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Abstract

Let Nk(n, r,a) denote the number of incongruent solutions of the quadratic con-
gruence a1x

2
1+ · · ·+akx

2
k ≡ n (mod r), where a = (a1, . . . , ak) ∈ Zk, n ∈ Z, r ∈ N. We

give short direct proofs for certain less known compact formulas on Nk(n, r,a), valid
for r odd, which go back to the work of Minkowski, Bachmann and Cohen. We also
deduce some other related identities and asymptotic formulas which do not seem to
appear in the literature.

1 Introduction

Let k and n be positive integers and let rk(n) denote the number of representations of n as
a sum of k squares. More exactly, rk(n) is the number of solutions (x1, . . . , xk) ∈ Zk of the
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equation
x21 + · · ·+ x2k = n. (1)

The problem of finding exact formulas or good estimates for rk(n) and to study other
related properties is one of the most fascinating problems in number theory. Such results
were obtained by several authors, including Euler, Gauss, Liouville, Jacobi, Legendre and
many others. Some of these results are now well known and are included in several textbooks.
See, e.g., Grosswald [13], Hardy and Wright [14, Ch. XX], Hua [15, Ch. 8], Ireland and Rosen
[17, Ch. 17], Nathanson [20, Ch. 14]. See also Dickson [10, Ch. VI–IX, XI].

For example, one has the next exact formulas. Let n be of the form n = 2νm with ν ≥ 0
and m odd. Then

r2(n) = 4
∑

d|m

(−1)(d−1)/2, (2)

r4(n) = 8(2 + (−1)n)
∑

d|m

d. (3)

Exact formulas for rk(n) are known also for other values of k. These identities are, in
general, more complicated for k odd than in the case of k even.

Now consider the equation (1) in the ring Z/rZ of residues (mod r), where r is a positive
integer. Equivalently, consider the quadratic congruence

x21 + · · ·+ x2k ≡ n (mod r), (4)

where n ∈ Z. Let Nk(n, r) denote the number of incongruent solutions (x1, . . . , xk) ∈ Zk of
(4). The function r 7→ Nk(n, r) is multiplicative. Therefore, it is sufficient to consider the
case r = ps, a prime power. Identities for Nk(n, p

s) can be derived using Gauss and Jacobi
sums. For example, we refer to the explicit formulas for Nk(0, p

s) given in [4, p. 46] and for
Nk(1, p) given in [17, Prop. 8.6.1]. See also Dickson [10, Ch. X] for historical remarks.

Much less known is that for k even and r odd, Nk(n, r) can be expressed in a compact
form using Ramanujan’s sum. Furthermore, for k odd, r odd and gcd(n, r) = 1, Nk(n, r)
can be given in terms of the Möbius µ function and the Jacobi symbol. All these formulas
are similar to (2) and (3). Namely, one has the following identities:

0) For k ≡ 0 (mod 4), r odd, n ∈ Z:

Nk(n, r) = rk−1
∑

d|r

cd(n)

dk/2
. (5)

1) For k ≡ 1 (mod 4), r odd, n ∈ Z, gcd(n, r) = 1:

Nk(n, r) = rk−1
∑

d|r

µ2(d)

d(k−1)/2

(n

d

)

. (6)
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2) For k ≡ 2 (mod 4), r odd, n ∈ Z:

Nk(n, r) = rk−1
∑

d|r

(−1)(d−1)/2 cd(n)

dk/2
. (7)

3) For k ≡ 3 (mod 4), r odd, n ∈ Z, gcd(n, r) = 1:

Nk(n, r) = rk−1
∑

d|r

(−1)(d−1)/2 µ2(d)

d(k−1)/2

(n

d

)

. (8)

These are special cases of the identities deduced by Cohen in the paper [6] and quoted
later in his papers [7, 8, 9]. The proofs given in [6] are lengthy and use the author’s previous
work, although in Section 7 of [6] a direct approach using finite Fourier sums is also described.
According to Cohen the formulas (5)–(8) are due in an implicit form by Minkowski [18, pp.
45–58, 166–171]. Cohen [6, p. 27] says: “We mention the work of Minkowski as an important
example of the use of Fourier sums in treating quadratic congruences. While Minkowski’s
approach was quite general, his results were mainly of an implicit nature.” Cohen [9] refers
also to the book of Bachmann [2, Part 1, Ch. 7].

Another related compact formula, which seems to not appear in the literature is the
following: If k ≡ 0 (mod 4), r is odd and n ∈ Z, then

Nk(n, r) = rk/2−1
∑

d|gcd(n,r)

d Jk/2(r/d), (9)

where Jm is the Jordan function of order m.
It is the first main goal of the present paper to present short direct proofs of the identities

(5)–(9). Slightly more generally, we will consider — as Cohen did — the quadratic congruence

a1x
2
1 + · · ·+ akx

2
k ≡ n (mod r), (10)

where n ∈ Z, a = (a1, . . . , ak) ∈ Zk and derive formulas for the number Nk(n, r,a) of
incongruent solutions (x1, . . . , xk) ∈ Zk of (10), assuming that r is odd. For the proofs we
only need to express Nk(n, r,a) by a trigonometric sum and to use the evaluation of the
Gauss quadratic sum. No properties concerning finite Fourier expansions or other algebraic
arguments are needed. The proof is quite simple if k is even and somewhat more involved
if k is odd. We also evaluate Nk(n, 2

ν) (ν ∈ N) for certain values of k and n and consider
some special cases of (10).

Our second main goal is to establish asymptotic formulas — not given in the literature,
as far as we know — for the sums

∑

r≤xNk(n, r), taken over all integers r with 1 ≤ r ≤ x, in
the cases (k, n) = (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1). Similar formulas can be
deduced also for other special choices of k and n. Note that the mean values of the functions
r 7→ Nk(n, r)/n

k−1 were investigated by Cohen [7], but only over the odd values of r.
We remark that a character free method to determine the number of solutions of the

equation x2 + my2 = k in the finite field Fp (p prime) was presented in a recent paper by
Girstmair [12].
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2 Notation

Throughout the paper we use the following notation: N := {1, 2, . . .}, N0 := {0, 1, 2, . . .};
e(x) = exp(2πix);

(

ℓ
r

)

is the Jacobi symbol (ℓ, r ∈ N, r odd), with the conventions
(

ℓ
1

)

= 1
(ℓ ∈ N),

(

ℓ
r

)

= 0 if gcd(ℓ, r) > 1; cr(n) denotes Ramanujan’s sum (see, e.g., [1, Ch. 8], [14,
Ch. XVI]) defined as the sum of n-th powers of the primitive r-th roots of unity, i.e.,

cr(n) =
r
∑

j=1
gcd(j,r)=1

e(jn/r) (r, n ∈ N), (11)

where cr(0) = ϕ(r) is Euler’s function and cr(1) = µ(r) is the Möbius function; S(ℓ, r) is the
quadratic Gauss sum defined by

S(ℓ, r) =
r
∑

j=1

e(ℓj2/r) (ℓ, r ∈ N, gcd(ℓ, r) = 1). (12)

Furthermore, ∗ is the Dirichlet convolution of arithmetical functions; 1, id and idk are the
functions given by 1(n) = 1, id(n) = n, idk(n) = nk (n ∈ N); τ(n) is the number of divisors
of n; Jk = µ∗ idk is the Jordan function of order k, Jk(n) = nk

∏

p|n(1−1/pk) (n ∈ N), where

J1 = ϕ. Also, ψk = µ2 ∗ idk is the generalized Dedekind function, ψk(n) = nk
∏

p|n(1 + 1/pk)

(n ∈ N); ζ is the Riemann zeta function; γ stands for the Euler constant; χ = χ4 is the
nonprincipal character (mod 4) and G = L(2, χ)

.
= 0.915956 is the Catalan constant given

by

G =
∞
∑

n=0

(−1)n

(2n+ 1)2
=

∏

p≡1 (mod 4)

(

1− 1

p2

)−1
∏

p≡−1 (mod 4)

(

1 +
1

p2

)−1

. (13)

3 General results

We evaluate Nk(n, r,a) using the quadratic Gauss sum S(ℓ, r) defined by (12).

Proposition 1. For every k, r ∈ N, n ∈ Z, a = (a1, . . . , ak) ∈ Zk we have

Nk(n, r,a) = rk−1
∑

d|r

1

dk

d
∑

ℓ=1
(ℓ,d)=1

e(−ℓn/d)S(ℓa1, d) · · ·S(ℓak, d).

Proof. As is well known (see e.g., [19, Th. 1.31]), the number of solutions of a congruence
can be expressed using the familiar identity

r
∑

j=1

e(jt/r) =

{

r, if r | t;
0, if r ∤ t.

(14)
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valid for every r ∈ N, t ∈ Z. In our case we obtain

Nk(n, r,a) =
1

r

r
∑

x1=1

· · ·
r
∑

xk=1

r
∑

j=1

e((a1x
2
1 + · · ·+ akx

2
k − n)j/r),

that is,

Nk(n, r,a) =
1

r

r
∑

j=1

e(−jn/r)
r
∑

x1=1

e(ja1x
2
1/r) · · ·

r
∑

xk=1

e(jakx
2
k/r). (15)

By grouping the terms of (15) according to the values (j, r) = d with j = dℓ, (ℓ, r/d) = 1,
we obtain

Nk(n, r,a) =
1

r

∑

d|r

r/d
∑

ℓ=1
(ℓ,r/d)=1

e(−ℓn/(r/d))
r
∑

x1=1

e(ℓa1x
2
1/(r/d)) · · ·

r
∑

xk=1

e(ℓakx
2
k/(r/d)), (16)

where, as it is easy to see, for every j ∈ {1, . . . , k},
r
∑

xj=1

e(ℓajx
2
j/(r/d)) = dS(ℓaj, r/d). (17)

By inserting (17) into (16) and by putting d instead of r/d, we are ready.

Proposition 2. Assume that k, r ∈ N, r is odd, n ∈ Z and a = (a1, . . . , ak) ∈ Zk is such
that gcd(a1 · · · ak, r) = 1. Then

Nk(n, r,a) = rk−1
∑

d|r

ik(d−1)2/4

dk/2

(a1 · · · ak
d

)

d
∑

ℓ=1
(ℓ,d)=1

(

ℓ

d

)k

e(−ℓn/d). (18)

Proof. We use that for every r odd and ℓ ∈ N such that gcd(ℓ, r) = 1,

S(ℓ, r) =

{

(

ℓ
r

)√
r, if r ≡ 1 (mod 4);

i
(

ℓ
r

)√
r, if r ≡ −1 (mod 4),

(19)

cf., e.g., [4, Th. 1.5.2], [15, Th. 7.5.6]. Now the result follows immediately from Proposition
1.

Proposition 3. Assume that k ∈ N, r = 2ν (ν ∈ N), n ∈ Z and a = (a1, . . . , ak) ∈ Zk is
such that a1, . . . , ak are odd. Then

Nk(n, 2
ν ,a) = 2ν(k−1)






1 +

⌊ν/2⌋
∑

t=1

1

2kt

22t
∑

ℓ=1
ℓ odd

e(−ℓn/22t)(1 + iℓa1) · · · (1 + iℓak)
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+

⌊(ν−1)/2⌋
∑

t=1

1

2kt

22t+1

∑

ℓ=1
ℓ odd

e(−ℓn/22t+1 + ℓ(a1 + · · ·+ ak)/8)






.

Proof. Using Proposition 1 and putting d = 2s,

Nk(n, 2
ν ,a) = 2ν(k−1)

ν
∑

s=0

1

2ks

2s
∑

ℓ=1
ℓ odd

e(−ℓn/2s)S(ℓa1, 2s) · · ·S(ℓak, 2s).

We apply that for every ℓ odd,

S(ℓ, 2ν) =











0, if ν = 1;

(1 + iℓ)2ν/2, if ν is even;

2(ν+1)/2e(ℓ/8), if ν > 1 is odd,

cf., e.g., [4, Th. 1.5.1, 1.5.3], [15, Th. 7.5.7]. Separating the terms corresponding to s = 2t
even and s = 2t+ 1 odd, respectively we obtain the given formula.

4 The case k even, r odd

Suppose that k is even and r is odd. In this case we deduce for Nk(n, r,a) formulas in terms
of the Ramanujan sums.

Proposition 4. ([6, Th. 11 and Eq. (5.2)]) Assume that k = 2m (m ∈ N), r ∈ N is odd,
n ∈ Z, a = (a1, . . . , ak) ∈ Zk, gcd(a1 · · · ak, r) = 1. Then

N2m(n, r,a) = r2m−1
∑

d|r

cd(n)

dm

(

(−1)ma1 · · · a2m
d

)

.

Proof. This is a direct consequence of Proposition 2. For k even the inner sum of (18)
is exactly cd(n), by its definition (11), and applying that

(

−1
d

)

= (−1)(d−1)/2 the proof is
complete.

In the special case k = 2, a1 = 1, a2 = −D, r odd, gcd(D, r) = gcd(n, r) = 1 Proposition
4 was deduced by Rabin and Shallit [21, Lemma 3.2].

Corollary 5. If k = 4m (m ∈ N), r ∈ N is odd, n ∈ Z and a1 · · · ak = 1 (in particular
a1 = · · · = ak = 1), then

N4m(n, r,a) = r4m−1
∑

d|r

cd(n)

d2m
.
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Corollary 6. If k = 4m+ 2 (m ∈ N0), r ∈ N is odd, n ∈ Z and a1 · · · ak = 1 (in particular
a1 = · · · = ak = 1), then

N4m+2(n, r,a) = r4m+1
∑

d|r

(−1)(d−1)/2 cd(n)

d2m+1
. (20)

Therefore, the identities (5) and (7) are proved. In particular, the next simple formulas
are valid: for every r odd,

N2(0, r) = r
∑

d|r

(−1)(d−1)/2 ϕ(d)

d
, (21)

N4(1, r) = r3
∑

d|r

µ(d)

d2
= rJ2(r). (22)

Remark 7. In the case k even and a1 = · · · = ak = 1 for the proof of Proposition 4 it is
sufficient to use the formula S2(ℓ, r) = (−1)(r−1)/2r (r odd, gcd(ℓ, r) = 1) instead of the
much deeper result (19) giving the precise value of S(ℓ, r).

In the case k = 4m and a1 · · · ak = 1 the next representation holds as well (already given
in (9) in the case a1 = · · · = ak = 1).

Corollary 8. If k = 4m (m ∈ N), r ∈ N is odd, n ∈ Z and a1 · · · ak = 1 (in particular
a1 = · · · = ak = 1), then

N4m(n, r,a) = r2m−1
∑

d|gcd(n,r)

d J2m(r/d). (23)

Proof. We use Corollary 5 and apply that for every fixed n, c.(n) = µ ∗ η.(n), where
ηr(n) = r if r | n and 0 otherwise. Therefore,

N4m(n, r,a) = r2m−1
∑

d|r

cd(n)(r/d)
2m

= r2m−1 (c.(n) ∗ id2m) (r)

= r2m−1 (µ ∗ id2m ∗η.(n)) (r)
= r2m−1 (J2m ∗ η.(n)) (r)
= r2m−1

∑

d|gcd(n,r)

d J2m(r/d).

Remark 9. The identity (23) shows that for every r odd, the function n 7→ N4m(n, r) is even
(mod r). We recall that an arithmetic function n 7→ f(n) is said to be even (mod r) if
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f(n) = f(gcd(n, r)) holds for every n ∈ N. We refer to [24] for this notion. In fact, for every
k even the function n 7→ Nk(n, r,a) is even (mod r), where r is a fixed odd number and
gcd(a1 · · · ak, r) = 1, since according to Proposition 4, Nk(n, r,a) is a linear combination of
the values cd(r) with d | r. See also [8].

A direct consequence of (23) is the next result:

Corollary 10. If k = 4m (m ∈ N), r ∈ N is odd, n ∈ Z such that gcd(n, r) = 1, then

N4m(n, r) = r2m−1J2m(r) = r4m−1
∏

p|r

(

1− 1

p2m

)

.

Another consequence of Proposition 4 is the following identity, of which proof is similar
to the proof of Corollary 8:

Corollary 11. If k = 4m+ 2 (m ∈ N0), r ∈ N is odd, n ∈ Z and a1 · · · ak = −1, then

N4m+2(n, r,a) = r2m
∑

d|gcd(n,r)

d J2m+1(r/d).

In the case r = pν (p > 2 prime) and for special choices of k and n one can deduce
explicit formulas from the identities of above. For example (as is well known):

Corollary 12. For every prime p > 2 and every n ∈ N,

N2(n, p) =



















2p− 1, if p | n, p ≡ 1 (mod 4);

1, if p | n, p ≡ −1 (mod 4);

p− 1, if p ∤ n, p ≡ 1 (mod 4);

p+ 1, if p ∤ n, p ≡ −1 (mod 4),

N2(n, p
2) =







































p(p− 1), if p ∤ n, p ≡ 1 (mod 4);

2p(p− 1), if p | n, p2 ∤ n, p ≡ 1 (mod 4);

3p2 − 2p, if p2 | n, p ≡ 1, (mod 4);

p(p+ 1), if p ∤ n, p ≡ −1 (mod 4);

0, if p | n, p2 ∤ n, p ≡ −1 (mod 4);

p2, if p2 | n, p ≡ −1 (mod 4).

5 The case k odd, r odd

Now consider the case k odd, r odd. In order to apply Proposition 2 we need to evaluate
the character sum

T (n, r) =
r
∑

j=1
gcd(j,r)=1

(

j

r

)

e(jn/r).
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Lemma 13. Let r, n ∈ N, r odd such that gcd(n, r) = 1.
i) If r is squarefree, then

T (n, r) =

{

(

n
r

)√
r, if r ≡ 1 (mod 4);

i
(

n
r

)√
r, if r ≡ −1 (mod 4).

(24)

ii) If r is not squarefree, then T (n, r) = 0.

Proof. For every r odd the Jacobi symbol j 7→
(

j
r

)

is a real character (mod r) and T (n, r) =
(

n
r

)

T (1, r) holds if gcd(n, r) = 1. See, e.g., [15, Ch. 7].

i) If r is squarefree, then j 7→
(

j
r

)

is a primitive character (mod r). Thus, T (1, r) =
√
r

for
(

−1
r

)

= 1 and T (1, r) = i
√
r for

(

−1
r

)

= −1 ([15, Th. 7.5.8]), giving (24).
ii) We show that if r is not squarefree, then T (1, r) = 0. Here r can be written as r = p2s,

where p is a prime and by putting j = ks+ q,

T (1, r) =
s
∑

q=1

p2−1
∑

k=0

(

ks+ q

r

)

e((ks+ q)/r),

where
(

ks+ q

r

)

=

(

ks+ q

p2

)(

ks+ q

s

)

=
(q

s

)

and deduce

T (1, r) =
s
∑

q=1

(q

s

)

e(q/(p2s))

p2−1
∑

k=0

e(k/p2) = 0,

since the inner sum is zero using (14).

Note that properties of the sum T (n, r), including certain orthogonality results were
obtained by Cohen [6] using different arguments.

Proposition 14. ([6, Cor. 2]) Assume that k = 2m+1 (m ∈ N0), r ∈ N is odd, n ∈ Z such
that gcd(n, r) = 1, a = (a1, . . . , ak) ∈ Zk, gcd(a1 · · · ak, r) = 1. Then

N2m+1(n, r,a) = r2m
∑

d|r

µ2(d)

dm

(

(−1)mna1 · · · a2m+1

d

)

.

Proof. Apply Proposition 2. For k odd the inner sum of (18) is T (−n, d), where T (n, r) is
given by (24). Since r is odd and gcd(n, r) = 1, if d | r, then d is also odd and gcd(d, r) = 1.
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We deduce by Lemma 13 that

Nk(n, r,a) = rk−1
∑

d|r

ik(d−1)2/4

dk/2

(a1 · · · ak
d

)

T (−n, d)

= rk−1
∑

d|r
d squarefree

ik(d−1)2/4

dk/2

(a1 · · · ak
d

)

i(d−1)2/4

(−n
d

)√
d

= rk−1
∑

d|r

µ2(d)

d(k−1)/2
i(k+1)(d−1)2/4

(−na1 · · · ak
d

)

,

which gives the result by evaluating the powers of i.

Corollary 15. If k = 4m+1 (m ∈ N0), r ∈ N is odd, n ∈ Z, gcd(n, r) = 1 and a1 · · · ak = 1
(in particular if a1 = · · · = ak = 1), then

N4m+1(n, r,a) = r4m
∑

d|r

µ2(d)

d2m

(n

d

)

.

Corollary 16. If k = 4m+3 (m ∈ N0), r ∈ N is odd, n ∈ Z, gcd(n, r) = 1 and a1 · · · ak = 1
(in particular if a1 = · · · = ak = 1), then

N4m+3(n, r,a) = r4m+2
∑

d|r

µ2(d)

d2m+1
(−1)(d−1)/2

(n

d

)

.

This proves the identities (6) and (8).

Corollary 17. If k = 4m+ 3 (m ∈ N0), r ∈ N is odd, n ∈ Z, gcd(n, r) = 1 and a1 · · · ak =
−1, then

N4m+3(n, r,a) = r2m+1ψ2m+1(r).

To prove the next result we need the evaluation of

V (r) = T (0, r) =
r
∑

j=1
gcd(j,r)=1

(

j

r

)

,

not given by Lemma 13.

Lemma 18. If r ∈ N is odd, then

V (r) =

{

ϕ(r), if r is a square;

0, otherwise.
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Proof. If r = t2 is a square, then
(

j
r

)

=
(

j
t2

)

= 1 for every j with gcd(j, r) = 1 and deduce
that V (r) = ϕ(r).

Now assume that r is not a square. Then, since r is odd, there is a prime p > 2 such
that r = pνs, where ν is odd and gcd(p, s) = 1. First we show that there exists an integer
j0 such that (j0, r) = 1 and

(

j0
r

)

= −1. Indeed, let c be a quadratic nonresidue (mod p)
and consider the simultaneous congruences x ≡ c (mod p), x ≡ 1 (mod s). By the Chinese
remainder theorem there exists a solution x = j0 satisfying

(

j0
r

)

=

(

j0
p

)ν (
j0
s

)

=

(

c

p

)ν (
1

s

)

= (−1)ν = −1,

since ν is odd. Hence

V (r) =
r
∑

j=1
gcd(j,r)=1

(

jj0
r

)

=
r
∑

j=1
gcd(j,r)=1

(

j

r

)(

j0
r

)

= −
r
∑

j=1
gcd(j,r)=1

(

j

r

)

= −V (r),

giving that V (r) = 0.

Proposition 19. ([6, Cor. 1]) Assume that k, r ∈ N are odd, n = 0 and a = (a1, . . . , ak) ∈
Zk, gcd(a1 · · · ak, r) = 1. Then

Nk(0, r,a) = rk−1
∑

d2|r

ϕ(d)

dk−1
,

which does not depend on a.

Proof. From Proposition 2 we have

Nk(0, r,a) = rk−1
∑

d|r

ik(d−1)2/4

dk/2

(a1 · · · ak
d

)

V (d),

where V (d) is given by Lemma 18. We deduce

Nk(0, r,a) = rk−1
∑

d2|r

ik(d
2−1)2/4

dk

(a1 · · · ak
d2

)

ϕ(d2) = rk−1
∑

d2|r

ϕ(d2)

dk
.

Remark 20. For all the results of this section it was assumed that gcd(n, r) = 1. See [9] for
certain special cases of gcd(n, r) > 1.
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6 The case k even, r = 2
ν

In this section let a1 = · · · = ak = 1.

Proposition 21. If k ∈ N is even and n ∈ Z is odd, then Nk(n, 2) = 2k−1 and for every
ν ∈ N, ν ≥ 2,

Nk(n, 2
ν) = 2ν(k−1)

(

1− 1

2k/2−1
cos

(

kπ

4
+
nπ

2

))

.

Proof. We obtain from Proposition 3 by separating the terms according to ℓ = 4u + 1 and
ℓ = 4u+ 3, respectively,

Nk(n, 2
ν) = 2ν(k−1)



1 +

⌊ν/2⌋
∑

t=1

1

2kt
At +

⌊(ν−1)/2⌋
∑

t=1

1

2kt
Bt



 ,

where

At = (1 + i)k
22t−2−1
∑

u=0

e(−(4u+ 1)n/22t) + (1− i)k
22t−2−1
∑

u=0

e(−(4u+ 3)n/22t)

=
(

(1 + i)ke(−n/22t) + (1− i)ke(−3n/22t)
)

22t−2−1
∑

u=0

e(−un/22t−2),

and

Bt =
22t−1−1
∑

u=0

(

e(−(4u+ 1)n/22t+1 + (4u+ 1)k/8) + e(−(4u+ 3)n/22t+1 + (4u+ 3)k/8)
)

=
(

e(k/8− n/22t+1) + e(3k/8− 3n/22t+1)
)

22t−1−1
∑

u=0

e(−un/22t−1 + ku/2).

Since n is odd, n/22t−2 /∈ Z for every t ≥ 2. It follows that At = 0 for every t ≥ 2. Also,

A1 = (1 + i)ke(−n/4) + (1− i)ke(−3n/4) = −2k/2+1 cos(kπ/4 + nπ/2).

Similarly, since k is even and n is odd, k/2− n/22t−1 /∈ Z for every t ≥ 1. It follows that
Bt = 0 for every t ≥ 1. This completes the proof.

Corollary 22. If k = 4m (m ∈ N) and n ∈ Z is odd, then for every ν ∈ N,

N4m(n, 2
ν) = 2ν(4m−1).

Corollary 23. If k = 4m+2 (m ∈ N0) and n = 2t+1 ∈ Z is odd, then N4m+2(n, 2) = 24m+1

and for every ν ≥ 2,

N4m+2(n, 2
ν) = 2ν(4m+1)

(

1 +
(−1)m+t

22m

)

.
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By similar arguments one can deduce from Proposition 3:

Proposition 24. ([4, p. 46]) If k = 4m (m ∈ N) and n = 0, then for every ν ∈ N,

N4m(0, 2
ν) = 2ν(4m−1)

(

1 +
(−1)m(2(ν−1)(2m−1) − 1)

2(ν−1)(2m−1)(22m−1 − 1)

)

.

Proposition 25. ([4, p. 46]) If k = 4m+ 2 (m ∈ N0) and n = 0 for every ν ∈ N,

N4m+2(0, 2
ν) = 2ν(4m+1).

7 The case k odd, r = 2
ν

Now let k be odd, r = 2ν , a1 = · · · = ak = 1. By similar arguments as in the previous
sections we have

Proposition 26. ([4, p. 46]) If k ∈ N is odd and n = 0, then for every ν ∈ N,

Nk(0, 2
ν) = 2ν(k−1)

(

1 +
(−1)(k

2−1)/8 · (2(k−2)⌊ν/2⌋ − 1)

2(k−2)⌊ν/2⌋−(k−3)/2(2k−2 − 1)

)

.

Other cases can also be considered, for example:

Proposition 27. If k = 4m+ 3 and n = 4t+ 1 (m,n ∈ N0), then for every ν ∈ N,

N4m+3(n, 2
ν) = 2ν(4m+2)

(

1 +
(−1)m

22m+1

)

.

8 Special cases

In this section we consider some special cases and deduce asymptotic formulas for k =
1, 2, 3, 4 and a = (1, . . . , 1).

8.1 The congruence x2 ≡ 0 (mod r)

For k = 1 and n = 0 we have the congruence x2 ≡ 0 (mod r). Its number of solutions,
N1(0, r) is the sequence A000188 in [22]. It is well known and can be deduced directly that
N1(0, p

ν) = p⌊ν/2⌋ for every prime power pν (ν ∈ N). This leads to the Dirichlet series
representation

∞
∑

r=1

N1(0, r)

rs
=
ζ(2s− 1)ζ(s)

ζ(2s)
. (25)

Our next result corresponds to the classical asymptotic formula of Dirichlet
∑

n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2).
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Proposition 28. We have

∑

r≤x

N1(0, r) =
3

π2
x log x+ cx+O(x2/3), (26)

where c = 3
π2

(

3γ − 1− 2ζ′(2)
ζ(2)

)

.

Proof. By the identity (25) we infer that for every r ∈ N,

N1(0, r) =
∑

a2b2c=r

µ(a)b.

Using Dirichlet’s hyperbola method we have

E(x) :=
∑

b2c≤x

b =
∑

b≤x1/3

b
∑

c≤x/b2

1 +
∑

c≤x1/3

∑

b≤(x/c)1/2

b−
∑

b≤x1/3

b
∑

c≤x1/3

1,

which gives by the trivial estimate (i.e., |x− ⌊x⌋| < 1),

E(x) =
1

2
x log x+

1

2
(3γ − 1)x+O(x2/3).

Now,
∑

r≤x

N1(0, r) =
∑

a≤x1/2

µ(a)E(x/a2)

and easy computations complete the proof.

Remark 29. The error term of (26) can be improved by the method of exponential sums
(see, e.g., [5, Ch. 6]). Namely, it is O(x2/3−δ) for some explicit δ with 0 < δ < 1/6.

8.2 The congruence x2 ≡ 1 (mod r)

It is also well known, that in the case k = 1 and n = 1 for the number of solutions of the
congruence x2 ≡ 1 (mod r) one has N1(1, p

ν) = 2 for every prime p > 2 and every ν ∈ N,
N1(1, 2) = 1, N1(1, 4) = 2, N1(1, 2

ν) = 4 for every ν ≥ 3 (sequence A060594 in [22]). The
Dirichlet series representation

∞
∑

r=1

N1(1, r)

rs
=
ζ2(s)

ζ(2s)

(

1− 1

2s
+

2

22s

)

(27)

shows that estimating the sum
∑

r≤xN1(1, r) is closely related to the squarefree divisor

problem. Let τ (2)(n) = 2ω(n) denote the number of squarefree divisors of n. Then

∞
∑

n=1

τ (2)(n)

ns
=
ζ2(s)

ζ(2s)
. (28)

By this analogy we deduce
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Proposition 30.

∑

r≤x

N1(1, r) =
6

π2
x log x+ c1x+O(x1/2 exp(−c0(log x)3/5(log log x)−1/5)),

where c0 > 0 is a constant and c1 = 6
π2

(

2γ − 1− log 2
2

− 2ζ′(2)
ζ(2)

)

. If the Riemann hypothesis

(RH) is true, then the error term is O(x4/11+ε) for every ε > 0.

Proof. By the identities (27) and (28) it follows that for every r ∈ N,

N1(1, r) =
∑

ab=r

τ (2)(a)h(b),

where the multiplicative function h is defined by

h(pν) =











−1, if p = 2, ν = 1;

2, if p = 2, ν = 2;

0, otherwise.

Now the convolution method and the result

∑

n≤x

τ (2)(n) =
6

π2
x

(

log x+ 2γ − 1− 2ζ ′(2)

ζ(2)

)

+O(R(x)),

where R(x) ≪ x1/2 exp(−c0(log x)3/5(log log x)−1/5) (see [23]) conclude the proof. If RH is
true, then the estimate R(x) ≪ x4/11+ε due to Baker [3] can be used.

Remark 31. See [11] for asymptotic formulas on the number of solutions of the higher degree
congruences xℓ ≡ 0 (mod n) and xℓ ≡ 1 (mod n), respectively, where ℓ ∈ N. The results of
our Propositions 28 and 30 are better than those of [11] applied for ℓ = 2.

8.3 The congruence x2 + y2 ≡ 0 (mod r)

This is the case k = 2, n = 0. N2(0, r) is the sequence A086933 in [22] and for r odd it is
given by (21). Furthermore, N2(0, 2

ν) is given by Proposition 25. We deduce

Corollary 32. For every prime power pν (ν ∈ N),

N2(0, p
ν) =



















pν(ν + 1− ν/p), if p ≡ 1 (mod 4), ν ≥ 1;

pν , if p ≡ −1 (mod 4), ν is even;

pν−1, if p ≡ −1 (mod 4), ν is odd;

2ν , if p = 2, ν ≥ 1.
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Corollary 33. N2(0, .) = id ·(1 ∗ χ) ∗ µχ, where χ is the nonprincipal character (mod 4).

Proof. From Corollary 32 we obtain the Dirichlet series representation

∞
∑

r=1

N2(0, r)

rs
= ζ(s− 1)

∏

p>2

(

1− (−1)(p−1)/2

ps

)(

1− (−1)(p−1)/2

ps−1

)−1

= ζ(s− 1)L(s− 1, χ)L(s, χ)−1,

where L(s, χ) is the Dirichlet series of χ. This gives the result.

Observe that 4(1 ∗ χ)(n) = r2(n) is the number of ways n can be written as a sum of
two squares, quoted in the Introduction. This shows that the sum

∑

r≤xN2(0, r) is closely
related to the Gauss circle problem. The next result corresponds to the asymptotic formula
due to Huxley [16]

∑

n≤x

r2(n) = πx+O(xa(log x)b), (29)

where a = 131/416
.
= 0.314903 and b = 26947/8320.

Proposition 34. We have

∑

r≤x

N2(0, r) =
π

8G
x2 +O(xa+1(log x)b),

where G is the Catalan constant defined by (13).

Proof. Since N2(0, .) = (id · r2/4) ∗ (µχ), we have

∑

r≤x

N2(0, r) =
1

4

∑

d≤x

µ(d)χ(d)
∑

n≤x/d

nr2(n).

Now partial summation on (29) and usual estimates give the result.

8.4 The congruence x2 + y2 ≡ 1 (mod r)

This is the case k = 2, n = 1. N2(1, r) is sequence A060968 in [22]. For every r odd we have
by (20),

N2(1, r) = r
∑

d|r

(−1)(d−1)/2 µ(d)

d
,

and deduce (cf. Corollary 23).
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Corollary 35. For every prime power pν (ν ∈ N),

N2(1, p
ν) =



















pν(1− 1/p), if p ≡ 1 (mod 4), ν ≥ 1;

pν(1 + 1/p), if p ≡ −1 (mod 4), ν ≥ 1;

2, if p = 2, ν = 1;

2ν+1, if p = 2, ν ≥ 2.

Proposition 36. We have

∑

r≤x

N2(1, r) =
5

8G
x2 +O(x log x).

Proof. One has the Dirichlet series representation

∞
∑

r=1

N2(1, r)

rs
= ζ(s− 1)

(

1 +
4

22s

)

L(s, χ)−1,

and the asymptotic formula is obtained by usual elementary arguments.

8.5 The congruence x2 + y2 + z2 ≡ 0 (mod r)

This is the case k = 3, n = 0. N3(0, r) is the sequence A087687 in [22]. By Proposition 19
we have for every r ∈ N odd,

N3(0, r) = r2
∑

d2|r

ϕ(d)

d2
(30)

and using also Proposition 26 we deduce

Corollary 37. For every prime power pν (ν ∈ N),

N3(0, p
ν) =



















p3β−1(pβ+1 + pβ − 1), if p > 2, ν = 2β is even;

p3β−2(pβ + pβ−1 − 1), if p > 2, ν = 2β − 1 is odd;

23β, if p = 2, ν = 2β is even;

23β−1, if p = 2, ν = 2β − 1 is odd.

Proposition 38.
∑

r≤x

N3(0, r) =
24ζ(3)

π4
x3 +O(x2 log x).

Proof. The Dirichlet series of the function r 7→ N3(0, r) is

∞
∑

r=1

N3(0, r)

rs
= ζ(s− 2)G(s),
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where

G(s) =
ζ(2s− 3)

ζ(2s− 2)

22s − 16

22s − 4
(31)

is the Dirichlet series of the multiplicative function g given by

g(pν) =











p3β−1(p− 1), if p > 2, ν = 2β ≥ 2;

−23β, if p = 2, ν = 2β ≥ 2;

0, if p ≥ 2, ν = 2β − 1 ≥ 1.

Therefore, N3(0, .) = id2 ∗g and obtain

∑

r≤x

N3(0, r) =
∑

d≤x

g(d)

(

x3

3d3
+O(

x2

d2
)

)

=
x3

3
G(3) +O

(

x3
∑

d>x

|g(d)|
d3

)

+O

(

x2
∑

d≤x

|g(d)|
d2

)

. (32)

Here a direct computation shows that

∑

d≤x

|g(d)|
d2

≤
∏

p≤x

∞
∑

ν=0

|g(pν)|
pν

≪
∏

p

(

1 +
1

p

)

≪ log x (33)

by Mertens’ theorem.
Furthermore, by (31), g(n) =

∑

ab2=n h(a)b
3, where the Dirichlet series of the function h

is absolutely convergent for ℜs > 3/2. Hence
∑

n≤x

h(n) = c2x
2 +O(x3/2+ε)

with a certain constant c2, and by partial summation we deduce that

∑

d>x

|g(d)|
d3

≪ 1

x
. (34)

Now the result follows from (32), (33) and (34).

8.6 The congruence x2 + y2 + z2 ≡ 1 (mod r)

N3(1, r) is the sequence A087784 in [22]. Using Corollary 16 and Proposition 27 we have

Corollary 39. For every prime power pν (ν ∈ N),

N3(1, p
ν) =



















p2ν(1 + 1/p), if p ≡ 1 (mod 4), ν ≥ 1;

p2ν(1− 1/p), if p ≡ −1 (mod 4), ν ≥ 1;

4, if p = 2, ν = 1;

3 · 22ν−1, if p = 2, ν ≥ 2.
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Proposition 40. We have

∑

r≤x

N3(1, r) =
36G

π4
x3 +O(x2 log x).

Proof. Now the corresponding Dirichlet series is

∞
∑

r=1

N3(1, r)

rs
= ζ(s− 2)

(

1 +
8

22s

)

∏

p≡1 (mod 4)

(

1 +
1

ps−1

)

∏

p≡−1 (mod 4)

(

1− 1

ps−1

)

.

Hence, N3(1, .) = id2 ∗f , where f is the multiplicative function defined for prime powers
pν by

f(pν) =



















p, if p ≡ 1 (mod 4), ν = 1;

−p, if p ≡ −1 (mod 4), ν = 1;

8, if p = 2, ν = 2;

0, otherwise,

and the given asymptotic formula is obtained by the convolution method.

8.7 The congruence x2 + y2 + z2 + t2 ≡ 0 (mod r)

This is the case k = 4, n = 0 (sequence A240547 in [22]). For every r odd,

N4(0, r) = r3
∑

d|r

ϕ(d)

d2

by Corollary 5 and using also Proposition 24 we conclude

Corollary 41. For every prime power pν (ν ∈ N),

N4(0, p
ν) =

{

p2ν−1(pν+1 + pν − 1), if p > 2, ν ≥ 1;

22ν+1, if p = 2, ν ≥ 1.

Proposition 42. We have

∑

r≤x

N4(0, r) =
5π2

168ζ(3)
x4 +O(x3 log x).

Proof. The corresponding Dirichlet series is

∞
∑

r=1

N4(0, r)

rs
= ζ(s− 2)ζ(s− 3)

(

1− 4

2s
− 32

22s

)

∏

p>2

(

1− 1

ps−1

)

.
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8.8 The congruence x2 + y2 + z2 + t2 ≡ 1 (mod r)

This is the case k = 4, n = 1. N4(1, r) is sequence A208895 in [22]. By the identity (22)
giving its values for r odd and by Corollary 22 we obtain

Corollary 43. For every prime power pν (ν ∈ N),

N4(1, p
ν) =

{

p3ν(1− 1/p2), if p > 2, ν ≥ 1;

8ν , if p = 2, ν ≥ 1.

Proposition 44. We have

∑

r≤x

N4(1, r) =
2

7ζ(3)
x4 +O(x3).

Proof. Here
∞
∑

r=1

N4(1, r)

rs
= ζ(s− 3)

∏

p>2

(

1− 1

ps−1

)

.

Finally, we deal with two special cases corresponding to a 6= (1, . . . , 1).

8.9 The congruence x2 − y2 ≡ 1 (mod r)

Here k = 2, n = 1, a = (1,−1). N2(1, r, (1,−1)) is sequence A062570 in [22]. Corol-
lary 11 tells us that for every r ∈ N odd, N3(1, r, (1,−1)) = ϕ(r). Furthermore, from
Proposition 1 one can deduce, similar to the proof of Proposition 21 that for every ν ∈ N,
N3(1, 2

ν , (1,−1)) = 2ν . Thus,

Corollary 45. For every r ∈ N one has

N3(1, r, (1,−1)) = ϕ(2r).

8.10 The congruence x2 + y2 ≡ z2 (mod r)

This Phythagorean congruence is obtained for k = 3, n = 0, a1 = a2 = 1, a3 = −1.
N3(0, r, (1, 1,−1)) is sequence A062775 in [22]. Proposition 19 shows that for every r ∈ N
odd, N3(0, r, (1, 1,−1)) = N3(0, r) given by (30). From Proposition 1 one can deduce that
for every ν ∈ N,

N3(0, 2
ν , (1, 1,−1)) = 22ν

(

2− 1

2⌊ν/2⌋

)

.

Consequently,
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Corollary 46.

N3(0, p
ν , (1, 1,−1)) =



















p3β−1(pβ+1 + pβ − 1), if p > 2, ν = 2β is even;

p3β−2(pβ + pβ−1 − 1), if p > 2, ν = 2β − 1 is odd;

23β(2β+1 − 1), if p = 2, ν = 2β is even;

23β−1(2β − 1), if p = 2, ν = 2β − 1 is odd.
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