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Abstract

In 1858, Stern introduced an array, later called the diatomic array. The array is
formed by taking two values a and b for the first row, and each succeeding row is
formed from the previous by inserting c+d between two consecutive terms with values
c, d. This array has many interesting properties, such as the largest value in a row
of the diatomic array is the (r + 2)-th Fibonacci number, occurring roughly one-third
and two-thirds of the way through the row. In this paper, we show each of the second
and third largest values in a row of the diatomic array satisfy a Fibonacci recurrence
and can be written as a linear combination of Fibonacci numbers. The array can be
written in terms of a recursive sequence, denoted s(n) and called the Stern sequence.
The diatomic array also has the property that every third term is even. In function
notation, we have s(3n) is always even. We introduce and give some properties of the
related sequence defined by w(n) = s(3n)/2.

1 Historical background

The Stern sequence, denoted by s(n), satisfies the recurrences

s(2n) = s(n) and s(2n+ 1) = s(n+ 1) + s(n)

for n ≥ 1, with s(0) = 0 and s(1) = 1. The first few values of this sequence are

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, . . .
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This sequence has many properties, including s(n) is even if and only if 3 divides n, and

2r+1
−1

∑

n=2r

s(n) = 3r.

In 1858, Stern [9] constructed an array by taking two values a and b, which give the first
row, and then he formed the next row by rewriting the previous row and inserting the sum
a+ b between its summands. Stern studied the properties of this general array, but he also
examined the case where a = b = 1. The numerous properties of this (1, 1) array, later called
the diatomic array by Lehmer, are summarized by Lehmer [4]. The diatomic array is given
in Table 1.

1 1
1 2 1

1 3 2 3 1
1 4 3 5 2 5 3 4 1

1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2 9 7 12 5 13 8 11 3 10 7 11 4 9 5 6 1

Table 1: Diatomic Array for s(n)

One of the most obvious properties of the diatomic array is the symmetry. In terms of
the sequence notation, the symmetry is noted as

s(n) = s(n∗) where n∗ := 3 · 2r − n for 2r ≤ n ≤ 2r+1. (1)

Stern also considered the array starting with (0, 1), given in Table 2, and this array looks
more like the sequence s(n). In fact, the r-th row of the (0, 1) array is given by s(n) for
0 ≤ n ≤ 2r, and the r-th row of the diatomic array is given by s(n) for 2r ≤ n ≤ 2r+1. For

0 1
0 1 1

0 1 1 2 1
0 1 1 2 1 3 2 3 1

0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1
0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7 3 8 5 7 2 7 5 3 3 7 4 5 1

Table 2: (0, 1) Array

more information, Reznick [7] gives many recurrence and regularity properties of the Stern
sequence, and Northshield [6] also gives a nice history of the sequence. See also sequence
A002487 in Sloane’s Online Encyclopedia of Integer Sequences [8].
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2 Largest values

In 1878, Lucas [5] studied Stern’s diatomic array, and noted that the largest value in the
r-th row is a Fibonacci number, occurring roughly at one-third and two-thirds of the way in
the row. We now ask, what are the second and third largest values in a row of the diatomic
array?

Definition 1. Let Lm(r) denote the m-th largest distinct value in the r-th row of the Stern

sequence. The maximum of the r-th row is denoted by L1(r), the second largest value is
denoted by L2(r), and so forth.

We restate Lucas’s theorem, which was also later proved by Lehmer [4].

Theorem 2. For all r ≥ 0, we have L1(r) = Fr+2. Moreover, this maximum occurs for the

values nr = (4 · 2r − (−1)r)/3, as well as n∗

r = (5 · 2r + (−1)r)/3 by symmetry.

This theorem is proved by an easy induction, which we omit. The relationship between
the position of the maximum of the r-th row and that of the (r−1)-th row is quite important.
We have

nr = 2nr−1 − (−1)r, (2)

which means the maximum for the r-th row will alternate between appearing on the left or
right side of the previous maximum in the diatomic array. Similarly, n∗

r = 2n∗

r−1+(−1)r, by
the mirror symmetry of the second half of the row.

3 Second Largest Value for s(n)

Using Mathematica, we can easily compute the second largest value in a particular row of the
diatomic array. The second largest values are given in Table 3, and they follow a Fibonacci
recurrence relation, L2(r) = L2(r − 1) + L2(r − 2), for r ≥ 6. However, starting in the 4th
row, there are 4 occurrences of the second largest value. Two of them come from adding the
second largest values from the two preceding rows, L2(r−1)+L2(r−2), while the other two
come from a linear combination of previous maximum values, 2L1(r − 2) + L1(r − 4). The
second way of obtaining the second largest value, from 2L1(r − 2) + L1(r − 4), will occur
either 2 to the left or right of where L1(r) occurs in the row. The Stern sequence achieves
these second largest values for explicitly describable n.

Definition 3. For r ≥ 4, let

n2,1(r) :=
17 · 2r−2 − (−1)r−1

3
and n2,2(r) :=

16 · 2r−2 − 7(−1)r

3
.

By the symmetry defined earlier in (1), we have

n∗

2,1(r) =
19 · 2r−2 + (−1)r−1

3
and n∗

2,2(r) =
20 · 2r−2 + 7(−1)r

3
.
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Table 3: Second Largest Values of s(n) in rows

row r n L2(r)
1 2, 4 1
2 6 2
3 9, 15 4
4 19, 23, 25, 29 7
5 45, 51 12
6 83, 91, 101, 109 19
7 173, 181, 203, 211 31
8 339, 363, 405, 429 50
9 685, 725, 811, 851 81
10 1363, 1451, 1621, 1709 131
11 2733, 2901, 3243, 3411 212
12 5459, 5803, 6485, 6829 343

Note that n2,1(r) and n2,2(r) coalesce at r = 5 so that there are only two occurrences of
L2(5).

We observe s(n2,1(r)) and s(n∗

2,1(r)) give the second largest value in the r-th row as a
sum of preceding second largest values, and s(n2,2(r)) and s(n∗

2,2(r)) give the second largest
value of the r-th row as a linear combination of previous maximum values. Also note n2,1(r)
has a similar recurrence relation as nr in (2):

n2,1(r) =
17 · 2r−2 + 2(−1)r−1 − 3(−1)r−1

3
= 2n2,1(r − 1) + (−1)r. (3)

We will also need
n2,2(r) = 4nr−2 − (−1)r = nr − 2(−1)r, (4)

and the last equality makes it explicit that the second way of obtaining the second largest
value, from
2L1(r− 2) +L1(r− 4), will occur either two to the left or right of where L1(r) occurs in the
row.

Theorem 4. (i) L2(r) = Fr+2 − Fr−3 = L1(r)− Fr−3, for r ≥ 4.

(ii) s(n2,1(r)) = s(n∗

2,1(r)) = s(n2,2(r)) = s(n∗

2,2(r)) = L2(r), for r ≥ 4.

(iii) For n2,1(r) and n∗

2,1(r), L2(r) arises from the sum L2(r − 1) + L2(r − 2), for r ≥ 6.

(iv) For n2,2(r) and n∗

2,2(r), L2(r) arises from the sum 2L1(r − 2) + L1(r − 4), for r ≥ 8.
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Proof. The induction base is clear and easily verified. Assume (i)-(iv) hold for all rows before
and including the r-th row, with r ≥ 8.

We first show that besides the maximum value, there is no element larger than L2(r) +
L2(r−1) in the (r+1)-th row. If 2k ∈ [2r+1, 2r+2], then using the induction hypothesis from
part (i), we find that for all the even values in the (r + 1)-th row

s(2k) = s(k) ≤ L1(r) = Fr+2 < Fr+2 + 2Fr−1 = Fr+3 − Fr−2 = L2(r) + L2(r − 1).

We now want to obtain a bound on the odd values in the (r+1)-th row, and more specifically
s(4k ± 1). Now let k ∈ [2r−1, 2r] such that 4k ± 1 ∈ (2r+1, 2r+2). We examine some special
cases first. If k = nr−1, or k = n∗

r−1, we have

s(2nr−1 − (−1)r) = s(nr) = L1(r) = s(n∗

r) = s(2n∗

r−1 + (−1)r),

which implies s(2nr−1+(−1)r) < L1(r) and s(2n∗

r−1−(−1)r) < L1(r). Similarly, if k = 2nr−2

or k = 2n∗

r−2, we have

s(2 · 2nr−2 + (−1)r) = s(nr) = L1(r) = s(n∗

r) = s(2 · 2n∗

r−2 − (−1)r),

which means s(2 · 2nr−2− (−1)r) < L1(r) and s(2 · 2n∗

r−2+(−1)r) < L1(r). Except for these
special cases where k = nr−1, n

∗

r−1, 2nr−2, or 2n
∗

r−2, we have s(2k±1) < L1(r), and therefore
s(2k ± 1) ≤ L2(r). Then we have

s(4k ± 1) = s(2k) + s(2k ± 1) = s(2k ± 1) + s(k) ≤ L2(r) + L2(r − 1).

We now examine the special cases more closely. If k = nr−1, we have

s(4nr−1 − (−1)r) = s(2nr−1) + s(2nr−1 − (−1)r) = s(nr−1) + s(nr) = L1(r + 1),

but we can disregard this (largest) value, since we are looking for the second largest value.
Now, we also have

s(4nr−1 + (−1)r) = s(2nr−1) + s(2nr−1 + (−1)r)

= s(nr−1) + s(nr−1) + s(nr−1 + (−1)r)

= 2s(nr−1) + s(2nr−2 + 2(−1)r)

= 2s(nr−1) + s(nr−2 + (−1)r)

= 2s(nr−1) + s(2nr−3 − (−1)r + (−1)r)

= 2s(nr−1) + s(nr−3)

= 2L1(r − 1) + L1(r − 3). (5)

Note that by symmetry we have s(4n∗

r−1 − (−1)r) = 2L1(r − 1) + L1(r − 3) and s(4n∗

r−1 +

5



(−1)r) = L1(r). Lastly, if k = 2nr−2 we have

s(4 · 2nr−2 ± 1) = 2s(nr−2) + s(2nr−2 ± 1)

=

{

2s(nr−2) + s(2nr−2 + (−1)r)

2s(nr−2) + s(2nr−2 − (−1)r)

=

{

2s(nr−2 + s(nr−1) = 2L1(r − 2) + L1(r − 1)

3s(nr−2) + s(nr−4) = 3L1(r − 2) + L1(r − 4)

< 2L1(r − 1) + L1(r − 3).

So now we only need compare 2L1(r − 1) + L1(r − 3) to L2(r) + L2(r − 1). However, using
part (i) from the induction hypothesis, we have

L2(r) + L2(r − 1) = Fr+2 − Fr−3 + Fr+1 − Fr−4

= Fr+3 − Fr−2 = L1(r + 1)− L1(r − 4)

= 2L1(r − 1) + L1(r − 3).

Thus, all elements in the (r + 1)-th row, besides the maximum, are less than or equal to
L2(r) + L2(r − 1), and so we have

L2(r + 1) = Fr+3 − Fr−2 = L2(r) + L2(r − 1) = 2L1(r − 1) + L1(r − 3).

All that is left is to verify the second largest values occur for the n given earlier. Evaluating
s(n2,1(r + 1)) and using (3), we have

s(n2,1(r + 1)) = s(2n2,1(r) + (−1)r+1) = s(n2,1(r)) + s(n2,1(r)− (−1)r)

= s(n2,1(r)) + s(2n2,1(r − 1))

= s(n2,1(r)) + s(n2,1(r − 1))

= L2(r) + L2(r − 1).

We also note that by (4) we have n2,2(r + 1) = 4nr−1 + (−1)r, and in (5) we see that
s(4nr−1 + (−1)r) also gives L2(r). Therefore, the second largest values occur where we
expect. Finally, by the symmetry of the Stern sequence in rows, we have

s(n∗

2,1(r + 1)) = s(n2,1(r + 1)) = L2(r + 1) = s(n2,2(r + 1)) = s(n∗

2,2(r + 1)).

4 Third Largest Value for s(n)

The third largest values in a row for s(n), given in Table 4, also eventually satisfy a Fibonacci
recurrence. This recurrence starts in the 10th row, and rows 8 and 9 give the two initial
values. Similar to the second largest value in a row, there are 4 occurrences of the third
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Table 4: Third Largest Values of s(n) in rows

row r n L3(r)
1 N/A N/A
2 4 1
3 10, 14 3
4 17, 22, 26, 31 5
5 37, 41, 55, 59 11
6 75, 87, 105, 117 18
7 165, 219 30
8 331, 347, 421, 437 49
9 693, 843 80
10 1355, 1387, 1685, 1717 129
11 2741, 2773, 3371, 3403 209
12 5451, 5547, 6741, 6837 338

largest value. By symmetry, two of them come from L3(r − 1) + L3(r − 2), and the other
two come from the sum of (2L1(r− 4) + L1(r− 6)) + (3L1(r− 4) + 2L1(r− 6)), which adds
to 5L1(r − 4) + 3L1(r − 6).

The values of n where the third largest values occur also follow a pattern, starting in the
eighth row. For the outside left and right values, it appears that the next value is two times
the previous value plus or minus 31. The inside right and left values follow the pattern, two
times the previous value plus or minus one. Taking this recurrences and iterating them, we
obtain the following apparent closed form for these values.

Definition 5. For r ≥ 8, let

n3,1(r) :=
64 · 2r−4 − 31(−1)r

3
and n3,2(r) :=

65 · 2r−4 + (−1)r

3
.

By symmetry, we have

n∗

3,1(r) =
80 · 2r−4 + 31(−1)r

3
and n∗

3,2(r) =
79 · 2r−4 − (−1)r

3
.

We will show that n3,1(r), n
∗

3,1(r), n3,2(r), and n∗

3,2(r) give the third largest values for s(n)
in the r-th row. It is useful to note

n3,1(r) =
4 · 2r − (−1)r − 30(−1)r

3
= nr − 10(−1)r. (6)

This tells us that the first (and by symmetry, the last) occurrence of the third largest value
in the row will be either 10 to the left or 10 to the right of the largest values, depending on
the parity of the row. We also remark that n3,2(r) satisfies the recurrence relations

n3,2(r) = 2n3,2(r − 1) + (−1)r and n3,2(r)− (−1)r = 2n3,2(r − 1). (7)
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Theorem 6. (i) L3(r) = L2(r)− Fr−7 = Fr+1 + 5Fr−4 = L1(r)− 3Fr−5, for r ≥ 8.

(ii) s(n3,1(r)) = s(n∗

3,1(r)) = s(n3,2(r)) = s(n∗

3,2(r)) = L3(r), for r ≥ 8.

(iii) For n3,1(r) and n∗

3,1(r), L3(r) arises from the sum 5L1(r − 4) + 3L1(r − 6), for r ≥ 8.

(iv) For n3,2(r) and n∗

3,2(r), L3(r) arises from the sum L3(r − 1) + L3(r − 2), for r ≥ 10.

Proof. We proceed by induction. Again, the base case is easily verified. Assume the induction
hypotheses hold for all values below r > 10. We will first verify that L3(r) + L3(r − 1) and
5L1(r − 3) + 3L1(r − 5) are achieved at the expected values. We will then show that all
values in the (r + 1)-th row, except for L1(r + 1) and L2(r + 1), are less than or equal to
L3(r) + L3(r − 1) = Fr+2 + 5Fr−3.

We first verify that s(n3,2(r + 1)) = L3(r) + L3(r − 1). Using (7), we have

s(n3,2(r + 1)) = s(2n3,2(r)− (−1)r) = s(n3,2(r)) + s(n3,2(r)− (−1)r)

= L3(r) + s(2n3,2(r − 1))

= L3(r) + L3(r − 1).

Now considering s(n3,1(r + 1)), and using (6) and (2) we have

s(n3,1(r + 1)) = s(nr+1 + 10(−1)r) = s(2nr + (−1)r + 10(−1)r)

= s(nr + 5(−1)r) + s(nr + 5(−1)r + (−1)r)

= s(2nr−1 − (−1)r + 5(−1)r) + s(2nr−1 + 6(−1)r − (−1)r)

= s(nr−1 + 2(−1)r) + s(nr−1 + 3(−1)r) + s(nr−1 + 3(−1)r − (−1)r)

= 2s(nr−1 + 2(−1)r) + s(nr−1 + 3(−1)r)

= 2s(2nr−2 + (−1)r + 2(−1)r) + s(2nr−2 + (−1)r + 3(−1)r)

= 2s(nr−2 + (−1)r) + 2s(nr−2 + 2(−1)r) + s(nr−2 + 2(−1)r)

= 2s(nr−3) + 3s(2nr−3 + (−1)r)

= 2s(nr−3) + 3s(nr−3) + 3s(nr−3 + (−1)r)

= 5s(nr−3) + 3s(2nr−4 + 2(−1)r)

= 5s(nr−3) + 3s(nr−4 + (−1)r)

= 5s(nr−3) + 3s(2nr−5)

= 5L1(r − 3) + 3L1(r − 5).

We also note by hypothesis (i), we have

L3(r) + L3(r − 1) = Fr+3 − 3Fr−4 = 5Fr−1 + 3Fr−3 = 5L1(r − 3) + 3L1(r − 5). (8)

We now show that all values in the (r + 1)-th row, except for L1(r + 1) and L2(r + 1), are
less than or equal to L3(r) + L3(r− 1) = Fr+2 + 5Fr−3. First note that for 2k ∈ [2r+1, 2r+2],
we have

s(2k) = s(k) ≤ L1(r) = Fr+2 < Fr+2 + 5Fr−3 = L3(r) + L3(r − 1).
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For the odd values in the (r + 1)-th row, we eliminate the cases that anything larger than
L3(r) + L3(r − 1) can come from the first, second or third largest values and a neighbor.
Now consider s(2k+1) = s(k)+ s(k+1), and let b represent the larger of s(k) and s(k+1),
which comes from the r-th row, and c denote the smaller value coming from the (r − 1)-th
row.

If b is L1(r), then c is either L1(r− 1) or L1(r− 2). However, L1(r) +L1(r− 1) gives the
largest value in the (r + 1)-th row, so we can ignore this value. Observe that

L1(r) + L1(r − 2) = Fr+2 + Fr < Fr+2 + 5Fr−3

is too small. So then it must be the case that b ≤ L2(r). Now, there are 2 distinct ways of
obtaining L2(r). If b = L2(r), then c could be L2(r− 1) or L2(r− 2). But L2(r) +L2(r− 1)
gives L2(r + 1) and we can ignore this value. We also have

L2(r) + L2(r − 2) = Fr+2 − Fr−3 + Fr − Fr−4 = Fr+2 + Fr−2 + 2Fr−4

< Fr+2 + 5Fr−3 = L3(r) + L3(r − 1),

so this value is too small. But if b = 2L1(r − 2) + L1(r − 4), then c is L1(r − 2) or
L1(r − 2) + L1(r − 4), and we only need to consider the latter. We have

2L1(r − 2) + L1(r − 4) + L1(r − 2) + L1(r − 4) = 3Fr + 2Fr−2

< Fr+2 + 5Fr−3 = L3(r) + L3(r − 1),

which implies b ≤ L3(r). If b = L3(r), there are 2 distinct ways of obtaining L3(r). If
b = L3(r), then c could be L3(r−1) or L3(r−2), but we can disregard these because we want
to find something larger. If b = 5L1(r−4)+3L1(r−6), then c could be 2L1(r−4)+L1(r−6)
or 3L1(r − 4) + 2L1(r − 6). We need only consider the latter, and we have

5L1(r − 4) + 3L1(r − 6) + 3L1(r − 4) + 2L1(r − 6) = 8Fr−2 + 5Fr−4

< Fr+2 + 5Fr−3 = L3(r) + L3(r − 1),

which implies b < L3(r). However c might be a large value in the (r − 1)-the row to make
up for b being so small. Now, we know c < b < L3(r), that c comes from the (r− 1)-th row,
and that c > L3(r − 1). If c = L1(r − 1), then b could only be L1(r − 2) + L1(r − 3) (since
we already eliminated b = L1(r)). But then b + c = 2L1(r − 1) + L1(r − 3) = L2(r + 1),
and we can also ignore this value. Then c must be L2(r − 1), and the only possibility for b
is L2(r − 1) + L2(r − 3) (as we already eliminated b = L2(r)). By Theorem 4 (i) and the
induction hypothesis (i), we have

L2(r + 1)− Fr−6 = L2(r) + L2(r − 1)− Fr−6

= L3(r) + Fr−7 + L3(r − 1) + Fr−8 − Fr−6

= L3(r) + L3(r − 1). (9)
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Using (9), we have

b+ c = 2L2(r − 1) + L2(r − 3)

= 2L1(r − 1)− 2Fr−4 + L1(r − 3)− Fr−6

= L2(r + 1)− 2Fr−4 − Fr−6

< L2(r + 2)− Fr−6 = L3(r) + L3(r − 1).

Finally, we have that c could be L2(r − 1) = 2L1(r − 3) + L1(r − 5) and b could be 3L1(r −
3) + 2L1(r − 5) or 3L1(r − 3) + L1(r − 5). Then by (8) we see

L3(r) + L3(r − 1) = 5L1(r − 3) + 3L1(r − 5) > 5L1(r − 3) + 2L1(r − 5),

so that 5L1(r−3)+2L1(r−5) is too small, while 5L1(r−3)+3L1(r−5) gives L3(r)+L3(r−1).
This eliminates all possibilities and shows nothing can be between L3(r) + L3(r − 1) and
L2(r+1), so that s(2k+1) ≤ L3(r)+L3(r−1). Thus, we have L3(r+1) = L3(r)+L3(r−1).

Since the next row in the diatomic array is formed by inserting the sum of two consecutive
terms in between them, it makes sense that the k-th largest value in the r-th row will satisfy
a Fibonacci recurrence. This appears to hold true for the 4th, 5th, and 6th (distinct) largest
value in a row, for a sufficiently large row value. We see in Table 5 a Fibonacci recurrence
starts at the 14th row for L4, the 18th for L5, and the 22nd row for L6. This leads us to the
following conjecture.

Conjecture 7. For all r ≥ 4m − 2, the m-th largest distinct value satisfies the recurrence
Lm(r) = Lm(r − 1) + Lm(r − 2).

Remark 8. By Theorems 4 (i) and 6 (i), we have L2(r) = Fr+2 − Fr−3 and L3(r) = L2(r)−
Fr−7. Note that L3(r) = Fr+2 − Fr−3 − Fr−7. Inspecting Table 5, we notice the following:

L4(r) =L3(r)− Fr−11 = Fr+2 − Fr−3 − Fr−7 − Fr−11 for r ≥ 12,

L5(r) =L4(r)− Fr−15 = Fr+2 − Fr−3 − Fr−7 − Fr−11 − Fr−15 for r ≥ 16, and

L6(r) =L5(r)− Fr−19 = Fr+2 − Fr−3 − Fr−7 − Fr−11 − Fr−15 − Fr−19 for r ≥ 20.

This leads us to another conjecture.

Conjecture 9. For r ≥ 4(m− 1), we have

Lm(r) = Lm−1(r)− Fr−(4m−5) = Fr+2 −

m
∑

j=2

Fr−(4j−5).
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Table 5: Lm of s(n) in rows

row r L1(r) L2(r) L3(r) L4(r) L5(r) L6(r)
3 5 4 3 2 1 N/A
4 8 7 5 4 3 2
5 13 12 11 10 9 8
6 21 19 18 17 16 15
7 34 31 30 29 27 26
8 55 50 49 47 46 45
9 89 81 80 79 76 75
10 144 131 129 128 123 121
11 233 212 209 208 207 199
12 377 343 338 337 335 322
13 610 555 547 546 545 542
14 987 898 885 883 882 877
15 1597 1453 1432 1429 1428 1427
16 2584 2351 2317 2312 2311 2309
17 4181 3804 3749 3741 3740 3739
18 6765 6155 6066 6053 6051 6050
19 10946 9959 9815 9794 9791 9790
20 17711 16114 15881 15847 15842 15841
21 28657 26073 25696 25641 25633 25632
22 46368 42187 41577 41488 41475 41473
23 75025 68260 67273 67129 67108 67105

5 The Distribution of Gaps

In a previous paper, the author [2] considered the classical question of the distribution of
values for the Stern sequence. A more modern question to consider is, what is the distribution
of gaps? There are numerous ways we could consider the gaps of the Stern sequence. First,
we can simply compute s(n+1)−s(n). Figure 2 plots the normalized difference for the 14th
row. Figure 2 looks like the plot of s(n), given in Figure 1, with also a reflection over the
x-axis. If n = 2ℓ, we have

s(n+ 1)− s(n) = s(2ℓ+ 1)− s(2ℓ) = s(ℓ+ 1).

If n = 2ℓ+ 1, then we have

s(n+ 1)− s(n) = s(2ℓ+ 2)− s(2ℓ+ 1) = −s(ℓ).

From this perspective, the distribution of gaps is the same problem as the distribution of
values.
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Figure 1: Values of s(n) in the 14th row
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Figure 2: s(n+ 1)− s(n) for the 14th row

Another way to approach this problem is to order a row from largest to smallest and
then take the difference of consecutive terms. Since values occur at least twice in a row, we
would have a lot of zeros. If we eliminate repeated values when taking the difference, then
we have a type of step function. Figures 3 and 4 give the differences of terms for the 10th
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Figure 3: Length of gaps for the 10th row
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Figure 4: Length of gaps for the 14th row

row and the 14th row, after they have been sorted and repeated elements deleted.
In the previous three sections, we discussed the largest three values in a row of the

diatomic array, and we can use this information here. First, we normalize the data by
dividing by the largest possible value Fr+2. By Theorems 4 and 6, we have the biggest gap
is Fr−3/Fr+2, and the next gap is Fr−7/Fr+2. If the conjecture Lk(r)−Lk−1(r) = Fr−(4k−5) is
true, then the distribution of gaps is Fr−(4k−5)/Fr+2 for 2 ≤ k ≤ (r+5)/4, with the smallest
value being 1/Fr+2. The largest gaps are fixed, regardless of the row. The smallest gaps
then approach 0, for the later rows.

This would mean the distribution of the gaps is not uniformly distributed. If Conjecture
9 is true, then we have the following conjecture.
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Conjecture 10. The normalized distribution of gaps for the Stern sequence is

φ−(4k−3) for 2 ≤ k ≤ (r + 5)/4.

6 A related sequence

We introduce a new and related sequence. As noted earlier, s(3n) is always even, so we
study the related sequence defined by

w(n) :=
1

2
s(3n).

How does this sequence behave? It has some similarities to the Stern sequence, such as
symmetry of terms in a row in the diatomic array, the same average order of magnitude, and
that the sum over powers of 2 is a power of 3. However, w(n) has a much more complicated
structure; it has no simple generating function and the recursive definition is not as short.

Table 6 gives a comparison of the first 64 values of s(n) and w(n). Analogous to the

Table 6: Values for s(n) and w(n)

n s(n) w(n) n s(n) w(n) n s(n) w(n) n s(n) w(n)
1 1 1 17 5 6 33 6 8 49 9 13
2 1 1 18 4 4 34 5 6 50 7 9
3 2 2 19 7 5 35 9 9 51 12 12
4 1 1 20 3 2 36 4 4 52 5 5
5 3 2 21 8 3 37 11 7 53 13 8
6 2 2 22 5 3 38 7 5 54 8 7
7 3 4 23 7 7 39 10 9 55 11 15
8 1 1 24 2 2 40 3 2 56 3 4
9 4 4 25 7 9 41 11 7 57 10 17
10 3 2 26 5 5 42 8 3 58 7 9
11 5 3 27 8 7 43 13 4 59 11 11
12 2 2 28 3 4 44 5 3 60 4 6
13 5 5 29 7 9 45 12 8 61 9 13
14 3 4 30 4 6 46 7 7 62 5 8
15 4 6 31 5 8 47 9 11 63 6 10
16 1 1 32 1 1 48 2 2 64 1 1

Stern sequence, we can arrange w(n) into a triangular array, where the k-th row is given
by w(n) with 2k/3 < n < 2k+1/3, with the convention of when k = 0, n = 0. The entries
in this triangular array are one half the even elements from the diatomic array of the Stern
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3 2 5 4 6 1 6 4 5 2 3
3 7 2 9 5 7 4 9 6 8 1 8 6 9 4 7 5 9 2 7 3

Table 7: Triangular Array for w(n)

sequence. What properties does this sequence have? How often is w(n) even? What is the
largest value in a row? What type of recurrence relations does this sequence have? Does it
have a nice expression for its generating function?

Looking at Table 6, we see many similarities to the Stern sequence. We notice the first
five values are the same, and that at powers of 2, the sequence is 1. The Stern sequence
has lots of beautiful recurrence relations, and while w(n) is a little more complicated, it has
some similar structure.

We now show the sequence w(n) can be defined independently of s(n).

Theorem 11. Let w(0) = 0, w(1) = 1 and w(3) = 2. For n ≥ 1, we have

w(2n) = w(n),

w(8n± 1) = w(4n± 1) + 2w(n), (10)

w(8n± 3) = w(4n± 1) + w(2n± 1)− w(n). (11)

Proof. Using the recurrence properties for s(n) and the definition of w(n), we immediately
see

w(2kn) =
1

2
s(3 · 2kn) =

1

2
s(3n) = w(n).

Looking at w(2n+ 1) we see

w(2n+ 1) =
1

2
s(3n+ 1) +

1

2
s(3n+ 2),

which is not very enlightening. However, if we consider arithmetic progressions modulo 4,
we see

w(4n+ 1) =
1

2
s(3n) + s(3n+ 1) = w(n) + s(3n+ 1), (12)

w(4n+ 3) =
1

2
s(3n+ 3) + s(3n+ 2) = w(n+ 1) + s(3n+ 2), (13)
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which is better, but still not completely in terms of w(n). We can use a more compact
notation and write (12) and (13) as

w(4n± 1) = w(n) + s(3n± 1).

Since we still do not have any recurrence formulas strictly in terms of w(n), we consider
arithmetic progressions modulo 8. Replace n with 2n and then 2n+ 1 in (12) and (13). We
then use the definition and recurrence relations for s(n), and rearranging the relations in
(12) and (13) to substitute in for s(3n+1) and s(3n+2), we obtain the recurrence relations
in (10) and (11), which completes the proof.

Remark 12. We remark that the Stern sequence is a 2-regular sequence. The referee observes
that, from the point of view of 2-regular sequences, the existence of recurrence formulas such
as in Theorem 11 are not surprising. For more on 2-regular sequences, see Allouche and
Shallit [1, Ch. 16].

A natural question to ask is, what is the largest value for w(n) in a row of its triangular
array? Not surprisingly, the largest value of w(n) depends on the three largest values for
s(n). Since L1(r), L2(r), and L3(r) each satisfy a Fibonacci recurrence which is not all even,
every third term in the sequence is even. This simply comes from the fact odd+ even = odd,
even+ odd = odd, and odd+ odd = even. So the maximum of w(n) in a row occurs precisely
when one of L1(r), L2(r),or L3(r) is even and then it is divided by two. Please note Table
8 gives a comparison of the three largest values for s(n) for easy reference. The boxed even
values in Table 8 are divided by 2 to yield the Mk’s in Table 9.

Let Mk be the maximum of w(n) in the k-th row. The maximum values for w(n) and
where they occur are given in Table 9. There is a pattern for Mk and where they occur,
based on every third row.

The Fibonacci numbers Fr are even when r is a multiple of 3, which implies L1(r) = Fr+2

will be even when r ≡ 1 (mod 3). Now, L2(r) = Fr+2 − Fr−3, and this will be even only
when r ≡ 2 (mod 3). If r ≡ 1 (mod 3), then Fr+2 is even and Fr−3 is odd, so that their sum
is odd. If r ≡ 0 (mod 3), then Fr+2 is odd, and Fr−3 would be even. If r ≡ 2 (mod 3), then
both are odd, so that Fr+2−Fr−3 is even. We have L3(r) = Fr+2−3Fr−5 is even when r ≡ 0
(mod 3).

However, it is important to note the row numbers for w(n) are shifted up one relative to
the row numbers for s(n). To avoid confusion, we denote the row numbers for s(n) with r
and the row numbers for w(n) with k (with k = r+1). We then have the following theorem.

Theorem 13. For k ≥ 5, the maximum value of w(n) in the k-th row is

1

2
Fk+1 −

1

2
Fk−4 when k ≡ 0 (mod 3),

1

2
Fk+1 −

3

2
Fk−6 when k ≡ 1 (mod 3),

1

2
Fk+1 when k ≡ 2 (mod 3).
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Table 8: Comparison of the Three Largest Values of s(n) in rows

row r L1(r) L2(r) L3(r)

1 2 1 N/A

2 3 2 1

3 5 4 3

4 8 7 5

5 13 12 11

6 21 19 18

7 34 31 30

8 55 50 49

9 89 81 80

10 144 131 129

11 233 212 209

12 377 343 338

Table 9: Maxima of w(n) in rows

row n Mk row n Mk

2 1 1 13 1817, 1849, 2247, 2279 169
3 2 1 14 3641, 4551 305
4 3, 5 2 15 7281, 7737, 8647, 9103 449
5 7,9 4 16 14567, 14791, 17977, 18201 716
6 15, 17 6 17 29127, 36409 1292
7 25, 29, 35, 39 9 18 58255, 61895, 69177, 72817 1902
8 57, 71 17 19 116505, 118329, 143815, 145639 3033
9 113, 121, 135, 143 25 20 233017, 291271 5473
10 231, 281 40 21 466033, 495161, 533415, 582543 8057
11 455, 569 72 22 932071, 946631, 1150521, 1165081 12848
12 911, 967, 1081, 1137 106 23 1864135, 2330169 23184

Proof. This is a consequence of Theorems 2, 4, and 6. Note when the three largest values
for s(n) begin their Fibonacci recurrence (starting at their initial values): L1(r) for all r,
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L2(r) for r ≥ 4 (k ≥ 5), and L3(r) for r ≥ 8 (k ≥ 9). However, in the r = 6-th row
(k = 7-th), L3 is 18 and the largest even value among L1, L2, and L3. We also see that
1
2
(F8 − 3F1) = 1

2
(21 − 3) = 1

2
· 18 = 9, so the last condition is also true for k = 7. This

completes the proof.

Using Theorem 13, the generating function for Mk is

∞
∑

n=0

Mkx
k =

x2 + x3 + 2x4 + 2x6 + x7 + 2x10

1− 4x3 − x6
.

The results in this paper are contained in the author’s University of Illinois Ph.D. dis-
sertation [3], which has much more information on w(n).
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