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Abstract

Let A be a finite subset of N including 0 and let fA(n) be the number of ways to

write n = ∑∞i=0 ǫi2
i, where ǫi ∈ A. We consider asymptotics of the summatory function

sA(r,m) of fA(n) from m2r to m2r+1 − 1, and show that sA(r,m) ∼ c(A,m) ∣A∣
r
for

some nonzero c(A,m) ∈ Q.

1 Introduction

Let fA(n) denote the number of ways to write n = ∑∞i=0 ǫi2i, where ǫi belongs to the set

A ∶= {0 = a0, a1, . . . , az},

with ai ∈ N and ai < ai+1 for all 0 ≤ i ≤ z−1. For more on this topic, see the author’s previous
work [1]. We parameterize A in terms of its s even elements and (z +1)−s ∶= t odd elements
as follows:

A = {0 = 2b1,2b2, . . . ,2bs,2c1 + 1, . . . ,2ct + 1}.
1The author acknowledges support from National Science Foundation grant DMS 08-38434, “EMSW21-

MCTP: Research Experience for Graduate Students”.
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If n is even, then ǫ0 = 0,2b2,2b3, . . ., or 2bs and

fA(n) = fA(n/2) + fA((n − 2b2)/2) + fA((n − 2b3)/2) +⋯ + fA((n − 2bs)/2).

Writing n = 2ℓ, we have

fA(2ℓ) = fA(ℓ) + fA(ℓ − b2) + fA(ℓ − b3) +⋯ + fA(ℓ − bs),

so for any even n, fA(n) satisfies a recurrence relation of order bs.
Similarly, if n = 2ℓ + 1 is odd, then ǫ0 = 2c1 + 1,2c2 + 1, . . . , or 2ct + 1, and

fA(2ℓ + 1) = fA(ℓ − c1) + fA(ℓ − c2) +⋯ + fA(ℓ − ct),

so for any odd n, fA(n) satisfies a recurrence relation of order ct. Dennison, Lansing,
Reznick, and the author [3] gave this argument for fA,b(n), the b-ary representation of n
with coefficients from A, using residue classes mod b.

Example 1. Let A = {0,1,3,4}. We can write A = {2(0),2(0) + 1,2(1) + 1,2(2)}. Then

fA(2ℓ) = fA(ℓ) + fA(ℓ − 2) and fA(2ℓ + 1) = fA(ℓ) + fA(ℓ − 1). (1)

In general, let

ωk(m) =
⎛
⎜⎜⎜
⎝

fA(2km)
fA(2km − 1)

⋮
fA(2km − az)

⎞
⎟⎟⎟
⎠
.

We shall consider the fixed (az + 1) × (az + 1) matrix MA such that for any k ≥ 0,

ωk+1 =MAωk.

Example 2. Returning to the set A = {0,1,3,4} of Example 1 and using the equations in
(1), we have

ωk+1(m) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

fA(2k+1m)
fA(2k+1m − 1)
fA(2k+1m − 2)
fA(2k+1m − 3)
fA(2k+1m − 4)

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

fA(2km) + fA(2km − 2)
fA(2km − 1) + fA(2km − 2)
fA(2km − 1) + fA(2km − 3)
fA(2km − 2) + fA(2km − 3)
fA(2km − 2) + fA(2km − 4)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0 0
0 1 1 0 0
0 1 0 1 0
0 0 1 1 0
0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

fA(2km)
fA(2km − 1)
fA(2km − 2)
fA(2km − 3)
fA(2km − 4)

⎞
⎟⎟⎟⎟⎟⎟
⎠

If MA is the matrix in (2), then ωk+1(m) =MAωk(m).
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We now review some basic concepts of sequences from Section 8.1 of Lidl and Niederreiter
[5] and include a matrix view of recurrence relations, following Reznick [6].

Consider a sequence (b(n)) such that

b(n) + ck−1b(n − 1) + ck−2b(n − 2) +⋯ + c0b(n − k) = 0 (3)

for all n ≥ k and ci ∈ N. By shifting the sequence, we see that

b(n + k) + ck−1b(n + k − 1) + ck−2b(n + k − 2) +⋯ + c0b(n + k − k) = 0 (4)

for n ≥ 0. Then (3) is a homogeneous k-th order linear recurrence relation, and (b(n)) is a
homogeneous k-th order linear recurrence sequence. For any sequence (b(n)) satisfying (3)
we define the characteristic polynomial

f(x) = xk + ck−1xk−1 + ck−2xk−2 +⋯+ c0. (5)

We can also consider a recurrence relation from the point of view of a matrix system,
considering k sequences indexed as (bi(n)) for 1 ≤ i ≤ k which satisfy

bi(n + 1) =
k

∑
j=1

mijbj(n)

for n ≥ 0 and 1 ≤ i ≤ k. Then
⎛
⎜
⎝

b1(n + 1)
⋮

bk(n + 1)

⎞
⎟
⎠
=
⎛
⎜
⎝

m11 ⋯ m1k

⋮ ⋮
mk1 ⋯ mkk

⎞
⎟
⎠

⎛
⎜
⎝

b1(n)
⋮

bk(n)

⎞
⎟
⎠

for n ≥ 0. To simplify the notation, if M = [mij] and
B(n) = ⎛⎜⎝

b1(n)
⋮

bk(n)
⎞⎟⎠ ,

then B(n + 1) =MB(n) for n ≥ 0. Thus B(n) =MnB(0) for n ≥ 0, where
B(0) = ⎛⎜⎝

b1(0)
⋮

bk(0)
⎞⎟⎠

is the vector of initial conditions.
As an additional connection between these two views of linear recurrence sequences, note

that for a sequence satisfying (3),

⎛⎜⎜⎜⎜⎜⎜⎝

b(n + 1)
b(n + 2)
⋮

b(n + k − 1)
b(n + k)

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 1
−c0 −c1 ⋯ −ck−2 −ck−1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

b(n)
b(n + 1)
⋮

b(n + k − 2)
b(n + k − 1)

⎞⎟⎟⎟⎟⎟⎟⎠
,

3



where this matrix, the companion matrix to g, has characteristic polynomial (−1)kg.
In this matrix point of view, the characteristic polynomial of M is

g(λ) ∶= det(M − λIk).
By the Cayley-Hamilton Theorem, g(M) = 0, the k × k zero matrix.

If g(x) is the characteristic polynomial in (5), then

0 = g(M) =Mk + ck−1Mk−1 + ck−2Mk−2 +⋯+ c0Ik.

Hence for any n ≥ 0,

0 =Mn+k + ck−1Mn+k−1 + ck−2Mn+k−2 +⋯+ c0Mn

and thus

0 = (Mn+k + ck−1Mn+k−1 + ck−2Mn+k−2 +⋯+ c0Mn)B(0)
= B(n + k) + ck−1B(n + k − 1) + ck−2B(n + k − 2) +⋯+ c0B(n).

Thus each sequence (bj(n)) satisfies the original linear recurrence (4).

2 Main result

We will use the ideas of Section 1 to examine the asymptotic behavior of the summatory

function
m2

r+1−1

∑
n=m2r

fA(n), but we must first establish a lemma.

Lemma 3 ([4, 5.6.5 & 5.6.9]). Let M = [mij] be an n×n matrix with characteristic polynomial

g(λ) and eigenvalues λ1, λ2, . . . , λy. Then

max
1≤i≤y
∣λi∣ ≤max

1≤i≤n

n

∑
j=1

∣mij ∣.
Theorem 4. Let A, fA(n),MA, and ωk(m) be as above, with the additional assumption that

there exists some odd ai ∈ A. Define

sA(r,m) = m2
r+1−1

∑
n=m2r

fA(n).
Let ∣A∣ denote the number of elements in the set A. Then for a fixed value of m,

lim
r→∞

sA(r,m)∣A∣r = c(A,m),
for some nonzero constant c(A,m) ∈ Q, so sA(r,m) ∼ c(A,m) ∣A∣r.
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Proof. Let g(λ) ∶= det(MA − λI) be the characteristic polynomial of MA with eigenvalues
λ1, λ2, . . . , λy, where each λi has multiplicity ei. We can write

g(λ) = az+1

∑
k=0

αkλ
k.

By Cayley-Hamilton, we know that g (MA) = 0. Thus we have

0 = g (MA) = az+1

∑
k=0

αkM
k
A

and hence, for all r,

0 = (az+1∑
k=0

αkM
k
A)ωr(m) = az+1

∑
k=0

αkωr+k(m).
Since

ωr+k(m) =
⎛⎜⎜⎜⎝

fA(2r+km)
fA(2r+km − 1)

⋮
fA(2r+km − az)

⎞⎟⎟⎟⎠
,

we have
az+1

∑
k=0

αkf(2r+km − j) = 0 (6)

for all 0 ≤ j ≤ az.
Let Ir = {2r,2r + 1,2r + 2, . . . ,2r+1 − 1}. Then Ir = 2Ir−1 ⊍ (2Ir−1 + 1). Thus
sA(r,m) = m2

r+1−1

∑
n=m2r

fA(n)
=

m2
r−1

∑
n=m2r−1

(fA(2n) + fA(2n + 1))
=

m2
r−1

∑
n=m2r−1

(fA(n) + fA(n − b2) +⋯+ fA(n − bs) + fA(n − c1) +⋯+ fA(n − ct)) .
Since

m2
r−1

∑
n=m2r−1

fA(n − k) = m2
r−1

∑
n=m2r−1

fA(n) + k

∑
j=1

(fA(m2r−1 − j) − fA(m2r − j)) ,
we deduce that

sA(r,m) = ∣A∣ m2
r−1

∑
n=m2r−1

fA(n) + h(r,m)
= ∣A∣ sA(r − 1,m) + h(r,m),
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where

h(r,m) = s

∑
i=2

bi

∑
j=1

(fA(m2r−1 − j) − fA(m2r − j)) + t

∑
i=1

ci

∑
j=1

(fA(m2r−1 − j) − fA(m2r − j))
and

az+1

∑
k=0

αkh(r + k,m) = 0
by Equation (6).

Thus we have an inhomogeneous recurrence relation for sA(r,m) and will first consider
the corresponding homogeneous recurrence relation

sA(r,m) = ∣A∣ sA(r − 1,m),
which has solution sA(r,m) = c ∣A∣r. Then the solution to our inhomogeneous recurrence
relation is of the form

sA(r,m) = c ∣A∣r + y

∑
i=1

pi(λi, r),
where

pi(λi, r) = ei

∑
j=1

cijr
j−1λr

i .

By Lemma 3, ∣λi∣ is bounded above by the maximum row sum of MA, which is at most∣A∣ − 1 since all elements of MA are either 0 or 1 and by assumption not all elements have
the same parity. Hence the c∣A∣r term dominates sA(r,m) as r →∞, so

lim
r→∞

sA(r,m)∣A∣r = c.

Observe that
az+1

∑
k=0

αk

y

∑
i=1

pi (λi, r + k) = 0.
Thus we can compute ∑az+1

k=0 αksA(r + k,m), and for sufficiently large r,

az+1

∑
k=0

αksA(r + k,m) = c az+1

∑
k=0

αk ∣A∣r+k + 0 = c ∣A∣r g (∣A∣) .
Then we can solve for c to see that

c = c(A,m) ∶= ∑az+1
k=0 αksA(r + k,m)∣A∣r g (∣A∣) . (7)

It remains to be shown that c(A,m) ≠ 0, and we thank the referee for raising this point.
For a particular value of n, all ∣A∣n sums of the form

n−1

∑
i=0

ǫi2
i, ǫi ∈ {0 = a0 < a1 < ⋯ < az}
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have the value of the sum less than or equal to az(2n − 1). Thus
fA(0) + fA(1) +⋯+ fA(az(2n − 1)) ≥ ∣A∣n. (8)

Fix m. There exists ℓ ∈ N such that m2ℓ ≥ az. Then

fA(0) + fA(1) +⋯+ fA(az(2n − 1)) ≤ fA(0) + fA(1) +⋯+ fA(m2n+ℓ − 1) (9)

= sA(0,m) + sA(1,m) +⋯+ sA(n + ℓ − 1,m).
Combining (8) and (9), we have

∣A∣n ≤ sA(0,m) + sA(1,m) +⋯+ sA(n + ℓ − 1,m).
We know from above that sA(r,m) = (c(A,m) + o(1))∣A∣r. Thus

∣A∣n ≤ (c(A,m) + o(1)) (∣A∣0 + ∣A∣1 + ∣A∣2 +⋯+ ∣A∣n+ℓ−1)
< (c(A,m) + o(1)) ∣A∣n+ℓ∣A∣ − 1 .

Dividing both sides by ∣A∣n, we see that

1 ≤ (c(A,m) + o(1)) ∣A∣ℓ∣A∣ − 1 .
Hence c(A,m) ≠ 0 and sA(r,m) ∼ c(A,m) ∣A∣r.

3 Examples

Example 5. Let A = {0,1,8}. Then
fA(2ℓ) = fA(ℓ) + fA(ℓ − 4) (10)

and
fA(2ℓ + 1) = fA(ℓ), (11)

so ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fA(2k+1m)
fA(2k+1m − 1)
fA(2k+1m − 2)
fA(2k+1m − 3)
fA(2k+1m − 4)
fA(2k+1m − 5)
fA(2k+1m − 6)
fA(2k+1m − 7)
fA(2k+1m − 8)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fA(2km)
fA(2km − 1)
fA(2km − 2)
fA(2km − 3)
fA(2km − 4)
fA(2km − 5)
fA(2km − 6)
fA(2km − 7)
fA(2km − 8)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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If MA is the matrix above, then ωk+1(m) =MAωk(m). The characteristic polynomial of MA
is

g(x) = 1 − 3x + 3x2 − 3x3 + 6x4 − 6x5 + 3x6 − 3x7 + 3x8 − x9. (12)

We then compute

sA(3,1) − 3sA(4,1) + 3sA(5,1) − 3sA(6,1) + 6sA(7,1) − 6sA(8,1)
+ 3sA(9,1) − 3sA(10,1) + 3sA(11,1) − sA(12,1)
= −59184

Using the formula from Theorem 4, we see that

c(A,1) = −59184
g(3) ⋅ 27 =

−59184

−5408 ⋅ 27
= 137

338
.

Example 6. Let A = {0,1,3}. Then
fA(2ℓ) = fA(ℓ) (13)

and
fA(2ℓ + 1) = fA(ℓ) + fA(ℓ − 1), (14)

so ⎛⎜⎜⎜⎝

fA(2k+1m)
fA(2k+1m − 1)
fA(2k+1m − 2)
fA(2k+1m − 3)

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

fA(2km)
fA(2km − 1)
fA(2km − 2)
fA(2km − 3)

⎞⎟⎟⎟⎠
.

Hence MA =
⎛⎜⎜⎜⎝

1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 1

⎞⎟⎟⎟⎠
satisfies ωk+1(m) =MAωk(m). The characteristic polynomial of

MA is
g(x) = (x − 1)2(x2

− x − 1). (15)

Let Fk denote the k-th Fibonacci number. Then

fA(2k − 1) = Fk+1 (16)

for all k ≥ 0. This can be shown by using induction and Equations (13) and (14).
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Considering the summatory function with m = 1 and using Equations (13),(14), and (16),
we see that

sA(r,1) = 2
r+1−1

∑
n=2r

fA(n)
=

2
r−1

∑
n=2r−1

(fA(2n) + fA(2n + 1))
=

2
r−1

∑
n=2r−1

(fA(n) + fA(n) + fA(n − 1))
= 2sA(r − 1,1) + 2

r−1

∑
n=2r−1

fA(n − 1)
= 2sA(r − 1,1) + 2

r−1

∑
n=2r−1

fA(n) + fA(2r−1 − 1) − fA(2r − 1)
= 3sA(r − 1,1) + fA(2r−1 − 1) − fA(2r − 1)
= 3sA(r − 1,1) + Fr − Fr+1

= 3sA(r − 1,1) − Fr−1.

This is an inhomogeneous recurrence relation for sA(r,1). We first consider the corre-
sponding homogeneous recurrence relation sA(r,1) = 3sA(r − 1,1), which has solution

sA(r,1) = d13r,
for some d1 in Q. Recall that the characteristic polynomial g(x) of MA has roots 1, φ, and
φ̄, where the first has multiplicity 2 and the others have multiplicity 1. Hence the solution
to the inhomogeneous recurrence relation is

sA(r,1) = d13r + d2φr
+ d3φ̄

r
+ d4(1)r + d5r(1)r, (17)

where d2, d3, d4, d5 ∈ Q. Observe that the d13r summand will dominate as r →∞, so

lim
r→∞

sA(r,1)
3r

= d1

and sA(r,1) ∼ d13r.
Using Equations (15) and (17), we can compute d1 as

sA(r + 2,1) − sA(r + 1,1) − sA(r,1) = d13r(32 − 3 − 1) + d2φr(φ2
− φ − 1)

+ d3φ̄
r(φ̄2
− φ̄ − 1) + d4(12 − 1 − 1)

+ d5(r + 2 − (r + 1) − r)
= d13r ⋅ 5 − d4 − d5(r − 1).
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Plugging in r = 2, r = 1, and r = 0 and computing sums, we see that d1 = 4/5. Hence
lim
r→∞

sA(r,1)
3r

= 4

5

and sA(r,1) ∼ 4

5
⋅ 3r.

Example 7. Let Ã = {0,2,3}. Then
f
Ã
(2ℓ) = f

Ã
(ℓ) + f

Ã
(ℓ − 1) (18)

and
f
Ã
(2ℓ + 1) = f

Ã
(ℓ − 1), (19)

so ⎛⎜⎜⎜⎝

f
Ã
(2k+1m)

f
Ã
(2k+1m − 1)

f
Ã
(2k+1m − 2)

f
Ã
(2k+1m − 3)

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

1 1 0 0
0 0 1 0
0 1 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f
Ã
(2km)

f
Ã
(2km − 1)

f
Ã
(2km − 2)

f
Ã
(2km − 3)

⎞⎟⎟⎟⎠
.

Hence M
Ã
=
⎛⎜⎜⎜⎝

1 1 0 0
0 0 1 0
0 1 1 0
0 0 0 1

⎞⎟⎟⎟⎠
satisfies ωk+1(m) =MÃωk(m). The characteristic polynomial of

M
Ã
is

g(x) = (x − 1)2(x2
− x − 1). (20)

Let Fk denote the k-th Fibonacci number. Then

f
Ã
(2k − 1) = Fk−1 (21)

for all k ≥ 1. This can be shown by using induction and Equations (18) and (19) to prove that
f
Ã
(2k −2) = Fk for all k ≥ 2 and observing that Equation (19) gives f

Ã
(2k −1) = f

Ã
(2k−1−2).

Considering the summatory function with m = 1 and using Equations (18),(19), and (21)
and manipulations similar to those in Example 6, we see that

s
Ã
(r,1) = 3s

Ã
(r − 1,1) − 2Fr−3.

Again, the corresponding homogeneous recurrence relation has solution

s
Ã
(r,1) = d13r,

for some d1 in Q, and we can use Equation (20) to see that the solution to the inhomogeneous
recurrence relation is

s
Ã
(r,1) = d13r + d2φr

+ d3φ̄
r
+ d4(1)r + d5r(1)r, (22)
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where d2, d3, d4, d5 ∈ Q. Observe that the d13r summand will dominate as r →∞, so

lim
r→∞

s
Ã
(r,1)
3r

= d1

and s
Ã
(r,1) ∼ d13r.

Using Equations (20) and (22), we can compute d1 as

s
Ã
(r + 2,1) − s

Ã
(r + 1,1) − s

Ã
(r,1) = d13r ⋅ 5 − d4 − d5(r − 1).

Plugging in r = 2, r = 1, and r = 0 and computing sums, we see that d1 = 2/5. Hence
lim
r→∞

s
Ã
(r,1)
3r

= 2

5

and s
Ã
(r,1) ∼ 2

5
⋅ 3r.

In Example 6, we had A = {0,1,3}, and in Example 7, we had Ã = {0,2,3} = {3 − 3,3 −
1,3 − 0}. We found c(A,1) in Example 6 and c(Ã,1) in Example 7 and can observe that
they have the same denominator.

Given a set A = {0, a1, . . . , az}, let Ã be

Ã ∶= {0, az − az−1, . . . , az − a1, az}.
The following chart displays the value c(A,1) for various sets A and their corresponding sets
Ã, where sA(r,1) ∼ c(A,1)∣A∣r. Note that in all cases the denominator of c(A,1) is the same
as that of c(Ã,1). The following theorem will show that this holds for all A.

A c(A,1) N(c(A,1)) Ã c(Ã,1) N(c(Ã,1))
{0,1,2,4} 7

11
0.636 {0,2,3,4} 3

11
0.273

{0,1,3,4} 1

2
0.500 {0,1,3,4} 1

2
0.500

{0,2,3,6} 33

149
0.221 {0,3,4,6} 21

149
0.141

{0,1,6,9} 6345

28670
0.221 {0,3,8,9} 2007

28670
0.070

{0,1,7,9} 2069

10235
0.202 {0,2,8,9} 1023

10235
0.100

{0,4,5,6,9} 4044

83753
0.048 {0,3,4,5,9} 6716

83753
0.080

Table 1: c(A,1) for various sets A and Ã
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Theorem 8. Let A, fA(n),MA = [mα,β], and Ã be as above, with 0 ≤ α,β ≤ az. Let M
Ã
=[m′

α,β
] be the (az + 1) × (az + 1) matrix such that

⎛⎜⎜⎜⎝

f
Ã
(2n)

f
Ã
(2n − 1)
⋮

f
Ã
(2n − az)

⎞⎟⎟⎟⎠
=M

Ã

⎛⎜⎜⎜⎝

f
Ã
(n)

f
Ã
(n − 1)
⋮

f
Ã
(n − az)

⎞⎟⎟⎟⎠
.

Then mα,β =m′

az−α,az−β
.

Proof. Recall that we can write

A ∶= {0,2b2, . . . ,2bs,2c1 + 1, . . . ,2ct + 1},
so that

fA(2n − 2j) = fA(n − j) + fA(n − j − b2) +⋯+ fA(n − j − bs)
and

fA(2n − 2j − 1) = fA(n − j − c1 − 1) +⋯+ fA(n − j − ct − 1)
for j sufficiently large.

Then mα,β = 1 if and only if fA(n−β) is a summand in the recursive sum that expresses
fA(2n − α), which happens if and only if 2n − α = 2(n − β) +K, where K ∈ A, and this is
equivalent to 2β − α belonging to A.

Now m
′

az−α,az−β
= 1 if and only if f

Ã
(n−(az −β)) is a summand in the recursive sum that

expresses f
Ã
(2n− (az −α)), which happens if and only if 2n− (az −α) = 2(n− (az − β))+ K̃,

where K̃ ∈ Ã. This means that az + α − 2β = K̃, which gives 2β − α ∈ A.

Thus MA = S−1MÃS, where

S =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 ⋯ 0 1
0 0 ⋯ 1 0
⋮ ⋮ ⋮ ⋮
0 1 ⋯ 0 0
1 0 ⋯ 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
,

so MA and M
Ã
are similar matrices and thus have the same characteristic polynomial, [4,

1.3.3]. Hence the denominator in (7) for A is equal to the denominator in (7) for Ã.

4 Open questions

A nicer formula for c(A,m) than that given in Equation (7) is desired and seems likely. To
that end, we have computed values of c(A) for a variety of sets A but have not been able

12



to detect any patterns. Table 2 shows c(A,1) for all sets of the form A = {0,1, t}, where
2 ≤ t ≤ 17, and we have obtained the following bounds on c(A,1) for sets A of this form.

Let t ∈ N with t > 1 and A = {0,1, t}. Choose k such that 2k < t ≤ 2k+1. Recall that fA(s)
is the number of ways to write s in the form

s =
∞

∑
i=0

ǫi2
i, where ǫi ∈ {0,1, t}.

Then

sA(r,1) = 2
r+1−1

∑
n=2r

fA(n) ∼ c(A,1)3r,
as shown in Theorem 4. Thus

2
n−1

∑
s=1

fA(s) = n−1

∑
j=0

2
j+1−1

∑
s=2j

fA(s) ∼ n−1

∑
j=0

c(A,1)3j
= c(A,1) (3n − 1

2
) ≈ 1

2
c(A,1)3n.

Consider choosing ǫi ∈ {0,1, t} for 0 ≤ i ≤ n − k − 3 and ǫi ∈ {0,1} for n − k − 2 ≤ i ≤ n − 2.
Then

n−2

∑
i=0

ǫi2
i ≤ t + t ⋅ 2 + t ⋅ 22 +⋯+ t ⋅ 2n−k−3 + 2n−k−2 + 2n−k−1 +⋯+ 2n−2

< t ⋅ 2n−k−2 + 2n−1 − 1
≤ 2k+1 ⋅ 2n−k−2 + 2n−1 − 1
= 2n − 1
< 2n.

There are 3n−k−2 ⋅ 2k+1 such sums, and each of them is counted in ∑2
n−1

s=1 fA(s). Thus
1

2
c(A,1)3n ≥ 3n−k−2 ⋅ 2k+1 = 3n ⋅ 2k+1

3k+2
,

and so c(A,1) ≥ (2
3
)k+2.

Now suppose there exists some i0 ≥ n − k such that ǫi0 = t. Then
∞

∑
i=0

ǫi2
i ≥ t ⋅ 2i0 ≥ t ⋅ 2n−k > 2k2n−k = 2n.

Thus the sums counted in ∑2
n−1

s=1 fA(s) all have the property that ǫi ∈ {0,1} for n−k ≤ i ≤ n−1,
and there are 3n−k ⋅ 2k such sums. Hence 3n−k ⋅ 2k ≥ 1

2
c(A,1) ⋅ 3n and 2

k+1

3k
≥ c(A,1).

Combining the above, we see that

2k+1

3k
⋅

2

9
≤ c(A,1) ≤ 2k+1

3k
.
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A c(A,1) N(c(A,1)) A c(A,1) N(c(A,1))
{0,1,2} 1 1.000 {0,1,3} 4

5
0.800

{0,1,4} 5

8
0.625 {0,1,5} 14

25
0.560

{0,1,6} 35

71
0.493 {0,1,7} 176

391
0.450

{0,1,8} 137

338
0.405 {0,1,9} 1448

3775
0.384

{0,1,10} 1990

5527
0.360 {0,1,11} 3223

9476
0.340

{0,1,12} 2020

6283
0.322 {0,1,13} 47228

154123
0.306

{0,1,14} 35624

122411
0.291 {0,1,15} 699224

2501653
0.280

{0,1,16} 68281

256000
0.267 {0,1,17} 38132531

146988000
0.259

Table 2: c(A,1) for all sets of the form A = {0,1, t}, where 2 ≤ t ≤ 17
.

To compare these bounds with Table 2, note that if 8 < t ≤ 15, then k = 3, and we have

0.132 ≤ c(A,1) ≤ 0.593
for A = {0,1, t}, with t in this range.

We have also computed c(A,1) for some sets with ∣A∣ = 4 and ∣A∣ = 5, and that data is
contained in Table 1. Larger sets have not been considered because computations become
increasingly tedious as the cardinality of A grows.
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