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Abstract

In this paper, we will find some new families of infinite (integer) matrices whose
entries satisfy a non-homogeneous recurrence relation and such that the sequence of
their leading principal minors is a subsequence of the Fibonacci, Lucas, Jacobsthal, or
Pell sequences.
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1 Introduction

Throughout this paper, unless noted otherwise, we will use the following notation. Let
α = (αi)i>0 and β = (βi)i>0 be two arbitrary sequences starting with a common first term
α0 = β0. We denote by Pα,β(n) the generalized Pascal triangle associated with the sequences
α and β, which is introduced as follows. Actually, Pα,β(n) = [Pi,j ]06i,j6n is a square matrix
of order n+ 1 whose (i, j)-entry Pi,j obeys the following rules:

Pi,0 = αi, P0,j = βj for i, j = 0, 1, 2, . . . , n, and Pi,j = Pi,j−1 + Pi−1,j for 1 6 i, j 6 n.

We also denote by Tα,β(n) = [Ti,j ]06i,j6n the Toeplitz matrix of order n+1 whose (i, j)-entry
Ti,j obeys the following rules:

Ti,0 = αi, T0,j = βj for i, j = 0, 1, 2, . . . , n, and Ti,j = Tk,l if i− j = k − l.

The unipotent lower triangular matrix L(n) = [Li,j ]06i,j6n is again a square matrix of order
n+ 1 with entries:

Li,j =

{

0, if 0 6 i < j 6 n;
(

i
j

)

, if 0 6 j 6 i 6 n.

We put U(n) = L(n)t, where At signifies the transpose of matrix A. Moreover, a lower

Hessenberg matrix H(n) = [Hi,j]06i,j6n is a square matrix of order n + 1, where Hi,j = 0
whenever j > i+ 1 and Hi,i+1 6= 0 for some i, 0 6 i 6 n− 1.

Given a matrix A, we denote by Ri(A) (resp., Cj(A)) the row i (resp., the column j) of
A. We also denote by A[1] the submatrix obtained from A by deleting the first column of A.

Given a sequence ϕ = (ϕi)i≥0, define the binomial transform of ϕ to be the sequence
ϕ̂ = (ϕ̂i)i>0 with

ϕ̂i =
i

∑

k=0

(−1)i+k

(

i

k

)

ϕk.

The Fibonacci sequence (A000045 in [3]) is defined by the recurrence relation:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n > 2.

The Lucas sequence (A000032 in [3]) is defined by the recurrence relation:

L0 = 2, L1 = 1, Ln = Ln−1 = Ln−2 for n > 2.

The Jacobsthal sequence (A001045 in [3]) is defined by the recurrence relation:

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n > 2.

The Pell sequence (A000129 in [3]) is defined by the recurrence relation:

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for n > 2.
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Let A = [Ai,j ]i,j>0 be an arbitrary infinite matrix. We denote the elementary row opera-
tion of type three by Or,s(λ), where r 6= s and λ a scalar, that is

Rk(Or,s(λ)A) =

{

Rr(A) + λRs(A), if k = r;

Rk(A), if k 6= r.

The nth leading principal minor of A, denoted by dn(A), is defined as follows:

dn(A) = det[Ai,j ]06i,j6n, (n = 0, 1, 2, 3, . . .).

We put D(A) = (dn(A))n>0. Two infinite matrices A and B are said to be equimodular

if D(A) = D(B). Given a sequence ω = (ωn)n>0, a family {At| t ∈ I} of equimodular
matrices are said to be ω-equimodular if D(At) = ω for all t ∈ I. We will denote the family
of ω-equimodular matrices by Aω. The infinite matrices in Aω are said to be determinant

representations of ω. Note that for any sequence ω = (ωn)n>0, there is a determinant
representation of ω, in other words Aω 6= ∅. Indeed, expanding along the last rows, it is easy
to see that















ω0 1 ∗ ∗ ∗ · · ·
−ω1 0 1 ∗ ∗ · · ·
ω2 0 0 1 ∗ · · ·
−ω3 0 0 0 1 · · ·
...

...
...

...
...

. . .















∈ Aω,

(see also Theorem 3.2 and the Remark after this theorem in [4]). Especially, there are many
different determinant representations of ω, when ω is a (sub-)sequence of Fibonacci, Lucas,
Jacobsthal and Pell sequences. Some examples of such matrices can be found in [1, 2].

In this paper, we are going to find some determinant representations of the sequences:

F = (Fn+1)n>0, L = (Ln+1)n>0, J = (Jn+1)n>0 and P = (Pn+1)n>0.

It is worthwhile to point out that we will use non-homogeneous recurrence relations to con-
struct these determinant representations.

In the sequel, we introduce a new family of (infinite) matrices A(∞) = [Ai,j ]i,j>0, whose
entries obey a non-homogeneous recurrence relation. Actually, for two constants u and v,
and arbitrary sequences λ = (λi)i>0 and µ = (µi)i>0 with µ0 = 0, the first column and row
of matrix A(∞) are the sequences

(Ai,0)i>0 = (λ0, λ1, λ2, . . . , Ai,0 = λi, . . .),

and
(A0,j)j>0 = (λ0, λ0 + u, λ0 + 2u, . . . , A0,j = λ0 + ju, . . .),

respectively, while the remaining entries Ai,j (i, j > 1) are obtained from the following non-
homogeneous recurrence relation:

Ai,j = Ai,j−1 + Ai−1,j − λi−1 + µi − µi−1 + (j − 1)(v − u), i, j > 1.
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We denote by A(n) the submatrix of A(∞) consisting of the entries in its first n + 1 rows
and columns. The matrix A(3), for example, is then given by

A(3) =















λ0 λ0 + u λ0 + 2u λ0 + 3u

λ1 λ1 + µ1 + u λ1 + 2µ1 + 2u+ v λ1 + 3µ1 + 3u+ 3v

λ2 λ2 + µ2 + u λ2 + 2µ2 + µ1 + 2u+ 2v λ2 + 3µ2 + 3µ1 + 3u+ 7v

λ3 λ3 + µ3 + u λ3 + 2µ3 + µ2 + µ1 + 2u+ 3v λ3 + 3µ3 + 3µ2 + 4µ1 + 3u+ 12v















.

Finally, the main result of this paper can be stated as follows:

Main Theorem. The matrix A(n), n > 0, defined as above, satisfies the following state-

ments:

(a) A(n) = L(n) ·H(n) · U(n), where

H(n) =















λ̂0 u 0 · · · 0

λ̂1

λ̂2
... T(µ̂1,µ̂2,µ̂3,...),(µ̂1,v,0,0,...)(n− 1)

λ̂n















.

In particular, we have det(A(n)) = det(H(n)).

(b) In the case when u = v = 1 and λi = (2i − 1)c+ 1, we have the following statements:

(b. 1) if µi =
(

2i + (i−2)(i+1)
2

)

c− i(i−3)
2

, then det(A(n)) = Fn+1.

(b. 2) if µi =
(

5·3i

4
− 2i − 2i+1

4

)

c+ 5(3i−1)
4

+ i
2
, then det(A(n)) = Ln+1.

(b. 3) if µi = i2c− i2 + 2i, then det(A(n)) = Jn+1.

(b. 4) if µi =
(

2i+1 + (i+1)(i−4)
2

)

c+ (5−i)i
2

, then det(A(n)) = Pn+1.

As mentioned previously, we have obtained some determinant representations of the
sequences:

F = (Fn+1)n>0, L = (Ln+1)n>0, J = (Jn+1)n>0 and P = (Pn+1)n>0,
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which are presented in the following:

















1 2 3 · · ·

c+ 1 2c+ 3 3c+ 6 · · ·

3c+ 1 7c+ 3 12c+ 8 · · ·

...
...

...
. . .

















∈ AF ,

















1 2 3 · · ·

c+ 1 2c+ 5 3c+ 10 · · ·

3c+ 1 9c+ 13 16c+ 30 · · ·

...
...

...
. . .

















∈ AL,

















1 2 3 · · ·

c+ 1 2c+ 3 3c+ 6 · · ·

3c+ 1 7c+ 2 12c+ 6 · · ·

...
...

...
. . .

















∈ AJ and

















1 2 3 · · ·

c+ 1 2c+ 4 3c+ 8 · · ·

3c+ 1 8c+ 5 14c+ 13 · · ·

...
...

...
. . .

















∈ AP .

2 Main results

As the first result of this paper, we consider the following theorem.

Theorem 1. For two arbitrary sequences (λi)i>0 and (µi)i>0, with µ0 = 0, and some integers

u and v, let A(∞) = [Ai,j ]i,j>0 be an infinite dimensional matrix whose entries are given by

Ai,j = Ai,j−1 + Ai−1,j − λi−1 + µi − µi−1 + (j − 1)(v − u), i, j > 1 (1)

and the initial conditions Ai,0 = λi and A0,i = λ0 + iu, i > 0. If A(n) = [Ai,j ]06i,j6n, then

we have

A(n) = L(n) ·H(n) · U(n), (2)

where

H(n) =















λ̂0 u 0 · · · 0

λ̂1

λ̂2
... T(µ̂1,µ̂2,µ̂3,...),(µ̂1,v,0,0,...)(n− 1)

λ̂n















.

Proof. First of all, we recall that the entries of L(n) = [Li,j ]06i,j6n satisfy the following
recurrence

Li,j = Li−1,j−1 + Li−1,j , 1 6 i, j 6 n. (3)

Similarly, for the entries of U(n) = [Ui,j ]06i,j6n we have

Ui,j = Ui−1,j−1 + Ui,j−1, 1 6 i, j 6 n. (4)
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In what follows, for convenience, we will let A = A(n), L = L(n), H = H(n) and
U = U(n). Now, for the proof of the desired factorization we compute the (i, j)-entry of
L ·H · U , that is

(L ·H · U)i,j =
n

∑

r=0

n
∑

s=0

Li,rHr,sUs,j . (5)

In fact, we should establish

R0(L ·H · U) = R0(A) = (λ0, λ0 + u, . . . , λ0 + nu),

C0(L ·H · U) = C0(A) = (λ0, λ1, . . . , λn),

and finally, show that

(L ·H · U)i,j = (L ·H · U)i−1,j−1 + (L ·H · U)i−1,j − λi−1 + µi − µi−1 + (j − 1)(v − u), (6)

for 1 6 i, j 6 n.
Let us do the required calculations. Assume first that i = 0. Then, we have

(L ·H · U)0,j =
n

∑

r=0

n
∑

s=0

L0,rHr,sUs,j =
n

∑

s=0

H0,sUs,j = H0,0U0,j +H0,1U1,j = λ0 + ju,

and so R0(L ·H · U) = R0(A) = (λ0, λ0 + u, . . . , λ0 + nu).
Assume next that j = 0. In this case, we obtain

(L ·H · U)i,0 =
n

∑

r=0

n
∑

s=0

Li,rHr,sUs,0 =
n

∑

r=0

Li,rHr,0 =
n

∑

r=0

(

i

r

)

λ̂r = λi,

and hence we have C0(L ·H · U) = C0(A) = (λ0, λ1, . . . , λn).
Finally, we must establish (6). Let us for the moment assume that 1 6 i, j 6 n. In this

case, we have

(L ·H · U)i,j =
n

∑

r=0

n
∑

s=0

Li,rHr,sUs,j =
n

∑

r=0

Li,rHr,0U0,j +
n

∑

r=0

n
∑

s=1

Li,rHr,sUs,j . (7)

Let Ω(i, j) =
n
∑

r=0

n
∑

s=1

Li,rHr,sUs,j . Then, using (4), we obtain

Ω(i, j) =
n
∑

r=0

n
∑

s=1

Li,rHr,s

(

Us−1,j−1 + Us,j−1

)

=
n
∑

r=0

n
∑

s=1

Li,rHr,sUs−1,j−1 +
n
∑

r=0

n
∑

s=1

Li,rHr,sUs,j−1

=
n
∑

r=1

n
∑

s=1

Li,rHr,sUs−1,j−1 + (L ·H · U)i,j−1 +
n
∑

s=1

Li,0H0,sUs−1,j−1 −
n
∑

r=0

Li,rHr,0U0,j−1

(8)
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For convenience, we write Θ(i, j) =
n
∑

r=1

n
∑

s=1

Li,rHr,sUs−1,j−1. Now, we apply (3), to get

Θ(i, j) =
n
∑

r=1

n
∑

s=1

(

Li−1,r−1 + Li−1,r

)

Hr,sUs−1,j−1

=
n
∑

r=1

n
∑

s=1

Li−1,r−1Hr,sUs−1,j−1 +
n
∑

r=1

n
∑

s=1

Li−1,rHr,sUs−1,j−1

=
n
∑

r=2

n
∑

s=2

Li−1,r−1Hr,sUs−1,j−1 +
n
∑

r=1

Li−1,r−1Hr,1U0,j−1

+
n
∑

s=2

Li−1,0H1,sUs−1,j−1 +
n
∑

r=1

n
∑

s=1

Li−1,rHr,sUs−1,j−1

=
n
∑

r=2

n
∑

s=2

Li−1,r−1Hr,sUs−1,j−1 +
n
∑

r=1

Li−1,r−1Hr,1U0,j−1

+
n
∑

s=2

Li−1,0H1,sUs−1,j−1 +
n
∑

r=1

n
∑

s=1

Li−1,rHr,s

(

Us,j − Us,j−1

) (

by (4)
)

=
n
∑

r=2

n
∑

s=2

Li−1,r−1Hr−1,s−1Us−1,j−1 +
n
∑

r=1

Li−1,r−1Hr,1U0,j−1

+
n
∑

s=2

Li−1,0H1,sUs−1,j−1 +
n
∑

r=1

n
∑

s=1

Li−1,rHr,sUs,j

−
n
∑

r=1

n
∑

s=1

Li−1,rHr,sUs,j−1

(

by the structure of H
)

=
n
∑

r=1

n
∑

s=1

Li−1,rHr,sUs,j−1 +
n
∑

r=1

Li−1,r−1Hr,1U0,j−1 +
n
∑

s=2

Li−1,0H1,sUs−1,j−1

+
n
∑

r=1

n
∑

s=0

Li−1,rHr,sUs,j −
n
∑

r=1

Li−1,rHr,0U0,j −
n
∑

r=1

n
∑

s=1

Li−1,rHr,sUs,j−1

(

note that Li−1,n−1 = Un−1,j−1 = 0
)

=
n
∑

r=1

Li−1,r−1Hr,1U0,j−1 +
n
∑

s=2

Li−1,0H1,sUs−1,j−1 +
n
∑

r=0

n
∑

s=0

Li−1,rHr,sUs,j

−
n
∑

s=0

Li−1,0H0,sUs,j −
n
∑

r=1

Li−1,rHr,0U0,j

=
n
∑

r=1

Li−1,r−1Hr,1U0,j−1 +
n
∑

s=2

Li−1,0H1,sUs−1,j−1 + (L ·H · U)i−1,j

−
n
∑

s=0

Li−1,0H0,sUs,j −
n
∑

r=1

Li−1,rHr,0U0,j

(

by (5)
)

.
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By substituting this in (8), we obtain

Ω(i, j) = (L ·H · U)i,j−1 + (L ·H · U)i−1,j

+
n
∑

r=1

Li−1,r−1Hr,1U0,j−1 +
n
∑

s=2

Li−1,0H1,sUs−1,j−1

−
n
∑

s=0

Li−1,0H0,sUs,j −
n
∑

r=1

Li−1,rHr,0U0,j

+
n
∑

s=1

Li,0H0,sUs−1,j−1 −
n
∑

r=0

Li,rHr,0U0,j−1.

Finally, if the above expression is substituted in (7) and the sums are put together, then we
obtain

(L ·H · U)i,j = (L ·H · U)i−1,j + (L ·H · U)i,j−1 +Ψ(i, j),

where

Ψ(i, j) :=
n
∑

r=0

Li,rHr,0U0,j +
n
∑

r=1

Li−1,r−1Hr,1U0,j−1 +
n
∑

s=2

Li−1,0H1,sUs−1,j−1

−
n
∑

s=0

Li−1,0H0,sUs,j −
n
∑

r=1

Li−1,rHr,0U0,j +
n
∑

s=1

Li,0H0,sUs−1,j−1

−
n
∑

r=0

Li,rHr,0U0,j−1.

However, by easy calculations one can show that

n
∑

r=0

Li,rHr,0U0,j −
n
∑

r=0

Li,rHr,0U0,j−1 = 0,

n
∑

r=1

Li−1,r−1Hr,1U0,j−1 =
n
∑

r=1

(

i−1
r−1

)

µ̂r =
n
∑

r=1

((

i
r

)

−
(

i−1
r

))

µ̂r = µi − µi−1,

n
∑

r=1

Li−1,rHr,0U0,j =
n
∑

r=0

λ̂r − λ0 = λi−1 − λ0,

n
∑

s=2

Li−1,0H1,sUs−1,j−1 = (j − 1)v,

n
∑

s=0

Li−1,0H0,sUs,j = λ0 + ju,

n
∑

s=1

Li,0H0,sUs−1,j−1 = u,

and so
Ψ(i, j) = µi − µi−1 − λi−1 + (j − 1)(v − u).

This completes the proof.
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Before stating the next result, we need to introduce some additional definitions. Let
λ = (λi)i>0 and µ = (µi)i>0 be two arbitrary sequences. The convolution of λ and µ is the
sequence ν = (νi)i>0, where

νi =
i

∑

k=0

λkµi−k.

The convolution matrix associated with sequences λ and µ is the infinite matrix A(∞)
whose first column C0(A(∞)) is λ and whose jth column (j = 1, 2, . . .) is the convolution of
sequences Cj−1(A(∞)) and µ. We say that the convolution matrix of the sequences λ and
λ is the convolution matrix of the sequence λ. There are many well-known integer matrices
which can be written as convolution matrices of some sequences. For instance, U(∞) is the
convolution matrix of the sequences (1, 0, 0, . . .) and (1, 1, 0, 0, . . .) and P(1,1,...),(1,1,...)(∞) is
the convolution matrix of the sequence (1, 1, . . .).

We will need the following technical result [4, Theorem 3.1].

Proposition 2. Let

A(x) =
∞
∑

n=1

anx
n−1, B(x) =

∞
∑

n=0

bnx
n, V (x) =

∞
∑

n=0

vnx
n and W (x) =

∞
∑

n=0

wnx
n

be the generating functions for the sequences (an)n>1, (bn)n>0, (vn)n>0, and (wn)n>0, respec-

tively. Consider an infinite dimensional matrix of the following form:

M(∞) =















b0 v0 v0w0 · · ·

b1 v1 v0w1 + v1w0 · · ·

b2 v2 v0w2 + v1w1 + v2w0 · · ·

...
...

...
. . .















where C0(M(∞)) = (b0, b1, . . .)
t and M(∞)[1] is the convolution matrix of the sequences

(vi)i>0 and (wj)j>0. If

A(W (x)) = B(x)/V (x), (9)

then for any non-negative integer n, there holds

det(M(n)) = (−1)nvn+1
0 w

n(n+1)/2
1 an+1,

where M(n) is the (n+ 1)× (n+ 1) upper left corner matrix of M(∞).

We are now in a position to prove the following theorem which is the second result of
this paper.

Theorem 3. Let A(n) be defined as in Theorem 1 and let c be a constant. In the case when

u = v = 1 and λi = (2i − 1)c+ 1, we have the following statements:
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(a) if µi =
(

2i + (i−2)(i+1)
2

)

c− i(i−3)
2

, then det(A(n)) = Fn+1.

(b) if µi =
(

5·3i

4
− 2i − 2i+1

4

)

c+ 5(3i−1)
4

+ i
2
, then det(A(n)) = Ln+1.

(c) if µi = i2c− i2 + 2i, then det(A(n)) = Jn+1.

(d) if µi =
(

2i+1 + (i+1)(i−4)
2

)

c+ (5−i)i
2

, then det(A(n)) = Pn+1.

Proof. Let µ = (µi)i>0 be a sequence with µ0 = 0 and let c be a constant. Let λ = (λi)i>0

be a sequence with λi = (2i − 1)c + 1. We consider the infinite matrices A(∞) = [Ai,j ]i,j>0

whose entries satisfy

Ai,j = Ai−1,j + Ai,j−1 − (2i − 1)c− 1 + µi − µi−1 for i, j > 1, (10)

with the initial conditions Ai,0 = (2i − 1)c + 1 and A0,i = 1 + i, i > 0. By Theorem 2, we
observe that

A(n) = L(n) ·H(n) · U(n),

where

H(n) =















1 1 0 · · · 0
c
c
... T(µ̂1,µ̂2,µ̂3,...),(µ̂1,v,0,0,...)(n− 1)
c















.

Evidently det(A(n)) = det(H(n)), so it suffices to find det(H(n)). From the structure of
matrix H(∞), we have

C0(H(∞)) = (bi)i>0 = (1, c, c, . . .)t,

whose generating function is

B(x) =
1 + (c− 1)x

1− x
.

(a) Let µi = (2i+ (i−2)(i+1)
2

)c− i(i−3)
2

. In this case, we have the following infinite dimensional
matrices:

A(∞) =























1 2 3 4 · · ·

c+ 1 2c+ 3 3c+ 6 4c+ 10 · · ·

3c+ 1 7c+ 3 12c+ 8 18c+ 17 · · ·

7c+ 1 17c+ 2 32c+ 8 53c+ 23 · · ·

...
...

...
...

. . .























,
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and

H(∞) =











1 1 0 · · · 0
c
c T(c+1,2c−1,c,c,...),(c+1,1,0,0,...)(∞)
...











.

Note that the submatrix H(∞)[1] is the convolution of sequences

(vi)i>0 = (1, c+ 1, 2c− 1, c, c, . . .), and (wi)i>0 = (0, 1, 0, 0, 0, . . .),

whose generating functions are

V (x) =
1 + cx+ (c− 2)x2 − (c− 1)x3

1− x
and W (x) = x,

respectively. Plugging these generating functions into (9) yields

A(W (x)) = A(x) =

1+(c−1)x
1−x

1+cx+(c−2)x2−(c−1)x3

1−x

= 1−x+2x2−3x3+ · · ·+(−1)nFn+1x
n+ · · · ,

and it follows by Proposition 2 that

det(H(n)) = (−1)nvn+1
0 w

n(n+1)/2
1 an+1 = (−1)nan+1 = Fn+1,

as required.

(b) Let µi =
(

5·3i

4
− 2i − 2i+1

4

)

c + 5(3i−1)
4

+ i
2
. The infinite dimensional matrices created

in this case are as follows:

A(∞) =























1 2 3 4 · · ·

c+ 1 2c+ 5 3c+ 10 4c+ 16 · · ·

3c+ 1 9c+ 13 16c+ 30 24c+ 53 · · ·

7c+ 1 31c+ 36 62c+ 88 101c+ 163 · · ·

...
...

...
...

. . .























,

and

H(∞) =











1 1 0 · · · 0
c
c T(c+3,4c+5,9c+10,19c+20,...),(c+3,1,0,0,...)(∞)
...











.

Again, one can easily see that the submatrix H(∞)[1] is the convolution of sequences

(vi)i>0 = (1, c+ 3, 4c+ 5, 9c+ 10, 19c+ 20, . . .),
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(with general form v0 = 1, v1 = c+ 3 and vi = (5 · 2i−2)(c+ 1)− c for i > 2), and

(wi)i>0 = (0, 1, 0, 0, 0, . . .).

The generating functions for these sequences are

V (x) =
(1 + (c− 1)x)(−x2 + x+ 1)

(1− x)(1− 2x)
, and W (x) = x,

respectively. If B(x), V (x) and W (x) are substituted in (9), then we obtain

A(W (x)) = A(x) =

1+(c−1)x
1−x

(1+(c−1)x)(−x2+x+1)
(1−x)(1−2x)

= 1−3x+4x2−7x3+11x4+· · ·+(−1)nLn+1x
n+· · · ,

and by Proposition 2, it follows that

det(H(n)) = (−1)nvn+1
0 w

n(n+1)/2
1 an+1 = (−1)nan+1 = Ln+1,

as required.

(c) Let µi = i2c− i2+2i. In this case, we have the following infinite dimensional matrices:

A(∞) =























1 2 3 4 · · ·

c+ 1 2c+ 3 3c+ 6 4c+ 10 · · ·

3c+ 1 7c+ 2 12c+ 6 18c+ 14 · · ·

7c+ 1 16c− 1 30c+ 1 50c+ 11 · · ·

...
...

...
...

. . .























and

H(∞) =











1 1 0 · · · 0
c
c T(c+1,2c−2,0,0,...),(c+1,1,0,0,...)(∞)
...











.

Moreover, from the structure of H(∞), we see that the submatrix H(∞)[1] is the
convolution of sequences

(vi)i>0 = (1, c+ 1, 2c− 2, 0, 0, . . .), and (wi)i>0 = (0, 1, 0, 0, . . .),

with generating functions V (x) = 1+(c+1)x+(2c−2)x2 and W (x) = x, respectively.
Substituting the obtained generating functions in (9), we obtain

A(W (x)) = A(x) =

1+(c−1)x
1−x

1 + (c+ 1)x+ (2c− 2)x2
= 1−x+3x2−5x3+· · ·+(−1)nJn+1x

n+· · · .
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Therefore, it follows from Proposition 2 that

det(H(n)) = (−1)nvn+1
0 w

n(n+1)/2
1 an+1 = (−1)nan+1 = Jn+1,

as required.

(d) Let µi =
(

2i+1 + (i+1)(i−4)
2

)

c + (5−i)i
2

. This time, we will deal with the following ma-

trices:

A(∞) =























1 2 3 4 · · ·

c+ 1 2c+ 4 3c+ 8 4c+ 13 · · ·

3c+ 1 8c+ 5 14c+ 13 21c+ 26 · · ·

7c+ 1 21c+ 5 41c+ 17 68c+ 42 · · ·

...
...

...
...

. . .























,

and

H(∞) =











1 1 0 · · · 0
c
c T(c+2,3c−1,2c,2c,...),(c+2,1,0,0,...)(∞)
...











.

In addition, the submatrix H(∞)[1] of H(∞) is the convolution of sequences:

(vi)i>0 = (1, c+ 2, 3c− 1, 2c, 2c, . . .) and (wi)i>0 = (0, 1, 0, 0, . . .).

Note that the generating functions of these sequences are

V (x) =
1 + (1 + c)x+ (2c− 3)x2 − (c− 1)x3

1− x
and W (x) = x.,

respectively. After having substituted these generating functions in (9), we obtain

A(W (x)) = A(x) =

1+(c−1)x
1−x

1+(1+c)x+(2c−3)x2−(c−1)x3

1−x

= 1−2x+5x2−12x3+· · ·+(−1)nPn+1x
n+· · ·

Now, by Proposition 2, we deduce that

det(H(n)) = (−1)nvn+1
0 w

n(n+1)/2
1 an+1 = (−1)nan+1 = Pn+1,

as required.

This completes the proof.
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3 Some remarks

In this section, we will explain how the sequences (λi)i>0 and (µi)i>0 in Theorem 3, are
determined. Consider the following lower Hessenberg matrix

H(∞) = [Hi,j ]i,j>0 =























h0,0 h0,1 0 0 0 · · ·

h1,0 h1,1 h1,2 0 0 · · ·

h2,0 h2,1 h1,1 h1,2 0 · · ·

h3,0 h3,1 h2,1 h1,1 h1,2 · · ·

h4,0 h4,1 h3,1 h2,1 h1,1 · · ·
...

...
...

...
...

. . .























.

Let H(n) = [Hi,j]06i,j6n, and let dn be the nth determinant of H(n). In what follows, we
show that the sequence of principal minors of H(∞), i.e., D(H(∞)) = (dn)n>0, satisfies a
recurrence relation.

Proposition 4. With the above notation, we have

dn =











h0,0, if n = 0,

(−1)nh0,1(h1,2)
n−1hn,0 +

n−1
∑

k=0

hn−k,1(−h1,2)
n−k−1dk, if n > 1.

Proof. Obviously, d0 = h0,0. Hence, from now on we assume n > 1. First, we apply the
following row operations:

H1(n) =
( n
∏

i=1

Oi,0(
−hi,1

h0,1
)
)

H(n),

H2(n) =
( n−1
∏

i=1

Oi+1,1(
−hi,1

h1,2
)
)

H1(n),

H3(n) =
( n−2
∏

i=1

Oi+2,2(
−hi,1

h1,2
)
)

H2(n),

...

Hn(n) =
( 1
∏

i=1

Oi+(n−1),n−1(
−hi,1

h1,2
)
)

Hn−1(n).

It is obvious that, step by step, the columns are “emptied” until finally the following matrix

Hn(n) =























h̃0,0 h0,1 0 0 0 · · · 0

h̃1,0 0 h1,2 0 0 · · · 0

h̃2,0 0 0 h1,2 0 · · · 0

h̃3,0 0 0 0 h1,2 · · · 0
...

...
...

...
...

. . .
...

h̃n−1,0 0 0 0 0 · · · h1,2

h̃n,0 0 0 0 0 · · · 0























(n+1)×(n+1)

,
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is obtained, where

h̃i,0 =























h0,0, if i = 0;

h1,0 −
h1,1

h0,1
h0,0, if i = 1;

hi,0 −
hi,1

h0,1
h0,0 −

1
h1,2

i−1
∑

k=1

hi−k,1h̃k,0, if i > 2.

(11)

Evidently, dn = det(Hn(n)). Expanding the determinant along the last row of det(Hn(n)),
we obtain

dn = (−1)nh̃n,0h0,1(h1,2)
n−1, (n > 1). (12)

Finally, after some simplification, it follows that

dn = (−1)nh̃n,0h0,1(h1,2)
n−1

= (−1)nh0,1(h1,2)
n−1

[

hn,0 −
hn,1

h0,1
h0,0 −

1
h1,2

n−1
∑

k=1

hn−k,1h̃k,0

]

(by (11))

= (−1)nh0,1(h1,2)
n−1hn,0 + (−1)n+1(h1,2)

n−1hn,1h0,0 + (−1)n+1h0,1(h1,2)
n−2

n−1
∑

k=1

hn−k,1h̃k,0

= (−1)nh0,1(h1,2)
n−1hn,0 + (−1)n+1(h1,2)

n−1hn,1h0,0 +
n−1
∑

k=1

hn−k,1(−h1,2)
n−k−1dk (by (12))

= (−1)nh0,1(h1,2)
n−1hn,0 +

n−1
∑

k=0

hn−k,1(−h1,2)
n−k−1dk.

and the result follows.

In Proposition 4, if we take h0,0 = h0,1 = 1, h1,2 = 1, hi,0 = c and hi,1 = µ̂i for i > 1,
then we obtain

dn =











1, if n = 0;

(−1)nc+
n−1
∑

k=0

µ̂n−k(−1)n−k−1dk, if n > 1.

Now, if (dn)n>0 ∈ {F ,L,J ,P}, then

µ̂n = c+ (−1)n−1dn +
n−1
∑

k=1

(−1)k+1µ̂n−kdk,

from which we determine the sequence (µ̂i)i>1. Now, we form

H(∞) =















1 1 0 · · ·
c
c
... T(µ̂1,µ̂2,µ̂3,...),(µ̂1,1,0,0,...)(∞)
c















.
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Finally, the sequences (λi)i>0 and (µi)i>0 are determined by the equation A(n) = L(n) ·
H(n) · U(n).
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