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Abstract

We give new results on exact divisibility by powers of the Fibonacci and Lucas

numbers. For example, we prove that if F k
n exactly divides m and n is not congruent

to 3 modulo 6, then F
k+1
n exactly divides Fnm. We also provide some examples and

open questions.

1 Introduction

Let (Fn)n≥0 be the Fibonacci sequence defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2

for n ≥ 2, and let (Ln)n≥0 be the Lucas sequence given by L0 = 2, L1 = 1 with the same
recursive pattern as the Fibonacci sequence.

The divisibility property of Fibonacci and Lucas numbers has always been a popular
area of research. In particular, the divisibility by powers of the Fibonacci numbers became
a popular topic when Matijasevic̆ [10, 11, 12] proved in 1970 that

F 2
n | Fnm if and only if Fn | m (1)

which led to the solution to Hilbert’s 10th Problem. Since (1) appeared, there have been
several results [2, 5, 9, 13, 14, 17] on divisibility by powers of the Fibonacci numbers in the
literature. However, exact divisibility by powers of the Fibonacci and Lucas numbers seems
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to be new. (Recall that for integers a, d ≥ 2 and k ≥ 1, we say that dk exactly divides a and
write dk ‖ a if dk | a and dk+1 ∤ a). Now let us consider the following divisibility:

F k+1
n | FnFk

n
. (2)

Marques [9, p. 241] mentioned that to the best of his knowledge, (2) was first proved by
Benjamin and Rouse [2], using a combinatorial approach, and a second proof of (2) is due
to Seibert and Trojovsky [16] by using mathematical induction together with an identity for
Fnm

Fm
. Marques [9] himself also gave another proof of (2) by applying Lengyel’s theorem [8]

on the p-adic order of Fibonacci and Lucas numbers. However, there was an older result
which implied (2); it was proved in 1977 by Hoggatt and Bicknell-Johnson [5], as follows:

Theorem 1. [2, 5] Let k, m, and n be positive integers. If F k
n | m, then F k+1

n | Fnm.

Note that, from Theorem 1, we can easily obtain (2) by substituting m = F k
n , and obtain

one direction of (1) by substituting k = 1. Now it is natural to ask if k + 1 in Theorem 1 is
the largest exponent of Fn such that F k+1

n divides Fnm. Our purpose is to give another proof
of Theorem 1, and generalize the result to include the divisibility and exact divisibility by
powers of the Fibonacci and Lucas numbers. Our results are as follows:

Theorem 2. Let k,m, n be positive integers and n ≥ 3. Then

(i) if F k
n ‖ m and n 6≡ 3 (mod 6), then F k+1

n ‖ Fnm;

(ii) if F k
n ‖ m, n ≡ 3 (mod 6), and Fk+1

n

2
∤ m, then F k+1

n ‖ Fnm;

(iii) if F k
n ‖ m, n ≡ 3 (mod 6), and Fk+1

n

2
| m, then F k+2

n ‖ Fnm.

Theorem 3. Let k,m, n be positive integers and m is odd. Then

(i) if Lk
n | m, then Lk+1

n | Lnm;

(ii) if n ≥ 2 and Lk
n ‖ m, then Lk+1

n ‖ Lnm.

Theorem 4. Let k,m, and n be positive integers, m is even, and n ≥ 2. Then the following
statements hold.

(i) If Lk
n | m, then Lk+1

n | Fnm;

(ii) If Lk
n ‖ m and n 6≡ 0 (mod 3), then Lk+1

n ‖ Fnm;

(iii) If Lk
n ‖ m, n ≡ 0 (mod 6), and Lk+1

n

2
∤ m, then Lk+1

n ‖ Fnm;

(iv) If Lk
n ‖ m, n ≡ 0 (mod 6), and Lk+1

n

2
| m, then Lk+2

n | Fnm;

(v) If Lk
n ‖ m, n ≡ 3 (mod 6), and Lk+1

n

4
∤ m, then Lk+1

n ‖ Fnm;

(vi) If Lk
n ‖ m, n ≡ 3 (mod 6), and Lk+1

n

4
| m, then Lk+2

n ‖ 4Fnm.

To prove the above theorems, we will need a number of lemmas given in the next section.
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2 Preliminaries and lemmas

In this section, we will give some auxiliary results that will be used in this article. Let m,n,
and r be positive integers. Then the following statements hold.

gcd(Fm, Fn) = Fgcd(m,n). (3)

Fnm =
m
∑

j=1

(

m

j

)

F j
nF

m−j
n−1 Fj. (4)

If m ≥ 3, then Fm | Fn if and only if m | n. (5)

Ln = Fn−1 + Fn+1. (6)

gcd(Ln, Fn) =

{

1, if 3 ∤ n;

2, if 3 | n.
(7)

For the reader’s convenience, let us give references for the above statements. Properties
(3) and (5) can be found in [7, pp. 196–198]. Property (4) can be found in several articles
such as [2, 4, 5]. Property (6) appears in [7, p. 80], and (7) can be proved by using (6), (3),
and (5). We refer the reader to [1, 3, 6, 7, 15, 18] for more details and additional references.

Next we give the following results, similar to (4).

Lnm · 2m−1 =

⌊m

2 ⌋
∑

j=0

(

m

m− 2j

)

Lm−2j
n F 2j

n 5j . (8)

Fnm · 2m−1 =

⌊m−1

2 ⌋
∑

j=0

(

m

m− 2j − 1

)

Lm−(2j+1)
n F 2j+1

n 5j. (9)

These are probably less well known, so we will give a proof for completeness.

Proof. Recall Binet’s formula that Fn = αn−βn

α−β
and Ln = αn + βn, where α = 1+

√
5

2
and β =

1−
√
5

2
. Then αn = 1

2
(Ln + (α− β)Fn) = 1

2

(

Ln +
√
5Fn

)

, and βn = 1
2
(Ln − (α− β)Fn) =

1
2

(

Ln −
√
5Fn

)

. Then

Lnm = αnm + βnm =
1

2m

(

Ln +
√
5Fn

)m

+
1

2m

(

Ln −
√
5Fn

)m

=
1

2m

m
∑

k=0

(

m

m− k

)

Lm−k
n (

√
5Fn)

k
(

1 + (−1)k
)

.
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When k is odd, 1 + (−1)k = 0, so we replace k by 2j and obtain

Lnm =
1

2m−1

⌊m

2 ⌋
∑

j=0

(

m

m− 2j

)

Lm−2j
n F 2j

n 5j ,

which gives (8). For (9), we write

√
5Fnm = (α− β)Fnm = αnm − βnm =

1

2m
(Ln +

√
5Fn)

m − 1

2m
(Ln −

√
5Fn)

m

=
1

2m

m
∑

k=0

(

m

m− k

)

Lm−k
n (

√
5Fn)

k
(

1− (−1)k
)

.

As in the previous case, we replace k by 2j + 1 to obtain (9).

The next lemma is about the p-adic orders of Fibonacci and Lucas numbers given by
Lengyel [8]. Recall that the order of appearance of m and the period modulo m of the
Fibonacci sequence, respectively, is the smallest positive integer k such that m | Fk and the
smallest positive integer k such that Fn+k ≡ Fn (mod m) for all n ≥ 1.

Lemma 5. [8] For each m ∈ N, let νp(m) be the p-adic order of m, z(m) the order of
appearance of m, and s(m) the period modulo m of the Fibonacci sequence. For n ≥ 1, we
have

ν2(Fn) =











0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

ν2(n) + 2, if n ≡ 0 (mod 6),

ν2(Ln) =











0, if n ≡ 1, 2 (mod 3);

2, if n ≡ 3 (mod 6);

1, if n ≡ 0 (mod 6),

ν5(Fn) = ν5(n), ν5(Ln) = 0, and if p is a prime, p 6= 2 and p 6= 5, then

νp(Fn) =

{

νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p));

0, otherwise.

νp(Ln) =

{

νp(n) + νp(Fz(p)), if s(p) 6= 4z(p) and n ≡ z(p)
2

(mod z(p));

0, otherwise.

The next result given by Onphaeng and Pongsriiam [13] is an important tool for obtaining
the main results of this article.

Lemma 6. [13] Let k, ℓ,m, s be positive integers and sk | m. Then sk+ℓ |
(

m

j

)

sj for all

1 ≤ j ≤ m satisfying 2j−ℓ+1 > j. In particular, sk+1 |
(

m

j

)

sj for all 1 ≤ j ≤ m, and

sk+2 |
(

m

j

)

sj for all 3 ≤ j ≤ m.
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3 Proof of the main results

In this section, we will give the proof of Theorems 1, 2, 3, and 4.

Another proof of Theorem 1. Assume that F k
n | m. Then by Lemma 6, F k+1

n |
(

m

j

)

F j
n for all

1 ≤ j ≤ m. Therefore F k+1
n | Fnm by (4).

Proof of Theorem 2. Assume that F k
n ‖ m. By Theorem 1, F k+1

n | Fnm. So to show that
F k+1
n ‖ Fnm, it is enough to show that F k+2

n ∤ Fnm. First we write

m = F k
n c where c ≥ 1 and Fn ∤ c. (10)

By Lemma 6, F k+2
n |

(

m

j

)

F j
n for all 3 ≤ j ≤ m. Then we obtain by (4) that

Fnm ≡ mFnF
m−1
n−1 +

m(m− 1)

2
F 2
nF

m−2
n−1 (mod F k+2

n ). (11)

Proof of (i):

Case 1 of (i): n ≡ 1, 2, 4, 5 (mod 6). Then by Lemma 5, Fn is odd. Since F k
n | 2

(

m(m−1)
2

)

and Fn is odd, we obtain that F k
n | m(m−1)

2
. Therefore

F k+2
n

∣

∣

∣

∣

m(m− 1)

2
F 2
nF

m−2
n−1 . (12)

By (11) and (12), we obtain Fnm ≡ mFnF
m−1
n−1 (mod F k+2

n ). Since gcd(Fn, Fn−1) = 1 with
respect to (3), we see that

F k+2
n | Fnm ⇔ F k+2

n | mFnF
m−1
n−1 ⇔ F k+1

n | m. (13)

Since F k
n ‖ m, F k+1

n ∤ m. So we obtain by (13) that F k+2
n ∤ Fnm.

Case 2 of (i): n ≡ 0 (mod 6). Then by Lemma 5 we have Fn ≡ 0 (mod 4). Let

d = Fn−1 + (m− 1)
Fn

2
.

Since Fn is even,

d is an integer and

(

Fn

2
, d

)

= 1 (14)

By (11) and (10), we obtain

Fnm ≡ mFnF
m−2
n−1

(

Fn−1 +
m− 1

2
Fn

)

≡ cF k+1
n Fm−2

n−1 d (mod F k+2
n ).
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Suppose, in order to get a contradiction, that F k+2
n | Fnm. Then F k+2

n | cF k+1
n Fm−2

n−1 d which
implies that Fn | cd. By Fn ≡ 0 (mod 4), Fn | cd, and (14) we obtain that d is odd, c is even,
and Fn

2
| c
2
d. This and (14) imply that Fn | c, which contradicts (10). Hence F k+2

n ∤ Fnm.

Proof of (ii):

Assume that n ≡ 3 (mod 6) and Fk+1
n

2
∤ m. Then by Lemma 5 and (10), respectively,

we obtain ν2(Fn) = 1 and Fn

2
∤ c. We can follow the argument in Case 2 of (i) to see that

Fnm ≡ cF k+1
n Fm−2

n−1 d (mod F k+2
n ), and that F k+2

n | Fnm if and only if Fn | cd. But if Fn | cd,
then Fn

2
| cd which implies by (14) that Fn

2
| c, a contradiction. So Fn ∤ cd and therefore

F k+2
n ∤ Fnm. Hence F k+1

n ‖ Fnm.

Proof of (iii):

Assume that n ≡ 3 (mod 6) and Fk+1
n

2
| m. In this case, we will show that F k+2

n ‖ Fnm. We
can still follow the argument in Case 2 of (i) and the proof of (ii) to obtain Fnm ≡ cF k+1

n Fm−2
n−1 d

(mod F k+2
n ) and F k+2

n | Fnm if and only if Fn | cd. Since n ≡ 3 (mod 6), Fn is even and Fn

2

is odd. Therefore Fn−1 and m − 1 are odd and d is even. Since m = F k
n c and Fk+1

n

2
| m, we

obtain Fn | 2c. Since 2c | cd, we obtain Fn | cd and therefore F k+2
n | Fnm. It remains to show

that F k+3
n ∤ Fnm. Suppose for a contradiction that F k+3

n | Fnm. So for every prime p dividing
Fn, νp(F

k+3
n ) ≤ νp(Fnm). By Lemma 5, we obtain the following inequalities:

2 + ν2(F
k+1
n ) = ν2(F

k+3
n ) ≤ ν2(Fnm) = ν2(nm) + 2 = ν2(m) + 2,

2ν5(n) + ν5(F
k+1
n ) = ν5(F

k+3
n ) ≤ ν5(Fnm) = ν5(n) + ν5(m),

and for every prime p /∈ {2, 5} and p | Fn, we have

2νp(Fn) + νp(F
k+1
n ) = νp(F

k+3
n ) ≤ νp(Fnm)

= νp(nm) + νp(Fz(p)) = νp(m) + νp(n) + νp(Fz(p))

= νp(m) + νp(Fn).

From the above inequalities, we obtain that νp(m) ≥ νp(F
k+1
n ) for every prime p dividing

Fn. Therefore F k+1
n | m which contradicts F k

n ‖ m. This gives (iii). Hence the proof is
complete.

Proof of Theorem 3. Proof of (i):

Assume that Lk
n | m. Since m is odd and Ln | m, Ln is odd too. By Lemma 6,

Lk+1
n |

(

m

j

)

Lj
n for each 1 ≤ j ≤ m. Then Lk+1

n |
(

m

m−2j

)

Lm−2j
n for all 0 ≤ j ≤ m−1

2
. Then by

(8), we see that Lk+1
n | Lnm · 2m−1. Hence Lk+1

n | Lnm. This proves (i).

Proof of (ii):

Next assume that n ≥ 2 and Lk
n ‖ m. Then m ≥ 3 and by Lemma 6, Lk+2

n |
(

m

j

)

Lj
n for

all 3 ≤ j ≤ m. This implies that Lk+2
n |

(

m

m−2j

)

Lm−2j
n for all 0 ≤ j ≤ m−3

2
. Then by (8), we

see that
Lnm · 2m−1 ≡ mLnF

m−1
n 5

m−1

2 (mod Lk+2
n ) (15)
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Since Ln is odd, we obtain

Lk+2
n | Lnm ⇔ Lk+2

n | Lnm · 2m−1

⇔ Lk+1
n | mFm−1

n 5
m−1

2 , by (15)

⇔ Lk+1
n | m, by (7) and Lemma 5.

Now Lk
n ‖ m, so Lk+1

n ∤ m and thus Lk+2
n ∤ Lnm. Hence Lk+1

n ‖ Lnm as desired.

Proof of Theorem 4. Assume that Lk
n | m. Since n ≥ 2, we have m ≥ 4. Then by Lemma 6,

Lk+1
n |

(

m

j

)

Lj
n for every 1 ≤ j ≤ m. Therefore Lk+1

n |
(

m

m−2j−1

)

L
m−(2j+1)
n for every 0 ≤ j ≤

m−2
2

. Then by (9), we obtain Fnm · 2m−1 ≡ 0 (mod Lk+1
n ). From this point on, p-adic orders

will be used and we sometimes apply Lemma 5 without referring to it explicitly.

Proof of (i):

Case 1 of (i): n ≡ 1, 2 (mod 3). Then gcd(2, Ln) = 1. Since Lk+1
n | Fnm · 2m−1, Lk+1

n | Fnm.

Case 2 of (i): n ≡ 0 (mod 6). Then ν2(Ln) = 1. Since Lk
n | m, ν2(m) ≥ ν2(L

k
n) = k. Since

n ≡ 0 (mod 6), nm ≡ 0 (mod 6) and therefore

ν2(Fnm) = ν2(nm) + 2 = ν2(n) + ν2(m) + 2 ≥ k + 2.

Since Lk+1
n | Fnm · 2m−1 and ν2(Ln) = 1, we obtain

(

Ln

2

)k+1 | Fnm

2k+1 · 2m−1, which implies
(

Ln

2

)k+1 | Fnm

2k+1 . Therefore Lk+1
n | Fnm.

Case 3 of (i): n ≡ 3 (mod 6). Then ν2(Ln) = 2 and ν2(Fn) = 1. Since Lk
n | m, ν2(m) ≥

ν2(L
k
n) = 2k. Therefore nm ≡ 0 (mod 6) and ν2(Fnm) = ν2(nm) + 2 = ν2(n) + ν2(m) + 2 ≥

2k + 2. Since Lk+1
n | Fnm · 2m−1, ν2(Ln) = 2, and ν2(Fnm) ≥ 2k + 2, we obtain

Lk+1
n

(22)k+1

∣

∣

∣

∣

Fnm

22k+2
· 2m−1,

which implies that Lk+1
n

(22)k+1 | Fnm

22k+2 . Therefore Lk+1
n | Fnm.

In any case, we obtain that Lk+1
n | Fnm. This proves (i).

Proof of (ii):

Next assume that Lk
n ‖ m. Recall that m ≥ 4. By Lemma 6, Lk+2

n |
(

m

j

)

Lj
n for every

3 ≤ j ≤ m. Therefore Lk+2
n |

(

m

m−2j−1

)

L
m−(2j+1)
n for every 0 ≤ j ≤ m−4

2
. Then by (9),

Fnm · 2m−1 ≡ mLnF
m−1
n 5

m−2

2 (mod Lk+2
n ). (16)

Assume that n ≡ 1, 2 (mod 3). Then by Lemma 5, (16), and (7), we obtain that

Lk+2
n | Fnm ⇔ Lk+2

n | Fnm · 2m−1 ⇔ Lk+2
n | mLnF

m−1
n 5

m−2

2 ⇔ Lk+1
n | m.
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But Lk
n ‖ m, so Lk+1

n ∤ m and thus Lk+2
n ∤ Fnm. Then Lk+1

n ‖ Fnm. This proves (ii).

Proof of (iii) and (iv):

Assume that Lk
n ‖ m and n ≡ 0 (mod 6). In analogy with the proof of Case 2 of (i), we

see that

Lk+2
n | Fnm · 2m−1 ⇔ Lk+2

n

2k+2
| Fnm

2k+2
· 2m−1 ⇔ Lk+2

n

2k+2
| Fnm

2k+2
⇔ Lk+2

n | Fnm. (17)

Let m = Lk
nc where c ≥ 1 and Ln ∤ c. Then by (17), (16), and Lemma 5, we obtain that

Lk+2
n | Fnm ⇔ Lk+2

n | mLnF
m−1
n 5

m−2

2 ⇔ Ln | cFm−1
n . (18)

Now gcd(Ln, Fn) = 2 and ν2(Ln) = 1, so gcd
(

Ln

2
, Fn

)

= 1, and therefore

Ln | cFm−1
n ⇔ Ln

2
| cF

m−1
n

2
⇔ Ln

2
| c ⇔ Lk+1

n

2
| m. (19)

By (18) and (19), we see that Lk+2
n | Fnm ⇔ Lk+1

n

2
| m. This proves (iii) and (iv).

Proof of (v) and (vi):

Assume that Lk
n ‖ m and n ≡ 3 (mod 6). In analogy with the proof of Case 3 of (i), we

obtain that

Lk+2
n | Fnm · 2m−1 ⇔ Lk+2

n

22(k+2)
| Fnm

22k+2
· 2

m−1

22

⇔ Lk+2
n

22(k+2)
| Fnm

22k+2

⇔ Lk+2
n | 4Fnm. (20)

Next, we write m = Lk
nc, use (16), and use the similar idea in the proof of (iii) and (iv) to

obtain that

Lk+2
n | Fnm · 2m−1 ⇔ Lk+2

n | mLnF
m−1
n 5

m−2

2 ⇔ Ln | cFm−1
n ⇔ Ln

4
| cF

m−1
n

4

⇔ Ln

4
| c ⇔ Lk+1

n

4
| m. (21)

From (20) and (21), we conclude that Lk+2
n | 4Fnm ⇔ Lk+1

n

4
| m. This gives (v) and to prove

(vi), it suffices to show that Lk+3
n ∤ 4Fnm. Suppose for a contradiction that Lk+3

n | 4Fnm. Then
for every prime p dividing Ln, νp(L

k+3
n ) ≤ νp(4Fnm). Consider the following inequalities:

4 + ν2(L
k+1
n ) = ν2(L

k+3
n ) ≤ ν2(4Fnm) = 2 + ν2(nm) + 2 = 4 + ν2(m),

8



where we use that mn ≡ 0 (mod 6), and for every prime p /∈ {2, 5} and p | Ln, we have

νp(L
k+1
n ) + 2νp(Ln) = νp(L

k+3
n ) ≤ νp(4Fnm) ≤ νp(nm) + νp(Fz(p))

= νp(m) + νp(n) + νp(Fz(p)) = νp(m) + νp(Ln).

From the above inequalities, we obtain that νp(m) ≥ νp(L
k+1
n ) for every prime p dividing Ln.

Therefore Lk+1
n | m which contradicts the fact that Lk

n ‖ m. Hence Lk+3
n ∤ 4Fnm. This proves

(vi) and the proof is complete.

4 Examples

In this section, we give some examples to clarify the results in Theorems 3 and 4. Then we
give some open questions at the end of this article. First we will show that the assumption
that m is odd in Theorem 3 and that m is even in Theorem 4 cannot be omitted.

Example 7. Let n ≡ 0 (mod 3), k ≥ 1, and m = Lk
n. Then m is even, Lk

n | m, but
ν2(L

k+1
n ) ≥ k + 1 > 1 = ν2(Lnm). Therefore Lk+1

n ∤ Lnm. This shows that Theorem 3 does
not hold if m is not odd.

Example 8. Let n ≥ 2, n ≡ 1, 2 (mod 3), k ≥ 1, and m = Lk
n. Then m is odd and

Lk
n | m. As in the argument used in beginning of the proof of Theorem 4(i), we see that

Lk+1
n |

(

m

m−2j−1

)

L
m−(2j+1)
n for every 0 ≤ j ≤ m−3

2
and Fnm · 2m−1 ≡ Fm

n 5
m−1

2 (mod Lk+1
n ).

Since n ≡ 1, 2 (mod 3), we obtain by (7) that gcd(Ln, Fn) = 1. As Ln ≥ 3 and gcd(Ln, 5) = 1

with respect to Lemma 5, we obtain Lk+1
n ∤ Fm

n 5
m−1

2 . Hence Lk+1
n ∤ Fnm. This shows that

Theorem 4 does not hold if m is not even.

The conclusion Lk+2
n | Fnm in Theorem 4(iv) may or may not be Lk+2

n ‖ Fnm as shown in
the next example.

Example 9. Let k ≥ 1, ℓ ≥ 2k + 2, n = 6, and m = 2k3ℓ. Then m is even, n ≡ 0 (mod 6),

Ln = 18, Lk
n ‖ m, and Lk+1

n

2
| m. Then we obtain

ν2(Fnm) = ν2(nm) + 2 = k + 3 = (k + 3)ν2(Ln) = ν2(L
k+3
n ),

ν3(Fnm) = ν3(nm) + ν3(F4) = ℓ+ 2, and

ν3(L
k+3
n ) = ν3(18

k+3) = 2k + 6.

From this we see that if ℓ ≥ 2k + 4, then Lk+3
n | Fnm and if 2k + 2 ≤ ℓ < 2k + 4, then

Lk+3
n ∤ Fnm. This shows that the conclusion in Theorem 4(iv) may or may not be replaced

by an exact divisibility.

In view of Theorems 2, 3, and 4, the reader may expect to see the result concerning the
divisibility of Lucas numbers by powers of the Fibonacci numbers. But this is not possible
in general. For example, let n ≥ 3, n ≡ 0 (mod 3), k ≥ 1, m = F k

n , then ν2(F
k+1
n ) ≥ k+1 ≥

2 > ν2(Lnm) and therefore F k
n ‖ m but F k+1

n ∤ Lnm. Even though we assume n 6≡ 0 (mod 3),
the desired result is still false as shown in the next example.
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Example 10. Let n ≥ 3 and n 6≡ 0 (mod 3). Let k,m ≥ 1 and F k
n | m. Then by Lemma 6,

F k+1
n |

(

m

2j

)

F 2j
n for every 1 ≤ j ≤

⌊

m
2

⌋

. By (8), we obtain

Lnm · 2m−1 =

⌊m

2 ⌋
∑

j=0

(

m

2j

)

F 2j
n Lm−2j

n 5j ≡ Lm
n (mod F k+1

n ).

As gcd(Fn, Ln) = 1 by (7), we have F k+1
n ∤ Lm

n . Therefore F k+1
n ∤ Lnm.

5 Open questions

It is natural to ask if the converse of each theorem holds. Marques [9, Corollary 3] shows
that a partial converse of Theorem 1 holds. More precisely, he shows that if F k+1

n | Fnm and
m is odd, then F k

n | m. Whether or not the converse of Theorem 1 holds when m is even is
still open. Similar questions are the following.

Q1 Assume that F k+1
n ‖ Fnm and m is odd. Can we conclude that F k

n ‖ m?

Q2 Assume that Lk+1
n ‖ Lnm and m is odd (or any other assumption). Can we conclude

that Lk
n ‖ m?

Q3 Assume that Lk+1
n ‖ Fnm and m is even (or any other assumption). Can we conclude

that Lk
n ‖ m?

Q4 Suppose that Q1, Q2, or Q3 has a negative answer. Can we say something about the
divisibility of m by powers of the Fibonacci and Lucas numbers?

Q5 Benjamin and Rouse [2] show that Theorem 1 holds if the Fibonacci numbers are
replaced by the generalized Lucas numbers of the first kind (given by u0 = 0, u1 = 1,
and un = aun−1 + bun−2 for n ≥ 2). Does Theorem 1 hold for other sequences? Can
we extend the results to include exact divisibility by powers of the generalized Lucas
numbers of the first kind?
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