On the Dirichlet Convolution of Completely Additive Functions

Isao Kiuchi and Makoto Minamide
Department of Mathematical Sciences
Yamaguchi University
Yamaguchi 753-8512
Japan
kiuchi@yamaguchi-u.ac.jp
minamide@yamaguchi-u.ac.jp

Abstract

Let k and l be non-negative integers. For two completely additive functions f and g, we consider various identities for the Dirichlet convolution of the k th powers of f and the l th powers of g. Furthermore, we derive some asymptotic formulas for sums of convolutions on the natural logarithms.

1 Statements of results

Let f and g be two arithmetical functions that are completely additive. That is, these functions satisfy $f(m n)=f(m)+f(n)$ and $g(m n)=g(m)+g(n)$ for all positive integers m and n. We shall consider the arithmetical function

$$
\begin{equation*}
D_{k, l}(n ; f, g):=\sum_{d \mid n} f^{k}(d) g^{l}\left(\frac{n}{d}\right), \tag{1}
\end{equation*}
$$

which represents the Dirichlet convolution of the k th power of f and the l th power of g for non-negative integers k and l. The above function provides a certain generalization of the classical number-of-divisors function $d(n)$. In fact,

$$
D_{0,0}(n ; f, g)=d(n)
$$

The first purpose of this study is to investigate some recurrence formulas for $D_{k, l}(n ; f, g)$ with respect to k and l. Since

$$
\begin{equation*}
\sum_{d \mid n} f(d)=\frac{1}{2} d(n) f(n) \tag{2}
\end{equation*}
$$

where f is a completely additive function, we have

$$
\begin{equation*}
D_{1,1}(n ; f, g)=\frac{1}{2} d(n) f(n) g(n)-\sum_{d \mid n} f(d) g(d) \tag{3}
\end{equation*}
$$

Similarly, as in (3), we use (1) for $D_{k, l+1}(n ; f, g)$ to obtain

$$
\begin{aligned}
D_{k, l+1}(n ; f, g) & =\sum_{d \mid n} f^{k}(d) g^{l}\left(\frac{n}{d}\right) g\left(\frac{n}{d}\right) \\
& =g(n) \sum_{d \mid n} f^{k}(d) g^{l}\left(\frac{n}{d}\right)-\sum_{d \mid n} f^{k}(d) g(d) g^{l}\left(\frac{n}{d}\right) .
\end{aligned}
$$

Hence, we deduce the following two recurrence formulas.
Theorem 1. Let k and l be non-negative integers, and let f and g be completely additive functions. Then we have

$$
\begin{align*}
& D_{k, l+1}(n ; f, g)+\sum_{d \mid n} f^{k}(d) g^{l}\left(\frac{n}{d}\right) g(d)=g(n) D_{k, l}(n ; f, g), \tag{4}\\
& D_{k+1, l}(n ; f, g)+\sum_{d \mid n} f^{k}(d) f\left(\frac{n}{d}\right) g^{l}\left(\frac{n}{d}\right)=f(n) D_{k, l}(n ; f, g) . \tag{5}
\end{align*}
$$

Now, we put $f=g$ in (4) (or (5)), and set $D_{k, l}(n ; f):=D_{k, l}(n ; f, f)$. Then, we deduce the following corollary.

Corollary 2. Using the same notation given above, we have

$$
\begin{equation*}
D_{k, l+1}(n ; f)+D_{k+1, l}(n ; f)=f(n) D_{k, l}(n ; f) \tag{6}
\end{equation*}
$$

Particularly, if $k=l$, we have

$$
\begin{equation*}
D_{k+1, k}(n ; f)=D_{k, k+1}(n ; f)=\frac{1}{2} f(n) D_{k, k}(n ; f) \tag{7}
\end{equation*}
$$

Because the symmetric property $D_{k, l}(n ; f)=D_{l, k}(n ; f)$, we only consider the function $D_{k, k+j}(n, f)$ for $j=1,2, \ldots$.

Example 3. The formulas (6) and (7) imply that

$$
\begin{aligned}
D_{k, k+2}(n ; f)= & \frac{1}{2} f^{2}(n) D_{k, k}(n ; f)-D_{k+1, k+1}(n ; f), \\
D_{k, k+3}(n ; f)= & \frac{1}{2} f^{3}(n) D_{k, k}(n ; f)-\frac{3}{2} f(n) D_{k+1, k+1}(n ; f), \\
D_{k, k+4}(n ; f)= & \frac{1}{2} f^{4}(n) D_{k, k}(n ; f)-2 f^{2}(n) D_{k+1, k+1}(n ; f)+D_{k+2, k+2}(n ; f), \\
D_{k, k+5}(n ; f)= & \frac{1}{2} f^{5}(n) D_{k, k}(n ; f)-\frac{5}{2} f^{3}(n) D_{k+1, k+1}(n ; f)+\frac{5}{2} f(n) D_{k+2, k+2}(n ; f), \\
D_{k, k+6}(n ; f)= & \frac{1}{2} f^{6}(n) D_{k, k}(n ; f)-3 f^{4}(n) D_{k+1, k+1}(n ; f)+\frac{9}{2} f^{2}(n) D_{k+2, k+2}(n ; f) \\
& -D_{k+3, k+3}(n ; f), \\
D_{k, k+7}(n ; f)= & \frac{1}{2} f^{7}(n) D_{k, k}(n ; f)-\frac{7}{2} f^{5}(n) D_{k+1, k+1}(n ; f)+7 f^{3}(n) D_{k+2, k+2}(n ; f) \\
& -\frac{7}{2} f(n) D_{k+3, k+3}(n ; f), \\
D_{k, k+8}(n ; f)= & \frac{1}{2} f^{8}(n) D_{k, k}(n ; f)-4 f^{6}(n) D_{k+1, k+1}(n ; f)+10 f^{4}(n) D_{k+2, k+2}(n ; f) \\
& -8 f^{2}(n) D_{k+3, k+3}(n ; f)+D_{k+4, k+4}(n ; f) .
\end{aligned}
$$

Next, we shall demonstrate that the explicit evaluation of the function $D_{k, k+m}(n ; f)$ $(m=2,3, \ldots)$ can be expressed as a combination of the functions $D_{k, k}(n ; f), D_{k+1, k+1}(n ; f)$, $D_{k+2, k+2}(n ; f), \ldots, D_{k+\left\lfloor\frac{m}{2}\right\rfloor, k+\left\lfloor\frac{m}{2}\right\rfloor}(n ; f)$. Hence, we shall give a recurrence formula between $D_{k, k}(n ; f), \ldots, D_{k+\left\lfloor\frac{m}{2}\right\rfloor, k+\left\lfloor\frac{m}{2}\right\rfloor}(n ; f)$ and $D_{k, k+m}(n ; f)$.

Theorem 4. Let k and m be positive integers, and let $D_{k, k+m}(n ; f)$ be the function defined by the above formula. Then we have

$$
\begin{equation*}
D_{k, k+m}(n ; f)=\sum_{j=0}^{\left\lfloor\frac{m}{2}\right\rfloor} c_{k, j}^{(m)} f^{m-2 j}(n) D_{k+j, k+j}(n ; f), \tag{8}
\end{equation*}
$$

where

$$
c_{k, j}^{(m)}= \begin{cases}\frac{1}{2}, & \text { if } j=0 \\ -\frac{m}{2}, & \text { if } j=1 ; \\ (-1)^{j} \frac{m}{2 \cdot j!} \prod_{i=1}^{j-1}(m-(j+i)), & \text { if } 2 \leq j \leq\left\lfloor\frac{m}{2}\right\rfloor\end{cases}
$$

Proof. By (7) in Corollary 2, the equality (8) holds for $m=1$ and all $k \in \mathbb{N}$. Now, we assume that (8) is true for $m=1,2, \ldots, l$ and $k \in \mathbb{N}$. Using this assumption and (6) in

Corollary 2, we observe that

$$
\begin{aligned}
D_{k, k+l+1}(n ; f)= & \sum_{j=0}^{\left\lfloor\frac{l}{2}\right\rfloor} c_{k, j}^{(l)} f^{l+1-2 j}(n) D_{k+j, k+j}(n ; f) \\
& -\sum_{j=0}^{\left\lfloor\frac{l-1}{2}\right\rfloor} c_{k+1, j}^{(l-1)} f^{l-1-2 j}(n) D_{k+1+j, k+1+j}(n ; f) .
\end{aligned}
$$

For even $l=2 q$, we have

$$
\begin{aligned}
D_{k, k+2 q+1}(n ; f)= & \frac{1}{2} f^{2 q+1}(n) D_{k, k}(n ; f) \\
& +\sum_{j=1}^{q}\left(c_{k, j}^{(2 q)}-c_{k+1, j-1}^{(2 q-1)}\right) f^{2 q+1-2 j}(n) D_{k+j, k+j}(n ; f)
\end{aligned}
$$

and

$$
c_{k, j}^{(2 q)}-c_{k+1, j-1}^{(2 q-1)}=(-1)^{j} \frac{2 q+1}{2 \cdot j!} \prod_{i=1}^{j-2}(2 q-(j+i))(2 q-j)=c_{k, j}^{(2 q+1)} .
$$

For odd $l=2 q-1$, we observe that

$$
\begin{aligned}
D_{k, k+2 q}(n ; f)= & \frac{1}{2} f^{2 q}(n) D_{k, k}(n ; f) \\
& +\sum_{j=1}^{q-1}\left(c_{k, j}^{(2 q-1)}-c_{k+1, j-1}^{(2 q-2)}\right) f^{2 q-2 j}(n) D_{k+j}(n ; f) \\
& +(-1)^{\left\lfloor\frac{2 q}{2}\right\rfloor} D_{k+\left\lfloor\frac{2 q}{2}\right\rfloor, k+\left\lfloor\frac{2 q}{2}\right\rfloor}(n ; f) .
\end{aligned}
$$

By our assumption, since

$$
c_{k, j}^{(2 q-1)}-c_{k+1, j-1}^{(2 q-2)}=(-1)^{j} \frac{2 q}{2 \cdot j!} \prod_{i=1}^{j-2}(2 q-1-(j+i))(2 q-1-j)=c_{k, j}^{(2 q)},
$$

we obtain the assertion (8) for all k and $m \in \mathbb{N}$.
Now, we consider another expression for $D_{k, l}(n ; f, g)$ using the arithmetical function

$$
\begin{equation*}
H_{k, m}(n ; f, g):=\sum_{d \mid n} f^{k}(d) g^{m}(d) . \tag{9}
\end{equation*}
$$

If $f=g$, we set $H_{k+m}(n ; f)=H_{k, m}(n ; f, f)$. The right-hand side of (9) implies the Dirichlet convolution of 1 and $f^{k} g^{m}$. Since g is a completely additive function, we have

$$
\begin{aligned}
D_{k, l}(n ; f, g) & =\sum_{d \mid n} f^{k}(d)(g(n)-g(d))^{l} \\
& =\sum_{d \mid n} f^{k}(d) \sum_{m=0}^{l}(-1)^{m}\binom{l}{m} g^{l-m}(n) g^{m}(d)
\end{aligned}
$$

From (9) and the above, we obtain the following theorem.
Theorem 5. Let k and l be non-negative integers, and let f and g be completely additive functions. Then we have

$$
D_{k, l}(n ; f, g)=\sum_{m=0}^{l}(-1)^{m}\binom{l}{m} g^{l-m}(n) H_{k, m}(n ; f, g),
$$

where the function $H_{k, m}(n ; f, g)$ is defined by (9).
We immediately obtain the following corollary.
Corollary 6. Let k and l be non-negative integers, and let f and g be completely additive functions. Then we have

$$
\begin{equation*}
D_{k, l}(n ; f)=\sum_{m=0}^{l}(-1)^{m}\binom{l}{m} f^{l-m}(n) H_{k+m}(n ; f) \tag{10}
\end{equation*}
$$

Note that

$$
\begin{align*}
H_{k, m}(n ; f, g) & =\sum_{d \mid n} f^{k}\left(\frac{n}{d}\right) g^{m}\left(\frac{n}{d}\right) \\
& =\sum_{i=0}^{k} \sum_{j=0}^{m}(-1)^{i+j}\binom{k}{i}\binom{m}{j} f^{k-i}(n) g^{m-j}(n) \sum_{d \mid n} f^{i}(d) g^{j}(d) . \tag{11}
\end{align*}
$$

Applying (11) to Theorem 5, we have the following theorem.
Theorem 7. Let k and l be non-negative integers, and let f and g be completely additive functions. Then we have

$$
\begin{aligned}
& D_{k, l}(n ; f, g) \\
& =\sum_{m=0}^{l} \sum_{i=0}^{k} \sum_{j=0}^{m}(-1)^{m+i+j}\binom{l}{m}\binom{k}{i}\binom{m}{j} f^{k-i}(n) g^{l-j}(n) \sum_{d \mid n} f^{i}(d) g^{j}(d) .
\end{aligned}
$$

In the case where $f=g$, note that

$$
\begin{aligned}
H_{k+m}(n ; f) & =\sum_{d \mid n}(f(n)-f(d))^{k+m} \\
& =\sum_{j=0}^{k+m}(-1)^{j}\binom{k+m}{j} f^{k+m-j}(n) \sum_{d \mid n} f^{j}(d) .
\end{aligned}
$$

From (10) and the above, we obtain the following corollary.
Corollary 8. Let k and l be non-negative integers, and let f be a completely additive function. Then we have

$$
\begin{equation*}
D_{k, l}(n ; f)=\sum_{m=0}^{l} \sum_{j=0}^{k+m}(-1)^{m+j}\binom{l}{m}\binom{k+m}{j} f^{k+l-j}(n) \sum_{d \mid n} f^{j}(d) \tag{12}
\end{equation*}
$$

2 Recurrence formula connecting $D_{k, l}(n ; f)$ with $\sum_{d \mid n} f^{j}(d)$

The second purpose of this study is to derive another expression for $D_{k, l}(n ; f)$ that involves the divisor function $d(n)$. Before stating Theorem 10, we prepare the following lemma.

Lemma 9. Let f be a completely additive function. There exist the constants $e_{q, q}, e_{q, q-1}, \ldots, e_{q, 1}$ ($q=1,2, \ldots$) that satisfy the equation

$$
\begin{equation*}
\sum_{d \mid n} f^{2 q-1}(d)=e_{q, q} d(n) f^{2 q-1}(n)+\sum_{j=1}^{q-1} e_{q, q-j} f^{2 q-2 j-1}(n) \sum_{d \mid n} f^{2 j}(d) \tag{13}
\end{equation*}
$$

Moreover, the relations among sequences $\left(e_{q, q-j}\right)_{j=1}^{q}$ are as follows.

$$
\begin{align*}
& e_{q, q}=\frac{1}{2}\left(1-\sum_{j=1}^{q-1}\binom{2 q-1}{2 j-1} e_{j, j}\right)=\frac{\left(2^{2 q}-1\right) B_{2 q}}{q}, \tag{14}\\
& e_{q, q-j}=\frac{1}{2}\left(\binom{2 q-1}{2 j}-\sum_{\substack{i=2 \\
i-j \geq 1}}^{q-1}\binom{2 q-1}{2 i-1} e_{i, i-j}\right),
\end{align*}
$$

where B_{n} denotes the nth Bernoulli number, which is defined by the Taylor expansion

$$
\frac{z}{e^{z}-1}=\sum_{n=1}^{\infty} \frac{B_{n}}{n!} z^{n}, \quad(|z|<2 \pi)
$$

Proof. By (2), the case $q=1$ in (13) is trivial. Assume that there exist $e_{p, p}, e_{p, p-1}, \ldots, e_{p, 1}$ ($p \leq q$) such that

$$
\begin{equation*}
\sum_{d \mid n} f^{2 p-1}(d)=e_{p, p} d(n) f^{2 p-1}(n)+\sum_{j=1}^{p-1} e_{p, p-j} f^{2 p-2 j-1}(n) \sum_{d \mid n} f^{2 j}(d) \tag{15}
\end{equation*}
$$

Since

$$
\sum_{d \mid n} f^{2 q+1}(d)=\sum_{j=0}^{2 q+1}(-1)^{j}\binom{2 q+1}{j} f^{2 q+1-j}(n) \sum_{d \mid n} f^{j}(d)
$$

we have

$$
\begin{align*}
\sum_{d \mid n} f^{2 q+1}(d)= & \frac{1}{2} d(n) f^{2 q+1}(n)+\frac{1}{2} \sum_{j=1}^{q}\binom{2 q+1}{2 j} f^{2 q+1-2 j}(n) \sum_{d \mid n} f^{2 j}(d) \\
& -\frac{1}{2} \sum_{j=1}^{q}\binom{2 q+1}{2 j-1} f^{2 q+2-2 j}(n) \sum_{d \mid n} f^{2 j-1}(d) . \tag{16}
\end{align*}
$$

Applying (15) to (16), we obtain

$$
\begin{aligned}
\sum_{d \mid n} f^{2 q+1}(d)= & \frac{1}{2}\left(1-\sum_{j=1}^{q}\binom{2 q+1}{2 j-1} e_{j, j}\right) d(n) f^{2 q+1}(n) \\
& +\frac{1}{2} \sum_{j=1}^{q}\left(\binom{2 q+1}{2 j}-\sum_{\substack{i=2 \\
i=j \geq 1}}^{q}\binom{2 q+1}{2 i-1} e_{i, i-j}\right) f^{2 q-2 j+1}(n) \sum_{d \mid n} f^{2 j}(d) .
\end{aligned}
$$

By induction, this completes the proof, except for the second term on the right-hand side of (14).

The first term on the right-hand side of (14) implies

$$
e_{q, q}=1-\sum_{k=1}^{q}\binom{2 q-1}{2 k-1} e_{k, k}=1-\sum_{k=1}^{q}\binom{2 q}{2 k} \frac{k}{q} e_{k, k} .
$$

Here we put $a(k)=k e_{k, k}$. Then we have

$$
\begin{equation*}
a(q)=q-\sum_{k=1}^{q}\binom{2 q}{2 k} a(k) . \tag{17}
\end{equation*}
$$

Since $a(1)=e_{1,1}=1 / 2$ and $\left(2^{2}-1\right) B_{2}=1 / 2$, we only need to show that $\left(2^{2 k}-1\right) B_{2 k}$ $(k=1, \ldots, q)$ satisfies the recurrence formula (17). Consider the nth Bernoulli polynomial
$B_{n}(x)$, which is defined by the following Taylor expansion:

$$
\frac{z e^{x z}}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!} z^{n} \quad(|z|<2 \pi)
$$

The following relations are known among $B_{n}(1), B_{n}(1 / 2)$ and B_{n},

$$
B_{n}(1)=B_{n}, \quad B_{n}\left(\frac{1}{2}\right)=-\left(1-2^{1-n}\right) B_{n} .
$$

By the formula [1, Thm. 12.12, p. 264]

$$
\begin{equation*}
B_{n}(y)=\sum_{k=0}^{n}\binom{n}{k} B_{k} y^{n-k} \tag{18}
\end{equation*}
$$

we observe that

$$
B_{2 q}(y)=y^{2 q}-q y^{2 q-1}+\sum_{k=2}^{2 q}\binom{2 q}{k} B_{k} y^{2 q-k}
$$

In this equation, we consider $y=1$ and $y=1 / 2$; then

$$
\begin{equation*}
B_{2 q}=1-q+\sum_{k=1}^{q}\binom{2 q}{2 k} B_{2 k} \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
2^{2 q} B_{2 q}\left(\frac{1}{2}\right) & =\left(2-2^{2 q}\right) B_{2 q} \\
& =1-2 q+\sum_{k=1}^{q}\binom{2 q}{2 k} B_{2 k} 2^{2 k} \tag{20}
\end{align*}
$$

Subtracting (20) from (19), we obtain

$$
\left(2^{2 q}-1\right) B_{2 q}=q-\sum_{k=1}^{q}\binom{2 q}{2 k}\left(2^{2 k}-1\right) B_{2 k}
$$

This recurrence formula for $\left(2^{2 k}-1\right) B_{2 k}$'s is equivalent to (17). This completes the proof of (13).

Applying Lemma 9 to (12) in Corollary 8, we have

$$
\begin{align*}
D_{k, l}(n ; f)= & \sum_{m=0}^{l}(-1)^{m}\binom{l}{m} \sum_{j=0}^{\left\lfloor\frac{k+m}{2}\right\rfloor}\binom{k+m}{2 j} f^{l+k-2 j}(n) \sum_{d \mid n} f^{2 j}(d) \\
& -\sum_{m=0}^{l}(-1)^{m}\binom{l}{m} \sum_{j=1}^{\left\lfloor\frac{k+m+1}{2}\right\rfloor}\binom{k+m}{2 j-1} f^{l+k+1-2 j}(n) \sum_{d \mid n} f^{2 j-1}(d) . \tag{21}
\end{align*}
$$

The second term on the right-hand side of (21) gives us

$$
\begin{align*}
& -\left(\sum_{m=0}^{l}(-1)^{m}\binom{l}{m} \sum_{j=1}^{\left\lfloor\frac{k+m}{2}\right\rfloor} e_{j, j}\binom{k+m}{2 j-1}\right) f^{l+k}(n) d(n) \\
& -\sum_{m=0}^{l} \sum_{j=1}^{\left\lfloor\frac{k+m+1}{2}\right\rfloor} \sum_{i=1}^{j-1}(-1)^{m}\binom{l}{m}\binom{k+m}{2 j-1} e_{j, j-i} f^{l+k-2 i}(n) \sum_{d \mid n} f^{2 i}(d) \tag{22}
\end{align*}
$$

using (13). From (14), (21) and (22), we have the following theorem.
Theorem 10. Let k and l be non-negative integers, and let f be a completely additive function. There exist the constants $e_{j, j}, e_{j, j-i}\left(j=1,2, \ldots,\left\lfloor\frac{k+m+1}{2}\right\rfloor, 1 \leq j-i<j\right)$ and $A_{k, l}$ such that

$$
\begin{align*}
D_{k, l}(n ; f)= & A_{k, l} f^{l+k}(n) d(n) \\
& +\sum_{m=0}^{l} \sum_{j=0}^{\left\lfloor\frac{k+m}{2}\right\rfloor}(-1)^{m}\binom{l}{m}\binom{k+m}{2 j} f^{l+k-2 j}(n) \sum_{d \mid n} f^{2 j}(d) \tag{23}\\
& -\sum_{m=0}^{l} \sum_{j=1}^{\left\lfloor\frac{k+m}{2}\right\rfloor} \sum_{i=1}^{j-1}(-1)^{m}\binom{l}{m}\binom{k+m}{2 j-1} e_{j, j-i} f^{l+k-2 i}(n) \sum_{d \mid n} f^{2 i}(d),
\end{align*}
$$

where

$$
\begin{align*}
A_{k, l} & =\sum_{m=0}^{l}(-1)^{m-1}\binom{l}{m} \sum_{j=1}^{\left\lfloor\frac{k+m+1}{2}\right\rfloor} \frac{\left(2^{2 j}-1\right) B_{2 j}}{j}\binom{k+m}{2 j-1} \\
& =2 \sum_{m=0}^{l}(-1)^{m}\binom{l}{m} \frac{2^{k+m+1}-1}{k+m+1} B_{k+m+1} . \tag{24}
\end{align*}
$$

Proof. We only need to show (24) to complete the proof of Theorem 10. We set

$$
A_{k, l}=\sum_{m=0}^{l}(-1)^{m-1}\binom{l}{m} J_{k, m}, \quad J_{k, m}=\sum_{j=1}^{\left\lfloor\frac{k+m+1}{2}\right\rfloor} \frac{\left(2^{2 j}-1\right) B_{2 j}}{j}\binom{k+m}{2 j-1}
$$

From the identity $\frac{1}{j}\binom{k j-m}{2 j-1}=\frac{2}{k+m+1}\binom{k+m+1}{2 j}$, we have

$$
J_{k, m}=\frac{2}{k+m+1} \sum_{j=1}^{\left\lfloor\frac{k+m+1}{2}\right\rfloor}\left(2^{2 j}-1\right) B_{2 j}\binom{k+m+1}{2 j} .
$$

Since $B_{2 j+1}=0$ if $j \geq 1$ and $B_{1}=-\frac{1}{2}$, we have

$$
\begin{equation*}
J_{k, m}=\frac{2}{k+m+1} \sum_{j=0}^{k+m+1}\left(2^{2 j}-1\right) B_{j}\binom{k+m+1}{j}+1 . \tag{25}
\end{equation*}
$$

Taking $y=\frac{1}{2}$ and $y=1$ in (18), we get

$$
2^{n} B_{n}\left(\frac{1}{2}\right)=\sum_{j=0}^{n} 2^{j}\binom{n}{j} B_{j} \quad \text { and } \quad B_{n}=\sum_{j=0}^{n}\binom{n}{j} B_{j}
$$

respectively. Hence we have

$$
\begin{equation*}
2^{n} B_{n}\left(\frac{1}{2}\right)-B_{n}=\sum_{j=0}^{n}\left(2^{j}-1\right)\binom{n}{j} B_{j} . \tag{26}
\end{equation*}
$$

On the other hand, it is known that

$$
\begin{equation*}
B_{n}(m x)=m^{n-1} \sum_{j=0}^{m-1} B_{n}\left(x+\frac{j}{m}\right) . \tag{27}
\end{equation*}
$$

See [1, p. 275]. Taking $x=0$ and $m=2$ in (27), we obtain

$$
2^{n} B_{n}\left(\frac{1}{2}\right)-B_{n}=-\left(2^{n}-1\right) B_{n}
$$

Then we have, from (26) and the above,

$$
-\left(2^{n}-1\right) B_{n}=\sum_{j=0}^{n}\left(2^{j}-1\right) B_{j}\binom{n}{j} .
$$

Substituting this relation in (25), we have

$$
J_{k, m}=-\frac{2}{k+m+1}\left(2^{k+m+1}-1\right) B_{k+m+1}+1
$$

Hence we have

$$
A_{k, l}=2 \sum_{m=0}^{l}(-1)^{m}\binom{l}{m} \frac{2^{k+m+1}-1}{k+m+1} B_{k+m+1} .
$$

From (23), we obtain the following corollary.

Corollary 11. For every positive integer k, there are constants $c_{k}, c_{k-1}, \ldots, c_{0}$ such that

$$
\begin{equation*}
D_{k, k}(n ; f)=c_{k} d(n) f^{2 k}(n)+\sum_{j=1}^{k} c_{k-j} f^{2 k-2 j}(n) \sum_{d \mid n} f^{2 j}(d) . \tag{28}
\end{equation*}
$$

From (8) and (28), we obtain the following corollary.
Corollary 12. For every positive integer k and $m(\geq 2)$, there are constants $c_{0}, c_{1}, \ldots, c_{k}$, $\ldots, c_{k+\left\lfloor\frac{m}{2}\right\rfloor}$ as in Corollary 11 and $c_{k, 1}^{(m)}=-\frac{m}{2}, c_{k, 2}^{(m)}=\frac{m(m-3)}{4}, c_{k, 3}^{(m)}, \ldots, c_{k,\left\lfloor\frac{m}{2}\right\rfloor}^{(m)}$ as in Theorem 4 such that

$$
\begin{aligned}
& D_{k, k+m}(n ; f)=\left(\frac{1}{2} c_{k}+\sum_{p=1}^{\left\lfloor\frac{m}{2}\right\rfloor} c_{k, p}^{(m)} c_{k+p}\right) d(n) f^{2 k+m}(n) \\
& \quad+\frac{1}{2} \sum_{j=1}^{k} c_{k-j} f^{2 k+m-2 j}(n) \sum_{d \mid n} f^{2 j}(d) \\
& \quad+\sum_{p=1}^{\left\lfloor\frac{m}{2}\right\rfloor} c_{k, p}^{(m)} \sum_{j=1}^{k+p} c_{k+p-j} f^{2 k+m-2 j}(n) \sum_{d \mid n} f^{2 j}(d)
\end{aligned}
$$

Example 13. Corollaries 11 and 12 give us

$$
\begin{aligned}
& D_{1,1}(n ; f)=\frac{1}{2} d(n) f^{2}(n)-\sum_{d \mid n} f^{2}(d), \\
& D_{2,1}(n ; f)=\frac{1}{4} d(n) f^{3}(n)-\frac{1}{2} f(n) \sum_{d \mid n} f^{2}(d), \\
& D_{3,1}(n ; f)=-\frac{1}{4} d(n) f^{4}(n)+\frac{3}{2} f^{2}(n) \sum_{d \mid n} f^{2}(d)-\sum_{d \mid n} f^{4}(d), \\
& D_{2,2}(n ; f)=\frac{1}{2} d(n) f^{4}(n)-2 f^{2}(n) \sum_{d \mid n} f^{2}(d)+\sum_{d \mid n} f^{4}(d), \\
& D_{4,1}(n ; f)=-\frac{1}{2} d(n) f^{5}(n)+\frac{5}{2} f^{3}(n) \sum_{d \mid n} f^{2}(d)-\frac{3}{2} f(n) \sum_{d \mid n} f^{4}(d), \\
& D_{3,2}(n ; f)=\frac{1}{4} d(n) f^{5}(d)-f^{2}(n) \sum_{d \mid n} f^{2}(d)+\frac{1}{2} f(n) \sum_{d \mid n} f^{4}(d) .
\end{aligned}
$$

3 Applications

The second author [2, p. 330] showed an asymptotic formula for $\sum_{n \leq x} D_{1,1}(n ; \log)$

$$
\begin{align*}
\sum_{n \leq x} D_{1,1}(n ; \log)= & \frac{1}{6} x \log ^{3} x-\frac{1}{2} x \log ^{2} x+\left(1-2 A_{1}\right) x \log x \\
& +\left(2 A_{1}-4 A_{2}-1\right) x+O_{\varepsilon}\left(x^{\frac{1}{3}+\varepsilon}\right) \tag{29}
\end{align*}
$$

for $x>2$ and all $\varepsilon>0$. Here the constants A_{1} and A_{2} are coefficients of the Laurent expansion of the Riemann zeta-function $\zeta(s)$ in the neighbourhood $s=1$:

$$
\zeta(s)=\frac{1}{s-1}+A_{0}+A_{1}(s-1)+A_{2}(s-1)^{2}+A_{3}(s-1)^{3}+\cdots
$$

We use (7), (29) and Abel's identity [1, Thm. 4.2, p. 77] to obtain

$$
\begin{aligned}
\sum_{n \leq x} D_{2,1}(n ; \log)= & \frac{1}{12} x \log ^{4} x-\frac{1}{3} x \log ^{3} x+\left(1+A_{1}\right) x \log ^{2} x \\
& -2\left(1+A_{2}\right) x \log x+2\left(1+A_{2}\right) x+O_{\varepsilon}\left(x^{\frac{1}{3}+\varepsilon}\right)
\end{aligned}
$$

Furthermore, a generalization of (29) for the partial sums of $D_{k, k}(n ; \log)$ for positive integers k was considered by the second author [2, Thm. 1.2, p. 326], who demonstrated that there exists a polynomial $P_{2 k+1}$ of degree $2 k+1$ such that

$$
\begin{equation*}
\sum_{n \leq x} D_{k, k}(n ; \log)=x P_{2 k+1}(\log x)+O_{k, \varepsilon}\left(x^{\frac{1}{3}+\varepsilon}\right) \tag{30}
\end{equation*}
$$

for every $\varepsilon>0$. Applying Theorem 4 and the above formula (30), we have the following theorem.

Theorem 14. There exists a polynomial $U_{2 k+m+1}$ of degree $2 k+m+1$ such that

$$
\sum_{n \leq x} D_{k, k+m}(n ; \log)=x U_{2 k+m+1}(\log x)+O_{k, m, \varepsilon}\left(x^{\frac{1}{3}+\varepsilon}\right)
$$

for $m=2,3, \ldots$ and every $\varepsilon>0$.

4 Acknowledgment

The authors deeply thank the referee for carefully reading this paper and indicating some mistakes.

References

[1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
[2] M. Minamide. The truncated Voronoï formula for the derivative of the Riemann zetafunction. Indian J. Math. 55 (2013), 325-352.

2010 Mathematics Subject Classification: Primary 11A25; Secondary 11P99.
Keywords: completely additive function, Dirichlet convolution.

Received April 23 2014; revised versions received May 15 2014; July 9 2014; July 20 2014; July 31 2014. Published in Journal of Integer Sequences, August 52014.

Return to Journal of Integer Sequences home page.

