

Journal of Integer Sequences, Vol. 19 (2016), Article 16.3.3

Counting Non-Standard Binary Representations

Katie Anders¹ Department of Mathematics University of Texas at Tyler 3900 University Blvd. Tyler, TX 75799 USA kanders@uttyler.edu

Abstract

Let \mathcal{A} be a finite subset of \mathbb{N} including 0 and let $f_{\mathcal{A}}(n)$ be the number of ways to write $n = \sum_{i=0}^{\infty} \epsilon_i 2^i$, where $\epsilon_i \in \mathcal{A}$. We consider asymptotics of the summatory function $s_{\mathcal{A}}(r,m)$ of $f_{\mathcal{A}}(n)$ from $m2^r$ to $m2^{r+1} - 1$, and show that $s_{\mathcal{A}}(r,m) \sim c(\mathcal{A},m) |\mathcal{A}|^r$ for some nonzero $c(\mathcal{A},m) \in \mathbb{Q}$.

1 Introduction

Let $f_{\mathcal{A}}(n)$ denote the number of ways to write $n = \sum_{i=0}^{\infty} \epsilon_i 2^i$, where ϵ_i belongs to the set

$$\mathcal{A} \coloneqq \{0 = a_0, a_1, \dots, a_z\},\$$

with $a_i \in \mathbb{N}$ and $a_i < a_{i+1}$ for all $0 \le i \le z-1$. For more on this topic, see the author's previous work [1]. We parameterize \mathcal{A} in terms of its s even elements and (z+1)-s := t odd elements as follows:

$$\mathcal{A} = \{0 = 2b_1, 2b_2, \dots, 2b_s, 2c_1 + 1, \dots, 2c_t + 1\}.$$

¹The author acknowledges support from National Science Foundation grant DMS 08-38434, "EMSW21-MCTP: Research Experience for Graduate Students".

If n is even, then $\epsilon_0 = 0, 2b_2, 2b_3, \ldots$, or $2b_s$ and

$$f_{\mathcal{A}}(n) = f_{\mathcal{A}}(n/2) + f_{\mathcal{A}}((n-2b_2)/2) + f_{\mathcal{A}}((n-2b_3)/2) + \dots + f_{\mathcal{A}}((n-2b_s)/2).$$

Writing $n = 2\ell$, we have

$$f_{\mathcal{A}}(2\ell) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell - b_2) + f_{\mathcal{A}}(\ell - b_3) + \dots + f_{\mathcal{A}}(\ell - b_s),$$

so for any even n, $f_{\mathcal{A}}(n)$ satisfies a recurrence relation of order b_s .

Similarly, if $n = 2\ell + 1$ is odd, then $\epsilon_0 = 2c_1 + 1, 2c_2 + 1, ...,$ or $2c_t + 1$, and

$$f_{\mathcal{A}}(2\ell+1) = f_{\mathcal{A}}(\ell-c_1) + f_{\mathcal{A}}(\ell-c_2) + \dots + f_{\mathcal{A}}(\ell-c_t),$$

so for any odd n, $f_{\mathcal{A}}(n)$ satisfies a recurrence relation of order c_t . Dennison, Lansing, Reznick, and the author [3] gave this argument for $f_{\mathcal{A},b}(n)$, the *b*-ary representation of nwith coefficients from \mathcal{A} , using residue classes mod b.

Example 1. Let $\mathcal{A} = \{0, 1, 3, 4\}$. We can write $\mathcal{A} = \{2(0), 2(0) + 1, 2(1) + 1, 2(2)\}$. Then

$$f_{\mathcal{A}}(2\ell) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell-2) \quad \text{and} \quad f_{\mathcal{A}}(2\ell+1) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell-1).$$
(1)

In general, let

$$\omega_k(m) = \begin{pmatrix} f_{\mathcal{A}}(2^k m) \\ f_{\mathcal{A}}(2^k m - 1) \\ \vdots \\ f_{\mathcal{A}}(2^k m - a_z) \end{pmatrix}.$$

We shall consider the fixed $(a_z + 1) \times (a_z + 1)$ matrix M_A such that for any $k \ge 0$,

 $\omega_{k+1} = M_{\mathcal{A}}\omega_k.$

Example 2. Returning to the set $\mathcal{A} = \{0, 1, 3, 4\}$ of Example 1 and using the equations in (1), we have

$$\omega_{k+1}(m) = \begin{pmatrix} f_{\mathcal{A}}(2^{k+1}m) \\ f_{\mathcal{A}}(2^{k+1}m-1) \\ f_{\mathcal{A}}(2^{k+1}m-2) \\ f_{\mathcal{A}}(2^{k+1}m-3) \\ f_{\mathcal{A}}(2^{k+1}m-4) \end{pmatrix} = \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) + f_{\mathcal{A}}(2^{k}m-2) \\ f_{\mathcal{A}}(2^{k}m-1) + f_{\mathcal{A}}(2^{k}m-3) \\ f_{\mathcal{A}}(2^{k}m-2) + f_{\mathcal{A}}(2^{k}m-3) \\ f_{\mathcal{A}}(2^{k}m-2) + f_{\mathcal{A}}(2^{k}m-4) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) \\ f_{\mathcal{A}}(2^{k}m-2) \\ f_{\mathcal{A}}(2^{k}m-2) \\ f_{\mathcal{A}}(2^{k}m-3) \\ f_{\mathcal{A}}(2^{k}m-4) \end{pmatrix}$$

$$(2)$$

If $M_{\mathcal{A}}$ is the matrix in (2), then $\omega_{k+1}(m) = M_{\mathcal{A}}\omega_k(m)$.

We now review some basic concepts of sequences from Section 8.1 of Lidl and Niederreiter [5] and include a matrix view of recurrence relations, following Reznick [6].

Consider a sequence (b(n)) such that

$$b(n) + c_{k-1}b(n-1) + c_{k-2}b(n-2) + \dots + c_0b(n-k) = 0$$
(3)

for all $n \ge k$ and $c_i \in \mathbb{N}$. By shifting the sequence, we see that

$$b(n+k) + c_{k-1}b(n+k-1) + c_{k-2}b(n+k-2) + \dots + c_0b(n+k-k) = 0$$
(4)

for $n \ge 0$. Then (3) is a homogeneous k-th order linear recurrence relation, and (b(n)) is a homogeneous k-th order linear recurrence sequence. For any sequence (b(n)) satisfying (3) we define the characteristic polynomial

$$f(x) = x^{k} + c_{k-1}x^{k-1} + c_{k-2}x^{k-2} + \dots + c_{0}.$$
(5)

We can also consider a recurrence relation from the point of view of a matrix system, considering k sequences indexed as $(b_i(n))$ for $1 \le i \le k$ which satisfy

$$b_i(n+1) = \sum_{j=1}^k m_{ij} b_j(n)$$

for $n \ge 0$ and $1 \le i \le k$. Then

$$\begin{pmatrix} b_1(n+1) \\ \vdots \\ b_k(n+1) \end{pmatrix} = \begin{pmatrix} m_{11} & \cdots & m_{1k} \\ \vdots & & \vdots \\ m_{k1} & \cdots & m_{kk} \end{pmatrix} \begin{pmatrix} b_1(n) \\ \vdots \\ b_k(n) \end{pmatrix}$$

for $n \ge 0$. To simplify the notation, if $M = [m_{ij}]$ and

$$\mathbf{B}(n) = \begin{pmatrix} b_1(n) \\ \vdots \\ b_k(n) \end{pmatrix},$$

then $\mathbf{B}(n+1) = M\mathbf{B}(n)$ for $n \ge 0$. Thus $\mathbf{B}(n) = M^n\mathbf{B}(0)$ for $n \ge 0$, where

$$\mathbf{B}(0) = \begin{pmatrix} b_1(0) \\ \vdots \\ b_k(0) \end{pmatrix}$$

is the vector of initial conditions.

As an additional connection between these two views of linear recurrence sequences, note that for a sequence satisfying (3),

$$\begin{pmatrix} b(n+1) \\ b(n+2) \\ \vdots \\ b(n+k-1) \\ b(n+k) \end{pmatrix} = \begin{pmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ -c_0 & -c_1 & \cdots & -c_{k-2} & -c_{k-1} \end{pmatrix} \begin{pmatrix} b(n) \\ b(n+1) \\ \vdots \\ b(n+k-2) \\ b(n+k-1) \end{pmatrix},$$

where this matrix, the *companion matrix* to g, has characteristic polynomial $(-1)^k g$. In this matrix point of view, the *characteristic polynomial* of M is

$$g(\lambda) \coloneqq \det(M - \lambda I_k).$$

By the Cayley-Hamilton Theorem, g(M) = 0, the $k \times k$ zero matrix.

If g(x) is the characteristic polynomial in (5), then

$$\mathbf{0} = g(M) = M^{k} + c_{k-1}M^{k-1} + c_{k-2}M^{k-2} + \dots + c_{0}I_{k}.$$

Hence for any $n \ge 0$,

$$\mathbf{0} = M^{n+k} + c_{k-1}M^{n+k-1} + c_{k-2}M^{n+k-2} + \dots + c_0M^n$$

and thus

$$\mathbf{0} = \left(M^{n+k} + c_{k-1}M^{n+k-1} + c_{k-2}M^{n+k-2} + \dots + c_0M^n\right)\mathbf{B}(0)$$

= $\mathbf{B}(n+k) + c_{k-1}\mathbf{B}(n+k-1) + c_{k-2}\mathbf{B}(n+k-2) + \dots + c_0\mathbf{B}(n).$

Thus each sequence $(b_i(n))$ satisfies the original linear recurrence (4).

2 Main result

We will use the ideas of Section 1 to examine the asymptotic behavior of the summatory function $\sum_{n=m^{2^r}}^{m^{2^{r+1}-1}} f_{\mathcal{A}}(n)$, but we must first establish a lemma.

Lemma 3 ([4, 5.6.5 & 5.6.9]). Let $M = [m_{ij}]$ be an $n \times n$ matrix with characteristic polynomial $g(\lambda)$ and eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_y$. Then

$$\max_{1 \le i \le y} |\lambda_i| \le \max_{1 \le i \le n} \sum_{j=1}^n |m_{ij}|.$$

Theorem 4. Let \mathcal{A} , $f_{\mathcal{A}}(n)$, $M_{\mathcal{A}}$, and $\omega_k(m)$ be as above, with the additional assumption that there exists some odd $a_i \in \mathcal{A}$. Define

$$s_{\mathcal{A}}(r,m) = \sum_{n=m2^r}^{m2^{r+1}-1} f_{\mathcal{A}}(n).$$

Let $|\mathcal{A}|$ denote the number of elements in the set \mathcal{A} . Then for a fixed value of m,

$$\lim_{r\to\infty}\frac{s_{\mathcal{A}}(r,m)}{|\mathcal{A}|^r}=c(\mathcal{A},m),$$

for some nonzero constant $c(\mathcal{A}, m) \in \mathbb{Q}$, so $s_{\mathcal{A}}(r, m) \sim c(\mathcal{A}, m) |\mathcal{A}|^r$.

Proof. Let $g(\lambda) := \det(M_{\mathcal{A}} - \lambda I)$ be the characteristic polynomial of $M_{\mathcal{A}}$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_y$, where each λ_i has multiplicity e_i . We can write

$$g(\lambda) = \sum_{k=0}^{a_z+1} \alpha_k \lambda^k.$$

By Cayley-Hamilton, we know that $g(M_{\mathcal{A}}) = 0$. Thus we have

$$\mathbf{0} = g\left(M_{\mathcal{A}}\right) = \sum_{k=0}^{a_z+1} \alpha_k M_{\mathcal{A}}^k$$

and hence, for all r,

$$\mathbf{0} = \left(\sum_{k=0}^{a_z+1} \alpha_k M_{\mathcal{A}}^k\right) \omega_r(m) = \sum_{k=0}^{a_z+1} \alpha_k \omega_{r+k}(m).$$

Since

$$\omega_{r+k}(m) = \begin{pmatrix} f_{\mathcal{A}}(2^{r+k}m) \\ f_{\mathcal{A}}(2^{r+k}m-1) \\ \vdots \\ f_{\mathcal{A}}(2^{r+k}m-a_z) \end{pmatrix},$$

we have

$$\sum_{k=0}^{a_z+1} \alpha_k f(2^{r+k}m - j) = 0 \tag{6}$$

for all $0 \le j \le a_z$.

Let $I_r = \{2^r, 2^r + 1, 2^r + 2, \dots, 2^{r+1} - 1\}$. Then $I_r = 2I_{r-1} \cup (2I_{r-1} + 1)$. Thus

$$s_{\mathcal{A}}(r,m) = \sum_{n=m2^{r}}^{m2^{r+1}-1} f_{\mathcal{A}}(n)$$

=
$$\sum_{n=m2^{r-1}}^{m2^{r}-1} (f_{\mathcal{A}}(2n) + f_{\mathcal{A}}(2n+1))$$

=
$$\sum_{n=m2^{r-1}}^{m2^{r}-1} (f_{\mathcal{A}}(n) + f_{\mathcal{A}}(n-b_{2}) + \dots + f_{\mathcal{A}}(n-b_{s}) + f_{\mathcal{A}}(n-c_{1}) + \dots + f_{\mathcal{A}}(n-c_{t})).$$

Since

$$\sum_{n=m2^{r-1}}^{m2^r-1} f_{\mathcal{A}}(n-k) = \sum_{n=m2^{r-1}}^{m2^r-1} f_{\mathcal{A}}(n) + \sum_{j=1}^k \left(f_{\mathcal{A}}(m2^{r-1}-j) - f_{\mathcal{A}}(m2^r-j) \right),$$

we deduce that

$$s_{\mathcal{A}}(r,m) = |\mathcal{A}| \sum_{n=m2^{r-1}}^{m2^{r-1}} f_{\mathcal{A}}(n) + h(r,m)$$
$$= |\mathcal{A}| s_{\mathcal{A}}(r-1,m) + h(r,m),$$

where

$$h(r,m) = \sum_{i=2}^{s} \sum_{j=1}^{b_i} \left(f_{\mathcal{A}}(m2^{r-1} - j) - f_{\mathcal{A}}(m2^r - j) \right) + \sum_{i=1}^{t} \sum_{j=1}^{c_i} \left(f_{\mathcal{A}}(m2^{r-1} - j) - f_{\mathcal{A}}(m2^r - j) \right)$$

and

$$\sum_{k=0}^{a_z+1} \alpha_k h(r+k,m) = 0$$

by Equation (6).

Thus we have an inhomogeneous recurrence relation for $s_{\mathcal{A}}(r,m)$ and will first consider the corresponding homogeneous recurrence relation

$$s_{\mathcal{A}}(r,m) = |\mathcal{A}| s_{\mathcal{A}}(r-1,m),$$

which has solution $s_{\mathcal{A}}(r,m) = c |\mathcal{A}|^r$. Then the solution to our inhomogeneous recurrence relation is of the form

$$s_{\mathcal{A}}(r,m) = c \left| \mathcal{A} \right|^{r} + \sum_{i=1}^{y} p_{i}(\lambda_{i},r),$$

where

$$p_i(\lambda_i, r) = \sum_{j=1}^{e_i} c_{ij} r^{j-1} \lambda_i^r.$$

By Lemma 3, $|\lambda_i|$ is bounded above by the maximum row sum of M_A , which is at most $|\mathcal{A}| - 1$ since all elements of M_A are either 0 or 1 and by assumption not all elements have the same parity. Hence the $c|\mathcal{A}|^r$ term dominates $s_{\mathcal{A}}(r,m)$ as $r \to \infty$, so

$$\lim_{r \to \infty} \frac{s_{\mathcal{A}}(r,m)}{|\mathcal{A}|^r} = c$$

Observe that

$$\sum_{k=0}^{a_z+1} \alpha_k \sum_{i=1}^{y} p_i \left(\lambda_i, r+k \right) = 0.$$

Thus we can compute $\sum_{k=0}^{a_z+1} \alpha_k s_{\mathcal{A}}(r+k,m)$, and for sufficiently large r,

$$\sum_{k=0}^{a_{z}+1} \alpha_{k} s_{\mathcal{A}}(r+k,m) = c \sum_{k=0}^{a_{z}+1} \alpha_{k} |\mathcal{A}|^{r+k} + 0 = c |\mathcal{A}|^{r} g(|\mathcal{A}|).$$

Then we can solve for c to see that

$$c = c(\mathcal{A}, m) \coloneqq \frac{\sum_{k=0}^{a_z+1} \alpha_k s_{\mathcal{A}}(r+k, m)}{|\mathcal{A}|^r g(|\mathcal{A}|)}.$$
(7)

It remains to be shown that $c(A, m) \neq 0$, and we thank the referee for raising this point. For a particular value of n, all $|\mathcal{A}|^n$ sums of the form

$$\sum_{i=0}^{n-1} \epsilon_i 2^i, \ \epsilon_i \in \{0 = a_0 < a_1 < \dots < a_z\}$$

have the value of the sum less than or equal to $a_z(2^n - 1)$. Thus

$$f_{\mathcal{A}}(0) + f_{\mathcal{A}}(1) + \dots + f_{\mathcal{A}}(a_z(2^n - 1)) \ge |\mathcal{A}|^n.$$

$$\tag{8}$$

Fix *m*. There exists $\ell \in \mathbb{N}$ such that $m2^{\ell} \ge a_z$. Then

$$f_{\mathcal{A}}(0) + f_{\mathcal{A}}(1) + \dots + f_{\mathcal{A}}(a_{z}(2^{n} - 1)) \leq f_{\mathcal{A}}(0) + f_{\mathcal{A}}(1) + \dots + f_{\mathcal{A}}(m2^{n+\ell} - 1)$$
(9)
= $s_{\mathcal{A}}(0, m) + s_{\mathcal{A}}(1, m) + \dots + s_{\mathcal{A}}(n+\ell-1, m).$

Combining (8) and (9), we have

$$|\mathcal{A}|^{n} \leq s_{\mathcal{A}}(0,m) + s_{\mathcal{A}}(1,m) + \dots + s_{\mathcal{A}}(n+\ell-1,m).$$

We know from above that $s_{\mathcal{A}}(r,m) = (c(\mathcal{A},m) + o(1))|\mathcal{A}|^r$. Thus

$$|\mathcal{A}|^{n} \leq (c(\mathcal{A}, m) + o(1)) \left(|\mathcal{A}|^{0} + |\mathcal{A}|^{1} + |\mathcal{A}|^{2} + \dots + |\mathcal{A}|^{n+\ell-1} \right)$$

$$< (c(\mathcal{A}, m) + o(1)) \frac{|\mathcal{A}|^{n+\ell}}{|\mathcal{A}| - 1}.$$

Dividing both sides by $|\mathcal{A}|^n$, we see that

$$1 \le \left(c(\mathcal{A}, m) + o(1)\right) \frac{|\mathcal{A}|^{\ell}}{|\mathcal{A}| - 1}.$$

Hence $c(\mathcal{A}, m) \neq 0$ and $s_{\mathcal{A}}(r, m) \sim c(\mathcal{A}, m) |\mathcal{A}|^{r}$.

3 Examples

Example 5. Let $A = \{0, 1, 8\}$. Then

$$f_{\mathcal{A}}(2\ell) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell - 4) \tag{10}$$

and

$$f_{\mathcal{A}}(2\ell+1) = f_{\mathcal{A}}(\ell), \tag{11}$$

 \mathbf{SO}

$$\begin{pmatrix} f_{\mathcal{A}}(2^{k+1}m) \\ f_{\mathcal{A}}(2^{k+1}m-1) \\ f_{\mathcal{A}}(2^{k+1}m-2) \\ f_{\mathcal{A}}(2^{k+1}m-3) \\ f_{\mathcal{A}}(2^{k+1}m-4) \\ f_{\mathcal{A}}(2^{k+1}m-5) \\ f_{\mathcal{A}}(2^{k+1}m-6) \\ f_{\mathcal{A}}(2^{k+1}m-7) \\ f_{\mathcal{A}}(2^{k+1}m-8) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \end{pmatrix} \begin{pmatrix} f_{\mathcal{A}}(2^{k}m-1) \\ f_{\mathcal{A}}(2^{k}m-2) \\ f_{\mathcal{A}}(2^{k}m-3) \\ f_{\mathcal{A}}(2^{k}m-4) \\ f_{\mathcal{A}}(2^{k}m-6) \\ f_{\mathcal{A}}(2^{k}m-6) \\ f_{\mathcal{A}}(2^{k}m-8) \end{pmatrix}.$$

If $M_{\mathcal{A}}$ is the matrix above, then $\omega_{k+1}(m) = M_{\mathcal{A}}\omega_k(m)$. The characteristic polynomial of $M_{\mathcal{A}}$ is

$$g(x) = 1 - 3x + 3x^2 - 3x^3 + 6x^4 - 6x^5 + 3x^6 - 3x^7 + 3x^8 - x^9.$$
(12)

We then compute

$$s_{\mathcal{A}}(3,1) - 3s_{\mathcal{A}}(4,1) + 3s_{\mathcal{A}}(5,1) - 3s_{\mathcal{A}}(6,1) + 6s_{\mathcal{A}}(7,1) - 6s_{\mathcal{A}}(8,1) + 3s_{\mathcal{A}}(9,1) - 3s_{\mathcal{A}}(10,1) + 3s_{\mathcal{A}}(11,1) - s_{\mathcal{A}}(12,1) = -59184$$

Using the formula from Theorem 4, we see that

$$c(\mathcal{A},1) = \frac{-59184}{g(3) \cdot 27} = \frac{-59184}{-5408 \cdot 27} = \frac{137}{338}.$$

Example 6. Let $A = \{0, 1, 3\}$. Then

$$f_{\mathcal{A}}(2\ell) = f_{\mathcal{A}}(\ell) \tag{13}$$

and

$$f_{\mathcal{A}}(2\ell+1) = f_{\mathcal{A}}(\ell) + f_{\mathcal{A}}(\ell-1), \qquad (14)$$

 \mathbf{SO}

So
$$\begin{pmatrix} f_{\mathcal{A}}(2^{k+1}m) \\ f_{\mathcal{A}}(2^{k+1}m-1) \\ f_{\mathcal{A}}(2^{k+1}m-2) \\ f_{\mathcal{A}}(2^{k+1}m-3) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_{\mathcal{A}}(2^{k}m) \\ f_{\mathcal{A}}(2^{k}m-1) \\ f_{\mathcal{A}}(2^{k}m-2) \\ f_{\mathcal{A}}(2^{k}m-3) \end{pmatrix}.$$
Hence $M_{\mathcal{A}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ satisfies $\omega_{k+1}(m) = M_{\mathcal{A}}\omega_k(m)$. The characteristic polynomial of $M_{\mathcal{A}}$ is

$$g(x) = (x-1)^2(x^2 - x - 1).$$
(15)

Let F_k denote the k-th Fibonacci number. Then

$$f_{\mathcal{A}}(2^k - 1) = F_{k+1} \tag{16}$$

for all $k \ge 0$. This can be shown by using induction and Equations (13) and (14).

Considering the summatory function with m = 1 and using Equations (13),(14), and (16), we see that

$$s_{\mathcal{A}}(r,1) = \sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n)$$

$$= \sum_{n=2^{r-1}}^{2^{r}-1} (f_{\mathcal{A}}(2n) + f_{\mathcal{A}}(2n+1))$$

$$= \sum_{n=2^{r-1}}^{2^{r}-1} (f_{\mathcal{A}}(n) + f_{\mathcal{A}}(n) + f_{\mathcal{A}}(n-1))$$

$$= 2s_{\mathcal{A}}(r-1,1) + \sum_{n=2^{r-1}}^{2^{r}-1} f_{\mathcal{A}}(n-1)$$

$$= 2s_{\mathcal{A}}(r-1,1) + f_{\mathcal{A}}(2^{r-1}-1) - f_{\mathcal{A}}(2^{r}-1)$$

$$= 3s_{\mathcal{A}}(r-1,1) + f_{\mathcal{A}}(2^{r-1}-1) - f_{\mathcal{A}}(2^{r}-1)$$

$$= 3s_{\mathcal{A}}(r-1,1) + F_{r} - F_{r+1}$$

$$= 3s_{\mathcal{A}}(r-1,1) - F_{r-1}.$$

This is an inhomogeneous recurrence relation for $s_{\mathcal{A}}(r, 1)$. We first consider the corresponding homogeneous recurrence relation $s_{\mathcal{A}}(r, 1) = 3s_{\mathcal{A}}(r-1, 1)$, which has solution

$$s_{\mathcal{A}}(r,1) = d_1 3^r,$$

for some d_1 in \mathbb{Q} . Recall that the characteristic polynomial g(x) of $M_{\mathcal{A}}$ has roots $1, \phi$, and $\overline{\phi}$, where the first has multiplicity 2 and the others have multiplicity 1. Hence the solution to the inhomogeneous recurrence relation is

$$s_{\mathcal{A}}(r,1) = d_1 3^r + d_2 \phi^r + d_3 \bar{\phi}^r + d_4 (1)^r + d_5 r (1)^r,$$
(17)

where $d_2, d_3, d_4, d_5 \in \mathbb{Q}$. Observe that the $d_1 3^r$ summand will dominate as $r \to \infty$, so

$$\lim_{r \to \infty} \frac{s_{\mathcal{A}}(r,1)}{3^r} = d_1$$

and $s_{\mathcal{A}}(r,1) \sim d_1 3^r$.

Using Equations (15) and (17), we can compute d_1 as

$$s_{\mathcal{A}}(r+2,1) - s_{\mathcal{A}}(r+1,1) - s_{\mathcal{A}}(r,1) = d_1 3^r (3^2 - 3 - 1) + d_2 \phi^r (\phi^2 - \phi - 1) + d_3 \bar{\phi}^r (\bar{\phi}^2 - \bar{\phi} - 1) + d_4 (1^2 - 1 - 1) + d_5 (r+2 - (r+1) - r) = d_1 3^r \cdot 5 - d_4 - d_5 (r-1).$$

Plugging in r = 2, r = 1, and r = 0 and computing sums, we see that $d_1 = 4/5$. Hence

$$\lim_{r \to \infty} \frac{s_{\mathcal{A}}(r,1)}{3^r} = \frac{4}{5}$$

and $s_{\mathcal{A}}(r,1) \sim \frac{4}{5} \cdot 3^r$.

Example 7. Let $\tilde{A} = \{0, 2, 3\}$. Then

$$f_{\tilde{\mathcal{A}}}(2\ell) = f_{\tilde{\mathcal{A}}}(\ell) + f_{\tilde{\mathcal{A}}}(\ell-1)$$
(18)

and

$$f_{\tilde{\mathcal{A}}}(2\ell+1) = f_{\tilde{\mathcal{A}}}(\ell-1), \tag{19}$$

 \mathbf{SO}

$$\begin{pmatrix} f_{\tilde{\mathcal{A}}}(2^{k+1}m) \\ f_{\tilde{\mathcal{A}}}(2^{k+1}m-1) \\ f_{\tilde{\mathcal{A}}}(2^{k+1}m-2) \\ f_{\tilde{\mathcal{A}}}(2^{k+1}m-3) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_{\tilde{\mathcal{A}}}(2^{k}m) \\ f_{\tilde{\mathcal{A}}}(2^{k}m-2) \\ f_{\tilde{\mathcal{A}}}(2^{k}m-3) \end{pmatrix}.$$

Hence $M_{\tilde{\mathcal{A}}} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ satisfies $\omega_{k+1}(m) = M_{\tilde{\mathcal{A}}}\omega_{k}(m)$. The characteristic polynomial of $M_{\tilde{\mathcal{A}}}$ is

$$g(x) = (x-1)^2 (x^2 - x - 1).$$
(20)

Let F_k denote the k-th Fibonacci number. Then

$$f_{\tilde{\mathcal{A}}}(2^k - 1) = F_{k-1} \tag{21}$$

for all $k \ge 1$. This can be shown by using induction and Equations (18) and (19) to prove that $f_{\tilde{\mathcal{A}}}(2^k-2) = F_k$ for all $k \ge 2$ and observing that Equation (19) gives $f_{\tilde{\mathcal{A}}}(2^k-1) = f_{\tilde{\mathcal{A}}}(2^{k-1}-2)$.

Considering the summatory function with m = 1 and using Equations (18),(19), and (21) and manipulations similar to those in Example 6, we see that

$$s_{\tilde{\mathcal{A}}}(r,1) = 3s_{\tilde{\mathcal{A}}}(r-1,1) - 2F_{r-3}$$

Again, the corresponding homogeneous recurrence relation has solution

$$s_{\tilde{\mathcal{A}}}(r,1) = d_1 3^r,$$

for some d_1 in \mathbb{Q} , and we can use Equation (20) to see that the solution to the inhomogeneous recurrence relation is

$$s_{\tilde{\mathcal{A}}}(r,1) = d_1 3^r + d_2 \phi^r + d_3 \bar{\phi}^r + d_4 (1)^r + d_5 r (1)^r, \qquad (22)$$

where $d_2, d_3, d_4, d_5 \in \mathbb{Q}$. Observe that the $d_1 3^r$ summand will dominate as $r \to \infty$, so

$$\lim_{r \to \infty} \frac{s_{\tilde{\mathcal{A}}}(r,1)}{3^r} = d_1$$

and $s_{\tilde{\mathcal{A}}}(r,1) \sim d_1 3^r$.

Using Equations (20) and (22), we can compute d_1 as

$$s_{\tilde{\mathcal{A}}}(r+2,1) - s_{\tilde{\mathcal{A}}}(r+1,1) - s_{\tilde{\mathcal{A}}}(r,1) = d_1 3^r \cdot 5 - d_4 - d_5(r-1).$$

Plugging in r = 2, r = 1, and r = 0 and computing sums, we see that $d_1 = 2/5$. Hence

$$\lim_{r \to \infty} \frac{s_{\tilde{\mathcal{A}}}(r,1)}{3^r} = \frac{2}{5}$$

and $s_{\tilde{\mathcal{A}}}(r,1) \sim \frac{2}{5} \cdot 3^r$.

In Example 6, we had $\mathcal{A} = \{0, 1, 3\}$, and in Example 7, we had $\tilde{\mathcal{A}} = \{0, 2, 3\} = \{3 - 3, 3 - 1, 3 - 0\}$. We found $c(\mathcal{A}, 1)$ in Example 6 and $c(\tilde{\mathcal{A}}, 1)$ in Example 7 and can observe that they have the same denominator.

Given a set $\mathcal{A} = \{0, a_1, \dots, a_z\}$, let $\tilde{\mathcal{A}}$ be

$$\mathcal{A} \coloneqq \{0, a_z - a_{z-1}, \dots, a_z - a_1, a_z\}.$$

The following chart displays the value $c(\mathcal{A}, 1)$ for various sets \mathcal{A} and their corresponding sets $\tilde{\mathcal{A}}$, where $s_{\mathcal{A}}(r, 1) \sim c(\mathcal{A}, 1)|\mathcal{A}|^r$. Note that in all cases the denominator of $c(\mathcal{A}, 1)$ is the same as that of $c(\tilde{\mathcal{A}}, 1)$. The following theorem will show that this holds for all \mathcal{A} .

\mathcal{A}	$c(\mathcal{A},1)$	$N(c(\mathcal{A},1))$	$ $ $\tilde{\mathcal{A}}$	$c(\tilde{\mathcal{A}},1)$	$N(c(\tilde{\mathcal{A}},1))$
$\{0, 1, 2, 4\}$	$\frac{7}{11}$	0.636	$\{0, 2, 3, 4\}$	$\frac{3}{11}$	0.273
$\{0, 1, 3, 4\}$	$\frac{1}{2}$	0.500	$\{0, 1, 3, 4\}$	$\frac{1}{2}$	0.500
$\{0, 2, 3, 6\}$	$\frac{33}{149}$	0.221	$\{0,3,4,6\}$	$\frac{21}{149}$	0.141
$\{0, 1, 6, 9\}$	$\frac{6345}{28670}$	0.221	$\{0,3,8,9\}$	$\frac{2007}{28670}$	0.070
$\{0, 1, 7, 9\}$	$\frac{2069}{10235}$	0.202	$\{0, 2, 8, 9\}$	$\frac{1023}{10235}$	0.100
$\{0, 4, 5, 6, 9\}$	$\frac{4044}{83753}$	0.048	$\{0,3,4,5,9\}$	$\frac{6716}{83753}$	0.080

Table 1: $c(\mathcal{A}, 1)$ for various sets \mathcal{A} and $\tilde{\mathcal{A}}$

Theorem 8. Let $\mathcal{A}, f_{\mathcal{A}}(n), M_{\mathcal{A}} = [m_{\alpha,\beta}]$, and $\tilde{\mathcal{A}}$ be as above, with $0 \le \alpha, \beta \le a_z$. Let $M_{\tilde{\mathcal{A}}} = [m'_{\alpha,\beta}]$ be the $(a_z + 1) \times (a_z + 1)$ matrix such that

$$\begin{pmatrix} f_{\tilde{\mathcal{A}}}(2n) \\ f_{\tilde{\mathcal{A}}}(2n-1) \\ \vdots \\ f_{\tilde{\mathcal{A}}}(2n-a_z) \end{pmatrix} = M_{\tilde{\mathcal{A}}} \begin{pmatrix} f_{\tilde{\mathcal{A}}}(n) \\ f_{\tilde{\mathcal{A}}}(n-1) \\ \vdots \\ f_{\tilde{\mathcal{A}}}(n-a_z) \end{pmatrix}$$

Then $m_{\alpha,\beta} = m'_{a_z - \alpha, a_z - \beta}$.

Proof. Recall that we can write

 $\mathcal{A} \coloneqq \{0, 2b_2, \dots, 2b_s, 2c_1 + 1, \dots, 2c_t + 1\},\$

so that

$$f_{\mathcal{A}}(2n-2j) = f_{\mathcal{A}}(n-j) + f_{\mathcal{A}}(n-j-b_2) + \dots + f_{\mathcal{A}}(n-j-b_s)$$

and

$$f_{\mathcal{A}}(2n-2j-1) = f_{\mathcal{A}}(n-j-c_1-1) + \dots + f_{\mathcal{A}}(n-j-c_t-1)$$

for j sufficiently large.

Then $m_{\alpha,\beta} = 1$ if and only if $f_{\mathcal{A}}(n-\beta)$ is a summand in the recursive sum that expresses $f_{\mathcal{A}}(2n-\alpha)$, which happens if and only if $2n - \alpha = 2(n-\beta) + K$, where $K \in \mathcal{A}$, and this is equivalent to $2\beta - \alpha$ belonging to \mathcal{A} .

Now $m'_{a_z-\alpha,a_z-\beta} = 1$ if and only if $f_{\tilde{\mathcal{A}}}(n-(a_z-\beta))$ is a summand in the recursive sum that expresses $f_{\tilde{\mathcal{A}}}(2n-(a_z-\alpha))$, which happens if and only if $2n-(a_z-\alpha)=2(n-(a_z-\beta))+\tilde{K}$, where $\tilde{K} \in \tilde{\mathcal{A}}$. This means that $a_z + \alpha - 2\beta = \tilde{K}$, which gives $2\beta - \alpha \in \mathcal{A}$.

Thus $M_{\mathcal{A}} = S^{-1}M_{\tilde{\mathcal{A}}}S$, where

$$S = \left(\begin{array}{ccccc} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{array}\right),$$

so $M_{\mathcal{A}}$ and $M_{\tilde{\mathcal{A}}}$ are similar matrices and thus have the same characteristic polynomial, [4, 1.3.3]. Hence the denominator in (7) for \mathcal{A} is equal to the denominator in (7) for $\tilde{\mathcal{A}}$.

4 Open questions

A nicer formula for $c(\mathcal{A}, m)$ than that given in Equation (7) is desired and seems likely. To that end, we have computed values of $c(\mathcal{A})$ for a variety of sets \mathcal{A} but have not been able

to detect any patterns. Table 2 shows $c(\mathcal{A}, 1)$ for all sets of the form $\mathcal{A} = \{0, 1, t\}$, where $2 \le t \le 17$, and we have obtained the following bounds on $c(\mathcal{A}, 1)$ for sets \mathcal{A} of this form.

Let $t \in \mathbb{N}$ with t > 1 and $\mathcal{A} = \{0, 1, t\}$. Choose k such that $2^k < t \le 2^{k+1}$. Recall that $f_{\mathcal{A}}(s)$ is the number of ways to write s in the form

$$s = \sum_{i=0}^{\infty} \epsilon_i 2^i, \text{ where } \epsilon_i \in \{0, 1, t\}.$$

Then

$$s_{\mathcal{A}}(r,1) = \sum_{n=2^r}^{2^{r+1}-1} f_{\mathcal{A}}(n) \sim c(\mathcal{A},1)3^r,$$

as shown in Theorem 4. Thus

$$\sum_{s=1}^{2^{n}-1} f_{\mathcal{A}}(s) = \sum_{j=0}^{n-1} \sum_{s=2^{j}}^{2^{j+1}-1} f_{\mathcal{A}}(s) \sim \sum_{j=0}^{n-1} c(\mathcal{A},1)3^{j}$$
$$= c(\mathcal{A},1) \left(\frac{3^{n}-1}{2}\right) \approx \frac{1}{2} c(\mathcal{A},1)3^{n}.$$

Consider choosing $\epsilon_i \in \{0, 1, t\}$ for $0 \le i \le n - k - 3$ and $\epsilon_i \in \{0, 1\}$ for $n - k - 2 \le i \le n - 2$. Then

$$\begin{split} \sum_{i=0}^{n-2} \epsilon_i 2^i &\leq t+t \cdot 2+t \cdot 2^2 + \dots + t \cdot 2^{n-k-3} + 2^{n-k-2} + 2^{n-k-1} + \dots + 2^{n-2} \\ &< t \cdot 2^{n-k-2} + 2^{n-1} - 1 \\ &\leq 2^{k+1} \cdot 2^{n-k-2} + 2^{n-1} - 1 \\ &= 2^n - 1 \\ &< 2^n. \end{split}$$

There are $3^{n-k-2} \cdot 2^{k+1}$ such sums, and each of them is counted in $\sum_{s=1}^{2^{n-1}} f_{\mathcal{A}}(s)$. Thus

$$\frac{1}{2}c(\mathcal{A},1)3^n \ge 3^{n-k-2} \cdot 2^{k+1} = 3^n \cdot \frac{2^{k+1}}{3^{k+2}},$$

and so $c(\mathcal{A}, 1) \ge \left(\frac{2}{3}\right)^{k+2}$.

Now suppose there exists some $i_0 \ge n - k$ such that $\epsilon_{i_0} = t$. Then

$$\sum_{i=0}^{\infty} \epsilon_i 2^i \ge t \cdot 2^{i_0} \ge t \cdot 2^{n-k} > 2^k 2^{n-k} = 2^n.$$

Thus the sums counted in $\sum_{s=1}^{2^n-1} f_{\mathcal{A}}(s)$ all have the property that $\epsilon_i \in \{0,1\}$ for $n-k \leq i \leq n-1$, and there are $3^{n-k} \cdot 2^k$ such sums. Hence $3^{n-k} \cdot 2^k \geq \frac{1}{2}c(\mathcal{A},1) \cdot 3^n$ and $\frac{2^{k+1}}{3^k} \geq c(\mathcal{A},1)$.

Combining the above, we see that

$$\frac{2^{k+1}}{3^k} \cdot \frac{2}{9} \le c(\mathcal{A}, 1) \le \frac{2^{k+1}}{3^k}.$$

\mathcal{A}	$c(\mathcal{A},1)$	$N(c(\mathcal{A},1))$	$ \mathcal{A} $	$c(\mathcal{A},1)$	$N(c(\mathcal{A},1))$
$\{0, 1, 2\}$	1	1.000	$\{0, 1, 3\}$	$\frac{4}{5}$	0.800
$\{0, 1, 4\}$	$\frac{5}{8}$	0.625	$\{0, 1, 5\}$	$\frac{14}{25}$	0.560
$\{0, 1, 6\}$	$\frac{35}{71}$	0.493	$\{0, 1, 7\}$	$\frac{176}{391}$	0.450
$\{0, 1, 8\}$	$\frac{137}{338}$	0.405	$\{0, 1, 9\}$	$\frac{1448}{3775}$	0.384
$\{0, 1, 10\}$	$\frac{1990}{5527}$	0.360	$\{0, 1, 11\}$	$\frac{3223}{9476}$	0.340
$\{0, 1, 12\}$	$\frac{2020}{6283}$	0.322	$\{0, 1, 13\}$	$\frac{47228}{154123}$	0.306
$\{0, 1, 14\}$	$\frac{35624}{122411}$	0.291	$\{0, 1, 15\}$	$\frac{699224}{2501653}$	0.280
$\{0, 1, 16\}$	$\frac{68281}{256000}$	0.267	$\{0, 1, 17\}$	$\frac{38132531}{146988000}$	0.259

Table 2: $c(\mathcal{A}, 1)$ for all sets of the form $\mathcal{A} = \{0, 1, t\}$, where $2 \le t \le 17$

To compare these bounds with Table 2, note that if $8 < t \le 15$, then k = 3, and we have

$$0.132 \le c(\mathcal{A}, 1) \le 0.593$$

for $\mathcal{A} = \{0, 1, t\}$, with t in this range.

We have also computed $c(\mathcal{A}, 1)$ for some sets with $|\mathcal{A}| = 4$ and $|\mathcal{A}| = 5$, and that data is contained in Table 1. Larger sets have not been considered because computations become increasingly tedious as the cardinality of \mathcal{A} grows.

5 Acknowledgements

The author acknowledges support from National Science Foundation grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students". The results in this paper were part of the author's doctoral dissertation [2] at the University of Illinois at Urbana-Champaign. The author wishes to thank Professor Bruce Reznick for his time, ideas, and encouragement.

References

 K. Anders, Odd behavior in the coefficients of reciprocals of binary power series, Int. J. Number Theory 12 (2016), 635–648.

- [2] K. Ph.D. Anders, Properties of digital representations, dissertation, University of Illinois Urbana-Champaign, 2014, at https://www.ideals.illinois.edu/handle/2142/50698.
- [3] K. Anders, M. Dennison, J. Lansing, and B. Reznick, Congruence properties of binary partition functions, Ann. Comb. 17 (2013), 15–26.
- [4] R. Horn and C. Johnson, *Matrix Analysis*, 2nd ed., Cambridge Univ. Press, Cambridge, 2013.
- [5] R. Lidl and H. Niederreiter, *Finite Fields*, 2nd ed., Encyclopedia of Mathematics and Its Applications, Vol. 20, Cambridge Univ. Press, Cambridge, 1997.
- [6] B. Reznick, A Stern introduction to combinatorial number theory, Class notes, Math 595, University of Illinois at Urbana-Champaign, Spring 2012.

2010 Mathematics Subject Classification: Primary 11A63. Keywords: digital representation, non-standard binary representation, summatory function.

Received August 25 2015; revised versions received January 19 2016; March 11 2016; April 5 2016. Published in *Journal of Integer Sequences*, April 6 2016.

Return to Journal of Integer Sequences home page.