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Abstract

We derive explicit formulae or generating functions for the popularity of all the
length-3 patterns in multiply restricted permutations, and provide combinatorial in-
terpretations for some non-trivial equipopular patterns as well.

1 Introduction

Let σ = σ1σ2 · · · σn be a permutation in the symmetric group Sn. We say that σ contains

a pattern q = q1q2 · · · qk ∈ Sk if there exist 1 ≤ i1 < i2 < · · · < ik ≤ n such that the
entries σi1σi2 · · · σik have the same relative order as the entries of q, i.e., qj < ql if and only if
σij < σil whenever 1 ≤ j, l ≤ k. We say that σ avoids q if σ does not contain q as a pattern.
A permutation may contain multiple copies of a pattern. For example, permutation 43512
contains two copies of pattern 321, namely 431 and 432, but avoids pattern 123.

For a pattern q, let Sn(q) denote the set of all permutations in Sn that avoid the pattern
q, and for R ⊆ Sk, let Sn(R) =

⋂

q∈R Sn(q) be the set of permutations in Sn that avoid every
pattern contained in R. For two permutations σ and q, we set fq(σ) to be the number of
copies of q in σ as a pattern. The popularity of pattern q in Sn(R) is defined as

fq(Sn(R)) =
∑

σ∈Sn(R)

fq(σ).
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f213(n) = (n − 3)2n−2 + 1
∑

f231(n)xn =
∑

f312(n)xn =
x
3(1+2x)

(1−x−x
2)3

Sn(123, 132) f231(n) = f312(n) = (n2 − 5n + 8)2n−3 − 1 Sn(123, 132, 213)
∑

f321(n)xn =
x
3(1+6x+12x2+8x3)

(1−x−x
2)4

f321(n) = (n3/3 − 2n2 + 14n/3 − 5)2n−2 + 1 f213(n) = f312(n) =
(

n

3

)

f123(n) = (n − 4)2n−1 + n + 2 Sn(123, 132, 231) f321(n) = (n − 2)
(

n

3

)

Sn(132, 213) f231(n) = f312(n) = (n
2

4
− 7n

4
+ 4)2n − n − 4 f123(n) = f312(n) =

(

n+1
4

)

f321(n) = ( 1
12

n3 − 3
4
n2 + 38

12
n − 6)2n + n + 6 Sn(132, 213, 231) f321(n) = 1

12
n(n − 2)(n − 1)2

Sn(132, 231) f123(n) = f213(n) = f312(n) = f321(n) = 2n

8

(

n

3

)

f213(n) = f231(n) =
(

n

3

)

Sn(132, 312) f123(n) = f213(n) = f231(n) = f321(n) = 2n

8

(

n

3

)

Sn(123, 132, 312) f321(n) = (n − 2)
(

n

3

)

f213(n) = f231(n) = f312(n) =
(

n+2
5

)

f132(n) = f213(n) =
(

n+1
4

)

Sn(132, 321) f123(n) = 7n5

120
− n

4

3
+ 17n3

24
− 2n2

3
+ 7

30
Sn(123, 231, 312) f321(n) = 1

12
n(n − 2)(n − 1)2

Table 1: Pattern popularity in doubly and triply restricted permutations.

We say that p and q are equipopular if fp(Sn(R)) = fq(Sn(R)) for all n.
The complement of σ is given by σc = (n+1−σ1)(n+1−σ2) · · · (n+1−σn), its reverse

is defined as σr = σn · · · σ2σ1 and the inverse σ−1 is the regular group-theoretic inverse
permutation. For any set of permutations R, let Rc be the set obtained by complementing
each element of R, and the sets Rr and R−1 are defined analogously. It is well known that

Lemma 1. Let R ⊆ Sk be any set of permutations in Sk, and σ ∈ Sn, we have

σ ∈ Sn(R) ⇔ σc ∈ Sn(R
c) ⇔ σr ∈ Sn(R

r) ⇔ σ−1 ∈ Sn(R
−1).

Cooper [6] first raised the problem of determining the total number fq(Sn(r)), and Bóna
[2] derived the generating function of the sequence (fq(Sn(132)))n≥1 for monotone pattern,
i.e., q = 12 · · · k or q = k(k − 1) · · · 21. Further, Bóna [3] studied the generating functions
for other length-3 patterns in Sn(132), and showed both algebraically and bijectively that

f231(Sn(132)) = f312(Sn(132)) = f213(Sn(132)).

According to the correspondence between 132-avoiding permutations and binary plane
trees, Rudolph [13] showed that patterns of equal length are equipopular if their associated
binary plane trees have identical spine structure. For the converse direction, Chua and
Sankar [4] gave a complete classification of 132-avoiding permutations into equipopularity
classes. Moreover, Homberger [9] presented exact formulae for the occurrences of each length-
3 pattern in Sn(123). From Lemma 1 and the existing results on Sn(123) and Sn(132), we
can obtain the popularity of each length-3 pattern for the singly restricted permutations
Sn(r) with r = 213, 231, 312, 321. Therefore, it is well-studied for the popularity of length-3
patterns in singly restricted permutations, whereas it remains open for multiply restricted
permutations.

In this paper, we focus on counting the number of occurrences of length-3 patterns in mul-
tiply restricted permutations Sn(R) for R ⊂ S3, especially for double and triple restrictions.
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We obtain exact formulae or generating functions for popularity of each length-3 pattern,
and the detailed results are summarized in Table 1. Moreover, we present combinatorial
proofs for non-trivial equalities between the number of occurrences of different patterns. It
is routine to consider the restricted permutations of higher multiplicity since there are only
finite permutations, as shown in [14, Proposition 17]. Therefore, this work gives a complete
study on the popularity of length-3 patterns in the multiply restricted permutations. For
the distributions of other statistics in multiply restricted permutations, see [7, 8, 10, 11, 12].

2 Doubly restricted permutations

This section deals with the enumeration of the popularity for length-3 patterns in the doubly
restricted permutations, i.e., permutations avoiding two different patterns in S3. For doubly
restricted permutations, we have the following proposition from [14].

Proposition 2. ([14, Lemma 5]) For every symmetric group Sn,

1. |Sn(123, 132)| = |Sn(123, 213)| = |Sn(231, 321)| = |Sn(312, 321)| = 2n−1;

2. |Sn(132, 213)| = |Sn(231, 312)| = 2n−1;

3. |Sn(132, 231)| = |Sn(213, 312)| = 2n−1;

4. |Sn(132, 312)| = |Sn(213, 231)| = 2n−1;

5. |Sn(132, 321)| = |Sn(123, 231)| = |Sn(123, 312)| = |Sn(213, 321)| =
(

n

2

)

+ 1;

6. |Sn(123, 321)| = 0 for n ≥ 5.

Thus it is sufficient to consider the pattern popularity for the first set from class 1 to
class 5, and the pattern popularity for the other sets can be derived by taking complement,
reverse or inverse.

A composition of n is an expression of n as an ordered sum of positive integers, and we
say that c has k parts or c is a k-composition if there are exactly k summands appeared
in composition c. Let Cn and Cn,k denote the set of all compositions of n and the set of
k-compositions of n, respectively. It is known that |C0| = 1, and for n ≥ 1, 1 ≤ k ≤ n,
|Cn| = 2n−1 and |Cn,k| =

(

n−1
k−1

)

. For more details on compositions, see [16]. It is helpful to
introduce a lemma as follows:
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Lemma 3. For n ≥ 1, we have

a(n) :=
∑

c1+c2+···+ck=n

ck = 2n − 1,

b(n) :=
∑

c1+c2+···+ck=n

ck(ck − 1) = 2n+1 − 2n− 2,

c(n) :=
∑

c1+c2+···+ck=n

k = (n+ 1)2n−2,

d(n) :=
∑

c1+c2+···+ck=n

k(k − 1) = (n2 + n− 2)2n−3,

where the sums are taken over all compositions of n.

Proof. For ck = m , we can regard c1 + c2 + · · · + ck−1 as a composition of n − m. Since
the number of compositions of n − m is 2n−m−1 for 1 ≤ m ≤ n − 1 and the number of
compositions of n with k parts is

(

n−1
k−1

)

, we have

a(n) = n+
n−1
∑

m=1

m2n−m−1, b(n) = n(n− 1) +
n−1
∑

m=1

m(m− 1)2n−m−1,

and

c(n) =
n
∑

k=1

k

(

n− 1

k − 1

)

, d(n) =
n
∑

k=1

k(k − 1)

(

n− 1

k − 1

)

.

Let g(x) =
∑n−1

i=0 x
i = 1−xn

1−x
and h(x) = x

∑n

i=1

(

n−1
i−1

)

xi−1 = x(1 + x)n−1. We have

g′(x) =
n−1
∑

i=1

ixi−1 =
(n− 1)xn − nxn−1 + 1

(1− x)2
,

g′′(x) =
n−1
∑

i=1

i(i− 1)xi−2 =
(3n− n2 − 2)xn + (2n2 − 4n)xn−1 + (n− n2)xn−2 + 2

(1− x)3
,

h′(x) =
n
∑

i=1

i

(

n− 1

i− 1

)

xi−1 = (nx+ 1)(1 + x)n−2,

h′′(x) =
n
∑

i=1

i(i− 1)

(

n− 1

i− 1

)

xi−2 =
[

n2x+ n(2− x)− 2
]

(1 + x)n−3.

It follows that

a(n) = 2n−2g′(1/2) + n, b(n) = 2n−3g′′(1/2) + n(n− 1),

and
c(n) = h′(1), d(n) = h′′(1).

Lemma 3 holds by simple computations.
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2.1 Pattern popularity in (123, 132)-avoiding permutations

In this subsection, we calculate the popularity of all length-3 patterns in Sn(123, 132). For
a permutation σ = σ1σ2 · · · σn, σi is said to be a left-to-right maximum (resp., right-to-left
maximum) if σi > σj for all j < i (resp., j > i). We first recall a correspondence between
Sn(123, 132) and Cn as implicitly shown in [10].

Lemma 4. ([10, Theorem 3]) There is a bijection ϕ1 between Sn(123, 132) and Cn.

Proof. Given σ ∈ Sn(123, 132), let σi1 , σi2 , . . . , σik be the k right-to-left maxima with i1 <
i2 < · · · < ik. Then c = i1 + (i2 − i1) + · · · + (ik−1 − ik−2) + (ik − ik−1) is a composition of
n since ik = n. On the converse, let mi = n − (c1 + · · · + ci−1) for any given composition
n = c1 + c2 + · · · + ck ∈ Cn. Set τi = mi − 1,mi − 2, . . . ,mi − ci + 1,mi for 1 ≤ i ≤ k. It is
easy to check that σ = τ1 τ2 · · · τk ∈ Sn(123, 132).

For example, σ = 89 7 5 4 3 6 1 2 corresponds to the composition 9 = 2 + 1 + 4 + 2.
Given a pattern q, for simplicity, let fq(n) :=

∑

σ∈Sn(123,132)
fq(σ) be the number of

occurrences of pattern q in Sn(123, 132), and we will use this notation in subsequent sections
when the set in question is unambiguous. A factor of σ is a subsequence consisting of
contiguous letters in σ. From Lemma 4, we have

Proposition 5. For n ≥ 3,

f213(n) =
∑

c1+c2+···+ck=n

k
∑

i=1

(

ci − 1

2

)

, (1)

f231(n) =
∑

c1+c2+···+ck=n

k−1
∑

i=1

k
∑

j=i+1

cj(ci − 1). (2)

Proof. For each permutation σ ∈ Sn(123, 132) with ϕ1(σ) = c1+ c2+ · · ·+ ck, we can rewrite
σ as σ = τ1 τ2 · · · τk from Lemma 4. We say that τi > τj if all the elements in τi are larger
than that in τj. We see that the pattern 213 can only occur in every factor τi since the
elements except the last one are decreasing in τi and τi > τj for j > i. Thus, there are

(

ci−1
2

)

choices to select two elements in τi to play the role of “21”, and the last element of τi plays
the role of “3”. If ci ≤ 2, then there is no copy of the pattern 213 in τi, this coincides with
the value

(

ci−1
2

)

= 0 for ci = 1 or 2. Summing up all the number of 213-patterns in factors
τ1, τ2, . . . , τk yields formula (1).

For pattern 231, we have ci−1 choices in factor τi to select one element to play the role of
“2” and one choice (always the last element of τi) for “3”. After this, we have ci+1 + · · ·+ ck
choices to select one element in τi+1, . . . , τk for the role of “1” since all the elements after τi
are smaller than those in τi. Summing up all the number of 231-patterns according to the
position of “3” gives formula (2).

5



Theorem 6. For n ≥ 3, in the set Sn(123, 132), we have

f213(n) = (n− 3)2n−2 + 1, (3)

f231(n) = f312(n) = (n2 − 5n+ 8)2n−3 − 1, (4)

f321(n) = (n3/3− 2n2 + 14n/3− 5)2n−2 + 1. (5)

Proof. From S3(123, 132) = {213, 231, 312, 321}, we have

f213(3) = f231(3) = 1.

To prove formula (3), Proposition 5 gives that, for n ≥ 3,

f213(n+ 1) =
∑

ck=1
c1+c2+···+ck=n+1

k
∑

i=1

(

ci − 1

2

)

+
∑

ck≥2
c1+c2+···+ck=n+1

k
∑

i=1

(

ci − 1

2

)

.

If ck = 1, then k ≥ 2, and we have

∑

ck=1
c1+c2+···+ck=n+1

k
∑

i=1

(

ci − 1

2

)

=
∑

c1+c2+···+ck−1=n

k−1
∑

i=1

(

ci − 1

2

)

= f213(n).

If ck ≥ 2, then we set ck = 1 + rk with rk ≥ 1. From Lemma 3, we find that

∑

ck≥2
c1+c2+···+ck=n+1

k
∑

i=1

(

ci − 1

2

)

=
∑

c1+···+ck−1+rk=n

[

k−1
∑

i=1

(

ci − 1

2

)

+

(

rk − 1

2

)

+ (rk − 1)

]

= f213(n) +
∑

c1+···+ck−1+rk=n

(rk − 1)

= f213(n) + a(n)− 2n−1.

Combining the above two cases, we have

f213(n+ 1) = 2f213(n) + 2n−1 − 1,

which proves formula (3) by solving the recurrence with initial value f213(3) = 1.
For formula (4), we first have f231(n) = f312(n) from 231−1 = 312 and σ ∈ Sn(123, 132) ⇔

σ−1 ∈ Sn(123, 132). Using the same method as in the proof of formula (3), we can show

∑

ck=1
c1+c2+···+ck=n+1

k−1
∑

i=1

k
∑

j=i+1

cj(ci − 1) = f231(n)− c(n) + n2n−1,
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and

∑

ck≥2
c1+c2+···+ck=n+1

k−1
∑

i=1

k
∑

j=i+1

cj(ci − 1) = f231(n)− a(n)− c(n) + (n+ 1)2n−1.

It follows that, from Lemma 3,

f231(n+ 1) = 2f231(n) + (n− 2)2n−1 + 1.

Formula (4) is proved by solving this recurrence using f231(3) = 1.
Since the total number of all length-3 patterns in a permutation σ ∈ Sn is

(

n

3

)

, we have

f213(n) + 2f231(n) + f321(n) =

(

n

3

)

2n−1,

and formula (5) holds.

The first few values of fq(Sn(123, 132)) for q of length 3 are shown below. Moreover, we
observe that they appear in the On-Line Encyclopedia of Integer Sequences [15] as follows:
(f213(n))n≥3 form sequence A000337, (f231(n))n≥3 form sequence A055580.

n f123 f132 f213 f231 f312 f321 n f123 f132 f213 f231 f312 f321
3 0 0 1 1 1 1 6 0 0 49 111 111 369
4 0 0 5 7 7 13 7 0 0 129 351 351 1409
5 0 0 17 31 31 81 8 0 0 321 1023 1023 4801

2.2 Pattern popularity in (132, 213)-avoiding permutations

We first recall a correspondence between Sn(132, 213) and Cn as follows:

Lemma 7. ([10, Theorem 8]) There is a bijection ϕ2 between Sn(132, 213) and Cn.

Proof. Given σ ∈ Sn(132, 213), let σi1 , σi2 , . . . , σik be the k right-to-left maxima with i1 <
i2 < · · · < ik. It follows that c = i1+(i2−i1)+ · · ·+(ik−1−ik−2)+(ik−ik−1) is a composition
of n since ik = n. On the converse, given a composition n = c1 + c2 + · · · + ck ∈ Cn, let
mi = n− (c1 + · · ·+ ci−1) and τi = mi − ci + 1,mi − ci + 2, . . . ,mi − 1,mi for 1 ≤ i ≤ k. Set
σ = τ1 τ2 · · · τk, and it is easy to check that σ ∈ Sn(132, 213).

For example, for the composition 9 = 3+ 3+ 1+ 2, we get σ = 78 9 4 5 6 3 1 2. From this
lemma, we have

7
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Proposition 8. For n ≥ 3,

f123(n) =
∑

c1+c2+···+ck=n

k
∑

i=1

(

ci
3

)

, (6)

f231(n) =
∑

c1+c2+···+ck=n

k−1
∑

i=1

k
∑

j=i+1

cj

(

ci
2

)

. (7)

Proof. For a permutation σ ∈ Sn(132, 213) with ϕ2(σ) = c1 + c2 + · · · + ck, we rewrite σ as
σ = τ1 τ2 · · · τk. The pattern 123 can only occur in every factor τi as τi > τj for j > i and
the elements in τi are increasing. Thus, we have

(

ci
3

)

choices to select three elements in τi
to play the role of “123”, and formula (6) follows by summing up all 123-patterns in factors
τ1, τ2, . . . , τk.

For the pattern 231, we have
(

ci
2

)

choices in factor τi to select two elements to play the
role of “23”. After this, we have ci+1 + · · · + ck choices to select one element in τi+1, . . . , τk
for the role of “1” since τj < τi for all j > i. Summing up all the number of 231-patterns
according to the position of “23” gives formula (7).

Theorem 9. For n ≥ 3, in the set Sn(132, 213), we have

f123(n) = (n− 4)2n−1 + n+ 2, (8)

f231(n) = f312(n) = (n2 − 7n+ 16)2n−2 − n− 4, (9)

f321(n) = (n3/3− 3n2 + 38n/3− 24)2n−2 + n+ 6. (10)

Proof. From Proposition 8, it follows that

f123(n+ 1) =
∑

ck=1
c1+c2+···+ck=n+1

k
∑

i=1

(

ci
3

)

+
∑

ck≥2
c1+c2+···+ck=n+1

k
∑

i=1

(

ci
3

)

.

An argument similar to the proof of Theorem 6 shows that

f123(n+ 1) = 2f123(n) + 2n − n− 1.

Solving this recurrence with initial value f123(3) = 1 leads to formula (8).
From Lemma 1, we see that σ ∈ Sn(132, 213) ⇔ σ−1 ∈ Sn(132, 213), which implies

f231(n) = f312(n) as 231
−1 = 312.

To calculate f231(n), by Proposition 8, we arrive at

f231(n+ 1) =
∑

ck=1
c1+c2+···+ck=n+1

k−1
∑

i=1

k
∑

j=i+1

cj

(

ci
2

)

+
∑

ck≥2
c1+c2+···+ck=n+1

k−1
∑

i=1

k
∑

j=i+1

cj

(

ci
2

)

.
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If ck = 1, then k ≥ 2, and we have

∑

ck=1
c1+c2+···+ck=n+1

k−1
∑

i=1

k
∑

j=i+1

cj

(

ci
2

)

= f231(n) + α(n),

where

α(n) =
∑

c1+···+ck=n

k
∑

i=1

(

ci
2

)

=
∑

c1+···+ck=n

k
∑

i=1

[(

ci − 1

2

)

+ ci − 1

]

= f213(Sn(123, 132)) +
∑

c1+···+ck=n

(n− k)

= f213(Sn(123, 132))− c(n) + n2n−1.

Here we have used the deduced expression (1).
If ck ≥ 2, then we can derive that

∑

ck≥2
c1+···+ck=n+1

k−1
∑

i=1

k
∑

j=i+1

cj

(

ci
2

)

= f231(n) + β(n),

where

β(n) =
∑

c1+···+ck=n

k−1
∑

i=1

(

ci
2

)

=
∑

c1+···+ck=n

k
∑

i=1

(

ci
2

)

−
∑

c1+···+ck=n

ck(ck − 1)

2
= α(n)− b(n)/2.

From Lemma 3, we get

f231(n+ 1) = 2f231(n) + (2n− 6)2n−1 + n+ 3.

Formula (9) holds by solving this recurrence with initial condition f213(3) = 1.
Finally, formula (10) follows from f123(n) + 2f231(n) + f321(n) =

(

n

3

)

2n−1.

The first few values of fq(Sn(132, 213)) for q of length 3 are shown below. They appear
in [15] as follows: (f123(n))n≥3 form sequence A045618, (f231(n))n≥3 form sequence A055581
and (f321(n))n≥3 form sequence A055586.

n f123 f132 f213 f231 f312 f321 n f123 f132 f213 f231 f312 f321
3 1 0 0 1 1 1 6 72 0 0 150 150 268
4 6 0 0 8 8 10 7 201 0 0 501 501 1037
5 23 0 0 39 39 59 8 522 0 0 1524 1524 3598
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2.3 Pattern popularity in (132, 231)-avoiding permutations

For each σ ∈ Sn(132, 231), we observe that n must lie in the beginning or the end of σ, and
n− 1 must lie in the beginning or the end of σ\{n},..., and so on. Here σ\{n} denotes the
sequence obtained from σ by deleting the element n. In view of such special structure, we
can derive the pattern popularity in (132, 231)-avoiding permutations directly.

Theorem 10. For n ≥ 3, in the set Sn(132, 231), we have

f123(n) = f213(n) = f312(n) = f321(n) =

(

n

3

)

2n−3. (11)

Proof. Suppose that q is a length-3 pattern in {123, 213, 312, 321}, and abc is a copy of the
pattern q. Set

[n]\{a, b, c} := {r1 > r2 > · · · > rn−4 > rn−3}.

We will construct a permutation in the set Sn(132, 231) which contains abc as a copy of the
pattern q. Start with the subsequence σ0 := abc, and for i from 1 to n− 3, σi is obtained by
inserting ri into σ

i−1 such that

• If there are at least two elements in σi−1 that are smaller than ri, then choose the two
elements A and B such that A is the leftmost one and B is the rightmost one. We put
ri immediately to the left of A or immediately to the right of B;

• If there is only one element A in σi−1 such that A < ri, then we put ri immediately to
the left or to the right of A;

• If all the elements in σi−1 are larger than ri, then choose A the smallest one, and put
ri immediately to the left or to the right of A.

Finally, we set σ := σn−3 and σ ∈ Sn(132, 231) from the above construction. It can be
seen that, the number of permutations having a copy abc is 2n−3 since each ri has 2 choices in
the inserting procedure. Moreover, there are

(

n

3

)

choices to select three elements a, b, c as an
appearance of the pattern q in {123, 213, 312, 321}. Hence we deduce fq(n) =

(

n

3

)

2n−3.

Here we give an illustration for constructing a permutation in S8(132, 231) which contains
abc = 256 as a copy of the pattern 123. Set σ0 := 2 5 6, we may have σ1 = 82 5 6, σ2 =
87 2 5 6, σ3 = 87 2 4 5 6, σ4 = 87 3 2 4 5 6, σ := σ5 = 87 3 2 1 4 5 6.

We can also give a combinatorial proof for Theorem 10. Since σ ∈ Sn(132, 231) ⇔ σr ∈
Sn(132, 231), it is easy to show f123(n) = f321(n) and f213(n) = f312(n) from 123r = 321
and 213r = 312. It remains to give a bijection for f213(n) = f123(n), and our construction is
motivated from Bóna [3].

We first introduce some notation about trees. A binary plane tree is a rooted unlabelled
tree in which each vertex has at most two children, and each child is a left child or a right child
of its parent. For each σ ∈ Sn(132), we can construct a binary plane tree T (σ) as follows:

10



the root of T (σ) corresponds to the entry n of σ, the left subtree of the root corresponds to
the string of entries of σ on the left of n, and the right subtree of the root corresponds to
the string of entries of σ on the right of n. Both subtrees are constructed recursively by the
same rule. For more details, see [1, 3, 13].

A left descendant (resp., right descendant) of a vertex x in a binary plane tree is a vertex
in the left (resp., right) subtree of x. Similarly, an ascendant of a vertex x in a binary plane
tree is a vertex whose subtree contains x. Given a tree T and a vertex v ∈ T , let Tv be the
subtree of T rooted at v. Let R be an occurrence of the pattern 123 in σ ∈ Sn(132), and let
R1, R2, R3 be the three vertices of T (σ) that correspond to R, going left to right. Then, R1

is a left descendant of R2, and R2 is a left descendant of R3.
According to the correspondence between 132-avoiding permutations and binary plane

trees, we see that for σ ∈ Sn(132, 231), T (σ) is a binary plane tree on n vertices such that
each vertex has at most one child from the forbiddance of the pattern 231. For simplicity, let
Tn be the set of such binary plane trees on n vertices. Let Q be an occurrence of the pattern
213 in σ ∈ Sn(132, 231), and let Q2, Q1, Q3 be the three vertices of T (σ) that correspond to
Q, going left to right. From the characterization of trees in Tn, Q2 is a left descendant of
Q3, and Q1 is a right descendant of Q2.

Combinatorial proof for f213(n) = f123(n). Let An be the set of binary plane trees in Tn

where three vertices forming a 213-pattern are colored black. Let Bn be the set of all binary
plane trees in Tn where three vertices forming a 123-pattern are colored black. We define a
map ρ : An → Bn as follows.

Given a tree T ∈ An with Q2, Q1, Q3 being the three black vertices as a 213-pattern, we
define ρ(T ) be the tree obtained from T by changing the right subtree of Q2 to be its left
subtree. See Figure 1 for an illustration.

✉

r

✉

r

r

✉

r

r

Q1

Q2

Q3

⇋

r

✉

r

✉

r

✉

r

r

Q1

Q2

Q3

right subtree of Q2 left subtree of Q2

Figure 1: The bijection ρ.

In the tree ρ(T ), the relative positions of Q2 and Q3 keep the same, and Q1 is a left
descendant of Q2. Therefore, points Q1Q2Q3 form a 123-pattern in ρ(T ), and ρ(T ) ∈ Bn.
On the converse, it is routine to verify that changing left subtree of Q2 to be its right subtree
is the desired reverse map. Therefore, ρ is a bijection between An and Bn.

The initial values for fq(Sn(132, 231)) are

1, 8, 40, 160, 560, 1792, . . . ,

11



and this is essentially the sequence A001789 in [15].

2.4 Pattern popularity in (132, 312)-avoiding permutations

We first present a lemma as follows:

Lemma 11. There is a bijection ϕ4 between Sn(132, 312) and Cn.

Proof. For σ ∈ Sn(132, 312), let σi1 , σi2 , . . . , σik be the k left-to-right maxima with i1 < i2 <
· · · < ik. Then c = (i2−i1)+(i3−i2)+· · ·+(ik−ik−1)+(n+1−ik) is a composition of n since
i1 = 1. On the converse, let n = ck+ck−1+ · · ·+c2+c1 ∈ Cn. For 1 ≤ i ≤ k, if ci = 1 then set
τi = n−i+1; otherwise, setmi = c1+· · ·+ci−1−i+2 and τi = n−i+1,mi+ci−2, . . . ,mi+1,mi.
It is easy to get σ = τk τk−1 · · · τ2 τ1 ∈ Sn(132, 312).

For example, if 9 = 3 + 1 + 2 + 3, then σ = 65 4 7 8 3 9 2 1.

Proposition 12. For n ≥ 3,

f123(n) =
∑

c1+c2+···+ck=n

k−2
∑

i=1

ci

(

k − i

2

)

. (12)

Proof. Let σ = τk · · · τ2 τ1 be a permutation in Sn(132, 312) whose composition is given by
n = ck + ck−1 + · · · + c2 + c1. It is evident that, for i + 1 ≤ j ≤ k, the first element in τi
is larger than all the elements in τj, whereas the other elements in τi are smaller than that
in τj. Furthermore, the left-to-right maxima form an increasing subsequence and the other
elements form a decreasing subsequence. Thus we have ci choices to select one element in
τi to play the role of “1”, and then

(

i−1
2

)

choices to select two left-to-right maxima after τi
to paly the role of “23”. Summing up all the number of 123-patterns in factors τk, . . . , τ2, τ1
yields that

f123(n) =
∑

ck+···+c2+c1=n

k
∑

i=3

ci

(

i− 1

2

)

.

By setting i := k − i + 1 and using the symmetry of the summands in compositions, it is
equivalent to formula (12).

Theorem 13. For n ≥ 3, in the set Sn(132, 312), we have

f123(n) = f321(n) =

(

n

3

)

2n−3, (13)

f213(n) = f231(n) =

(

n

3

)

2n−3. (14)

12
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Proof. From Lemma 1, we know that σ ∈ Sn(132, 312) ⇔ σc ∈ Sn(132, 312). Hence it is
obvious that f123(n) = f321(n) and f213(n) = f231(n) as 123

c = 321 and 213c = 231.
To calculate f123(n), by using Proposition 12 and the similar argument in the proof of

Theorem 6, we have
f123(n+ 1) = 2f123(n) + (n2 − n)2n−3.

Formula (13) holds by solving the recurrence with initial value f123(3) = 1, and formula (14)
is a direct computation of 2f123(n) + 2f213(n) =

(

n

3

)

2n−1.

We will give a combinatorial interpretation for f231(n) = f123(n). For each σ ∈ Sn(132, 312),
we construct a binary plane tree T (σ) on n vertices such that each vertex with a right de-
scendant of some vertex does not have a left descendant from the forbiddance of the pattern
312. Let Tn denote the set of such trees on n vertices. Let Q be an occurrence of the pattern
231 in σ ∈ Sn(132, 312), and let Q2, Q3, Q1 be the three vertices of T (σ) that correspond
to Q, going left to right. Then, Q2 is a left descendant of Q3, and there exists a lowest
ascendant x of Q3 or x = Q3 so that Q1 is a right descendant of x.

Combinatorial proof for f231(n) = f123(n). Let An be the set of binary plane trees in
Tn in which three vertices forming a 231-pattern are colored black. Let Bn be the set of all
binary plane trees in Tn in which three vertices forming a 123-pattern are colored black. We
define a map ̺ : An → Bn as follows.

Given a tree T ∈ An with Q2, Q3, Q1 being the three black vertices forming a 231-pattern,
let y be the parent of x if it exists. We can see that x is the left child of y from T ∈ An. Let
T u := T − Tx be the tree obtained from T by deleting the subtree Tx, and T

d := Tx − TQ1

be the tree obtained from Tx by deleting TQ1 . Now we define ̺(T ) to be the tree obtained
from T by first adjoining TQ1 to the vertex y as its left subtree, then adjoining T d to Q1 as
its left subtree and keeping all three black vertices the same if y exits; otherwise, we adjoin
T d to Q1 as its left subtree directly. An illustration is given in Figure 2.

s s

✈

s

✈

s

s

s

✈

s

s

s

s

Q2

Q3 Q1

x

y

⇒

s s

✈

s

✈

s

s

✈

s s

s

s

s

Q2

Q3

Q1

x

y
Tuր Tu→

Td

ց
Td→

Figure 2: The bijection ̺.

In the tree ̺(T ), the relative positions of Q2 and Q3 are unchanged, and Q3 is a left
descendant of Q1, thus the three black points Q2Q3Q1 form a 123-pattern in ̺(T ), and
̺(T ) ∈ Bn. It is easy to describe the inverse map and we omit here.
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2.5 Pattern popularity in (132, 321)-avoiding permutations

We first introduce a lemma as follows:

Lemma 14. [14, Proposition 13] There is a bijection ϕ5 between Sn(132, 321)\{id} and the

set of 2-element subsets of [n].

Proof. For a permutation σ ∈ Sn(132, 321)\{id}, suppose σk = m (k < m) and define
ϕ5(σ) = {k,m}. On the converse, given two elements 1 ≤ k < m ≤ n, set τ1 = m − k +
1,m− k+2, . . . ,m− 1,m, τ2 = 1, 2, . . . ,m− k and τ3 = m+1,m+2, . . . , n− 1, n. We have
σ = ϕ−1

5 (k,m) = τ1 τ2 τ3.

For example, if k = 4,m = 6, then σ = 34 5 6 1 2 7 8.

Proposition 15. For n ≥ 3,

f213(n) =
∑

1≤k<m≤n

k(m− k)(n−m), (15)

f312(n) =
∑

1≤k<m≤n

k

(

m− k

2

)

. (16)

Proof. Given a permutation σ = τ1 τ2 τ3 in Sn(132, 321) with ϕ5(σ) = {k,m}, we see that
the elements in each τi (1 ≤ i ≤ 3) are increasing, and τ2 < τ1 < τ3. Hence we have k choices
to select one element in τ1 to play the role of “2”, m− k choices to select one element in τ2
to play the role of “1”, and n−m choices to select one element in τ3 to play the role of “3”.
Summing up all possible k and m gives formula (15).

For the pattern 312, we have k choices to select one element in factor τ1 to play the role
of “3”, and then have

(

m−k

2

)

choices to select two elements in factor τ2 to play the role of
“12”. Summing up all k and m proves formula (16).

We now derive the exact formulae for the popularity of patterns in Sn(132, 321) as follows.

Theorem 16. For n ≥ 3, in the set Sn(132, 321), we have

f213(n) = f231(n) = f312(n) =

(

n+ 2

5

)

, (17)

f123(n) = n(7n4 − 40n3 + 85n2 − 80n+ 28)/120. (18)

Proof. It is simple to prove f312(n) = f231(n) from Lemma 1 and 312−1 = 231. By Proposi-
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tion 15, we have

f312(n) =
∑

1≤k<m≤n

k

(

m− k

2

)

=
n−1
∑

k=1

k

n
∑

m=k+1

(

m− k

2

)

=
n−1
∑

k=1

k

(

n− k + 1

3

)

=
n−1
∑

k=1

[

(n3 − n)k + (1− 3n2)k2 + 2nk3 − k4
]

,

and

f213(n) =
∑

1≤k<m≤n

k(m− k)(n−m) =
n−1
∑

k=1

n
∑

m=k+1

k(m− k)(n−m)

=
n−1
∑

k=1

n−k
∑

m′=1

km′(n−m′ − k) =
n−1
∑

k=1

k(n− k)
n−k
∑

m′=1

m′ −

n−1
∑

k=1

k

n−k
∑

m′=1

m′2

=
n−1
∑

k=1

[(

n3

6
−
n

6

)

k +

(

1

6
−
n2

2

)

k2 +
n

2
k3 −

1

6
k4
]

.

We get formula (17) by substituting the closed forms of
∑n

k=1 k
p (p = 1, 2, 3, 4) into the above

expressions, and this theorem holds from 2f231(n) + f213(n) + f123(n) =
(

n

3

) [(

n

2

)

+ 1
]

.

Notice that f213(n) = f231(n) can be proved by Bóna’s bijection [3] on the set of binary
plane trees on n vertices such that the vertex which is a right descendant of some node has
no right descendant.

The first few values of fq(Sn(132, 321)) for q of length 3 are shown below, and (f213(n))n≥3

form sequence A000389 in [15].

n f123 f132 f213 f231 f312 f321 n f123 f132 f213 f231 f312 f321
3 1 0 1 1 1 0 6 152 0 56 56 56 0
4 10 0 6 6 6 0 7 392 0 126 126 126 0
5 47 0 21 21 21 0 8 868 0 252 252 252 0

3 Triply restricted permutations

This section studies the pattern popularity in the permutations which avoid simultaneously
any three patterns of length 3. We begin with the following proposition from [14].

Proposition 17. ([14, Lemma 6]) The numbers of triply restricted permutations in Sn satisfy
the following equalities:

15
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1. |Sn(123, 132, 213)| = |Sn(231, 312, 321)| = Fn+1;

2. |Sn(123, 132, 231)| = |Sn(123, 213, 312)| = |Sn(132, 231, 321)| = |Sn(213, 312, 321)| = n;

3. |Sn(132, 213, 231)| = |Sn(132, 213, 312)| = |Sn(132, 231, 312)| = |Sn(213, 231, 312)| = n;

4. |Sn(123, 132, 312)| = |Sn(123, 213, 231)| = |Sn(132, 312, 321)| = |Sn(213, 231, 321)| = n;

5. |Sn(123, 231, 312)| = |Sn(132, 213, 321)| = n;

6. |Sn(R)| = 0 for all R ⊃ {123, 321} if n ≥ 5, where Fn is the Fibonacci number given by

F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

An argument similar to the one used for doubly restricted permutations shows that we
only need to consider the pattern popularity for the first set of class 1 to class 5.

3.1 Pattern popularity in (123, 132, 213)-avoiding permutations

It is well-known that Fibonacci number Fn+1 counts the number of 0-1 sequences of length
n − 1 in which there are no consecutive ones, see [5]. We call such a sequence a Fibonacci

binary word for convenience. Let Bn denote the set of all Fibonacci binary words of length
n. Simion and Schmidt [14] showed that

Lemma 18. ([14, Proposition 15∗]) There is a bijection ψ1 between Sn(123, 132, 213) and

Bn−1.

Proof. For w = w1w2 · · ·wn−1 ∈ Bn−1, we construct the permutation σ as follows. For
1 ≤ i ≤ n− 1, let Xi = [n]− {σ1, . . . , σi−1}, and set

σi =

{

largest element in Xi, if wi = 0,

second largest element in Xi, if wi = 1.

Finally, σn is the unique element in Xn.

For example, if w = 01001010, then ψ1(w) = 9 7 8 6 4 5 2 3 1.
Given a word w = w1w2 · · ·wn ∈ Bn, the index i (1 ≤ i < n) is an ascent of w if wi < wi+1.

Let asc(w) = {i |wi < wi+1} be the set of ascents of w, and let maj(w) =
∑

i∈asc(w) i.

Proposition 19. For n ≥ 3,

f312(n) =
∑

w∈Bn−1

maj(w). (20)

Proof. Suppose σ ∈ Sn(123, 132, 213) and ψ1(σ) = w1w2 · · ·wn−1. If k is an ascent of w, then
wkwk+1 = 01 and σk > σk+1. From bijection ψ1, we see that for all i ∈ [n − 1], there is at
most one j > i such that σj > σi. This implies that σi > σk+1 for all i < k. Since σk is the
largest element in Xk, we have σi > σj for all i < k + 1 and j > k + 1. On the other hand,
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since σk+1 is the second largest element in Xk+1, there exists a unique l > k + 1 such that
σl > σk+1. Thus, we find that σiσk+1σl forms a 312-pattern for all i ≤ k, that is the ascent
k will produce k’s copies of 312-pattern in which σk+1 plays the role of “1”. Summing up all
the ascents, we derive that the number of copies of 312-pattern in σ is maj(ψ1(σ)).

Recall that the generating function of the Fibonacci number Fn is given by

∑

n≥0

Fnx
n =

x

1− x− x2
.

Hence we can deduce that

∑

n≥3

Fn+1x
n = x

∑

n≥2

Fn+2x
n =

1

x

(

x

1− x− x2
− x− x2 − 2x3

)

=
x3(3 + 2x)

1− x− x2
, (21)

∑

n≥2

nFn+2x
n = x

(

x2(3 + 2x)

1− x− x2

)′

=
x2(6 + 3x− 4x2 − 2x3)

(1− x− x2)2
, (22)

∑

n≥3

(

n

3

)

Fn+1x
n =

x3

6

(

∑

n≥3

Fn+1x
n

)′′′

=
x3(3 + 8x+ 6x2 + 4x3)

(1− x− x2)4
. (23)

Theorem 20. For n ≥ 3, in the set Sn(123, 132, 213), we have

∑

n≥3

f231(n)x
n =

∑

n≥3

f312(n)x
n =

x3(1 + 2x)

(1− x− x2)3
, (24)

∑

n≥3

f321(n)x
n =

x3(1 + 6x+ 12x2 + 8x3)

(1− x− x2)4
. (25)

Proof. From Lemma 1, we have f231(n) = f312(n) as σ ∈ Sn(123, 132, 213) ⇔ σ−1 ∈
Sn(123, 132, 213) and 231−1 = 312. By Proposition 19, we can write

∑

n≥3

f312(n)x
n =

∑

n≥3

xn
∑

w∈Bn−1

maj(w) = x
∑

n≥3

∑

w∈Bn−1

maj(w)xn−1 = xu(x),

where u(x) =
∑

n≥2

∑

w∈Bn

maj(w)xn. To calculate u(x), we set

Mn(q) =
∑

w∈Bn

qmaj(w) and M(x, q) =
∑

n≥2

Mn(q)x
n.

It is easy to get

u(x) =
∂M(x, q)

∂q
|q=1 .
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Given a word w = w1w2 · · ·wn ∈ Bn, if wn = 0, then maj(w) = maj(w1w2 · · ·wn−1); other-
wise, wn−1wn = 01 and maj(w) = maj(w1w2 · · ·wn−2) + n− 1. Hence, we have

Mn(q) =Mn−1(q) + qn−1Mn−2(q) for n ≥ 4,

with M2(q) = 2+ q and M3(q) = 2+ q+2q2. Multiplying the recursion by xn and summing
over n ≥ 4 yields that

M(x, q)− (2 + q)x2 − (2 + q + 2q2)x3 = x
[

M(x, q)− (2 + q)x2
]

+ qx2M(xq, q).

Therefore
(1− x)M(x, q) = qx2M(xq, q) + (2 + q)x2 + 2q2x3.

Differentiate both sides with respect to q, we get

(1− x)
∂M(x, q)

∂q
= x2

[

M(xq, q) + q
∂M(xq, q)

∂q

]

+ x2 + 4qx3.

Setting q = 1 gives

(1− x)u(x) = x2
[

M(x, 1) +
∂M(xq, q)

∂q
|q=1

]

+ x2 + 4x3.

Notice that
M(x, 1) =

∑

n≥2

|Bn|x
n =

∑

n≥2

Fn+2x
n,

and

∂M(xq, q)

∂q
|q=1 =

(

∑

n≥2

∑

w∈Bn

(n+maj(w))qn+maj(w)−1xn

)

|q=1

=
∑

n≥2

xn
∑

w∈Bn

(n+maj(w))

=
∑

n≥2

nFn+2x
n + u(x).

Invoking formulae (21) and (22), this implies that

(1− x)u(x) = x2
[

x2(3 + 2x)

1− x− x2
+
x2(6 + 3x− 4x2 − 2x3)

(1− x− x2)2
+ u(x)

]

+ x2 + 4x3.

Therefore, u(x) = x2(1 + 2x)/(1− x− x2)3.Multiplying u(x) by x, we arrive at formula (24).
As for formula (25), we notice that

∑

n≥3

f321(n)x
n =

∑

n≥3

(

n

3

)

Fn+1x
n − 2

∑

n≥3

f312(n)x
n (26)

from the observation 2f312(n)+ f321(n) =
(

n

3

)

Fn+1. Thus formula (25) is obtained by substi-
tuting equation (23) and the generating function of f312(n) into formula (26).
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The first few values of fq(Sn(123, 132, 213)) for q of length 3 are shown below, and
(f231(n))n≥3 form sequence A152881 in [15].

n f123 f132 f213 f231 f312 f321 n f123 f132 f213 f231 f312 f321
3 0 0 0 1 1 1 6 0 0 0 40 40 180
4 0 0 0 5 5 10 7 0 0 0 95 95 545
5 0 0 0 15 15 50 8 0 0 0 213 213 1478

3.2 Pattern popularity in other triply restricted permutations

This subsection deals with the popularity of length-3 patterns in the other four classes of
triply restricted permutations. We begin with a helpful lemma from [14] as follows:

Lemma 21. ([14, Proposition 16∗])We have

σ ∈ Sn(123, 132, 231) ⇔ σ = n, n− 1, . . . , k + 1, k − 1, k − 2, . . . , 2, 1, k for some k. (27)

σ ∈ Sn(132, 213, 231) ⇔ σ = n, n− 1, . . . , k + 1, 1, 2, 3, . . . , k − 1, k for some k. (28)

σ ∈ Sn(123, 132, 312) ⇔ σ = n− 1, n− 2, . . . , k + 1, n, k, k − 1, . . . , 1 for some k. (29)

σ ∈ Sn(123, 231, 312) ⇔ σ = k − 1, k − 2, . . . , 3, 2, 1, n, n− 1 . . . , k for some k. (30)

Appealing to the above structural characterizations, we can derive the pattern popularity
in those classes as follows.

Theorem 22. For n ≥ 3, in the set Sn(123, 132, 231), we have

f213(n) = f312(n) =

(

n

3

)

, (31)

f321(n) = (n− 2)

(

n

3

)

. (32)

Proof. According to the structural formula (27), the identity f213(n) = f312(n) can be proved
by a direct bijection.

Let q = abc (b < a < c) be a copy of 213-pattern in σ ∈ Sn(123, 132, 231). We have
σ(n) = c since b < c and σ ∈ Sn(123, 132, 231) has only one ascent at position n − 1.
Therefore, q is a 213-pattern in the sole permutation

σ = n, n− 1, . . . , c+ 1, c− 1, . . . , a, . . . , b, . . . , 2, 1, c.

For the sake of clarity, we underline the occurrence of the assumed pattern.
For q′ = cba (312-pattern), we find similarly that q′ is a 312-pattern in

σ′ = n, n− 1, . . . , c, . . . , a+ 1, a− 1, . . . , b, . . . , 2, 1, a.
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For example, if n = 7 and q = 326, then σ = 75 4 3 2 1 6, q′ = 623 and σ′ = 76 5 4 2 1 3.
Hence, for every copy of 213-pattern (q, σ), there is a unique copy of 312-pattern (q′, σ′),

and the converse is also true. This implies that f213(n) = f312(n).
To calculate f312(n), we suppose σ = n, n− 1, . . . , k + 1, k − 1, k − 2, . . . , 2, 1, k for some

k. We construct a 312-pattern as follows: Choose one element from the first n− k elements
to play the role of “3”, then choose one element from the next k − 1 elements to play the
role of “1”, and the last element plays the role of “2”. Thus, summing up k gives

f312(n) =
n
∑

k=1

(n− k)(k − 1) = −n2 + (n+ 1)
n
∑

k=1

k −

n
∑

k=1

k2 =
n(n− 1)(n− 2)

6
=

(

n

3

)

.

The proof is completed by the relation f213(n) + f312(n) + f321(n) = n
(

n

3

)

.

The first few values of fq(Sn(123, 132, 231)) for q of length 3 are shown below, and
(f213(n))n≥3 form sequence A000292, (f321(n))n≥3 form sequence A002417 in [15].

n f123 f132 f213 f231 f312 f321 n f123 f132 f213 f231 f312 f321
3 0 0 1 0 1 1 6 0 0 20 0 20 80
4 0 0 4 0 4 8 7 0 0 35 0 35 175
5 0 0 10 0 10 30 8 0 0 56 0 56 336

Theorem 23. For n ≥ 3, in the set Sn(132, 213, 231), we have

f123(n) = f312(n) =

(

n+ 1

4

)

, (33)

f321(n) =
n(n− 2)(n− 1)2

12
. (34)

Proof. Based on structural formula (28), we could also prove f123(n) = f312(n) directly. Let
abc be a 123-pattern in

σ = n, n− 1, . . . , k + 1, 1, . . . , a, a+ 1, . . . , b, b+ 1, . . . , c− 1, c, c+ 1, . . . , k − 1, k.

Set
σ′ = n, n− 1, . . . , n− k + c, . . . , c, 1, 2, . . . , a, a+ 1, . . . , b, b+ 1, . . . , c− 1.

It is easy to check that (n−k+c) a b is a 312-pattern of σ′. For example, if σ = 98 7 1 2 3 4 5 6,
then σ′ = 98 7 6 5 1 2 3 4.

To calculate f123(n), we suppose σ = n, n − 1, . . . , k + 1, 1, 2, . . . , k − 1, k for some k. A
123-pattern can be obtained by picking three elements from the last k elements to play the
role of “123”. Thus, summing up all possible k gives

f123(n) =
n
∑

k=1

(

k

3

)

=

(

n+ 1

4

)

.

We complete the proof from f123(n) + f312(n) + f321(n) = n
(

n

3

)

.
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The first few values of fq(Sn(132, 213, 231)) for q of length 3 are shown below, and
(f123(n))n≥3 form sequence A000332, (f321(n))n≥3 form sequence A002415 in [15].

n f123 f132 f213 f231 f312 f321 n f123 f132 f213 f231 f312 f321
3 1 0 0 0 1 1 6 35 0 0 0 35 50
4 5 0 0 0 5 6 7 70 0 0 0 70 105
5 15 0 0 0 15 20 8 126 0 0 0 126 196

Theorem 24. For n ≥ 3, in the set Sn(123, 132, 312), we have

f213(n) = f231(n) =

(

n

3

)

, (35)

f321(n) = (n− 2)

(

n

3

)

. (36)

Proof. In view of the structural formula (29), the equality f213(n) = f231(n) can be proved
by a direct correspondence. Let abn be a copy of 213-pattern in

σ = n− 1, . . . , a, a+ 1, . . . , b, b+ 1, . . . , k + 1, n, k, k − 1, . . . , 2, 1.

Set

σ′ = n− 1, . . . , n− a+ b, . . . , n− a+ k + 1, n, n− a+ k, n− a+ k − 1, . . . , n− a, . . . , 2, 1.

Then n − a + b, n, n − a is a 231-pattern of σ′. For example, if σ = 87 6 5 4 9 3 2 1, then
σ′ = σ = 87 6 9 5 4 3 2 1.

To calculate f213(n), we suppose that σ = n− 1, n− 2, . . . , k + 1, n, k, k − 1, . . . , 2, 1 for
some k. A 213-pattern can be obtained by choosing two elements from the first n − k − 1
elements to play the role of “21”, and let n play the role of “3”. Thus, summing up all
possible k, we have

f213(n) =
n−1
∑

k=0

(

n− k − 1

2

)

=

(

n

3

)

.

The proof is completed by using the relation f213(n) + f231(n) + f321(n) = n
(

n

3

)

.

Theorem 25. For n ≥ 3, in the set Sn(123, 231, 312), we have

f132(n) = f213(n) =

(

n+ 1

4

)

, (37)

f321(n) =
n(n− 2)(n− 1)2

12
. (38)
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Proof. From Lemma 1, we see that

σ ∈ Sn(123, 231, 312) ⇔ σr ∈ Sn(321, 132, 213) ⇔ (σr)c ∈ Sn(123, 231, 312).

As a consequence, we have f213(n) = f132(n) from (213r)c = 312c = 132.
For f213(n), we will employ the structure in formula (30). Suppose σ = k − 1, k −

2, . . . , 3, 2, 1, n, n − 1 . . . , k for some k. A 213-pattern can be obtained as follows: Choose
two elements from the first k − 1 elements to play the role of “21”, and choose one element
from the last n − k + 1 elements to play the role of “3”. Thus, summing up all possible k,
we have

f213(n) =
n
∑

k=1

(

k − 1

2

)

(n− k + 1) =
n−1
∑

k=0

(

k

2

)

(n− k) =

(

n+ 1

4

)

.

The formula for f321(n) is obtained by the relation 2f213(n) + f321(n) = n
(

n

3

)

.
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