remark 5. Formula (13) concerns the sequence A010815 of pentagonal numbers. In this
sense, Theorem 1 may be considered as an extension of the Euler pentagonal number theorem.

The series on the right-hand side of (12) is the inverse of the series
∑

∞

i=0 p(i)x
i, where

p(0) = 1, and p(i) is the number of partitions of i. We thus obtain

Proposition 6. The numbers of partitions satisfy the following system of homogeneous linear
equations

i
∑

j=0

b(j)p(i− j) = 0, (i = 1, 2, . . .), (14)

and p(0) = b(0) = 1, where b’s are given by (13).

Remark 7. This proposition concerns the sequence A000041.

Remark 8. If one could solve the system (14), one would obtain the formula for p(n). Since
the system (14) is symmetric with respect to b’s and p’s, the expression of p(n) in terms of
b’s is the same as the expression of b(n) in terms of p’s.

For example,

p(5) = −b(1)5 − 5b(1)3b(2)− 3b(1)2b(3)− 3b(1)b(2)2 + 2b(1)b(4) + 2b(2)b(3)− b(5)
b(5) = −p(1)5 − 5p(1)3p(2)− 3p(1)2p(3)− 3p(1)p(2)2 + 2p(1)p(4) + 2p(2)p(3)− p(5).
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Finally, as a consequence of Theorem 1, we derive an explicit formula for entries of the
Mahonian triangle A008302, which we denote by T (u, v).

The number T (u, v) is defined to be the number of permutations of Su which have exactly
v inversions.

It is well known that the generating function for the numbers T (u, v) is

u
∏

i=1

1− xi

1− x
.

In other words
u
∏

i=1

1− xi

1− x
=

∞
∑

v=0

T (u, v)xv. (15)

On the other hand, the product on the left hand side of the previous formula is a polynomial
in x and its degree is 1 + · · ·+ (u− 1) = u2−u

2
. Hence T (u, v) = 0 for all v > u2−u

2
. Our next

theorem determines the values for T (u, v), when v ≤ u2−u
2

.

Theorem 9. The entries T (u, v) of the Mahonian triangle satisfy the following equality

T (u, v) =
v

∑

i=0

(−1)v−i

(

u2−u+2
2

v − i

)(

i, u
u2−u

2
, Q

)

, for all v = 0, 1, . . . ,
u2 − u

2
,

where Q = {1, 2, . . . , u}.

Proof. Note first that the generating function for the numbers T (u, v) can be written as

u
∏

i=1

1− xi

1− x
=

∏u

i=1(1− xi)

(1− x)u+k+1
· (1− x)k+1.

Now we can apply Theorem 1 to the right-hand side of the above equality. We assume
that k = u2−u

2
.

Note first that the condition s ≥ 0, in Theorem 1, is satisfied. For qi = i for all i = 1, . . . , u
implies s = k −

∑u

i=1(qi − 1) = k −
∑u

i=1(i− 1) = 0. It follows from formula (1) that

u
∏

i=1

1− xi

1− x
=

∞
∑

i=0

(

i, u
u2−u

2
, Q

)

xi ·

u2−u+2

2
∑

i=0

(−1)i
(

u2−u+2
2

i

)

xi.

As explained earlier, the degree of the polynomial on the left-hand side of the preceding
equation equals u2−u

2
. It is easy to see that the coefficient of xv on the right hand side equals

v
∑

i=0

(−1)v−i

(

u2−u+2
2

v − i

)(

i, u
u2−u

2
, Q

)

.

The assertion of the theorem now follows from formula (15).
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We also have

Corollary 10. For v > u2−u
2

, we have

v
∑

i=0

(−1)v−i

(

u2−u+2
2

v − i

)(

i, u
u2−u

2
, Q

)

= 0.
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