Counting Non-Standard Binary Representations

Katie Anders ${ }^{1}$
Department of Mathematics
University of Texas at Tyler
3900 University Blvd.
Tyler, TX 75799
USA
kanders@uttyler.edu

Abstract

Let \mathcal{A} be a finite subset of \mathbb{N} including 0 and let $f_{\mathcal{A}}(n)$ be the number of ways to write $n=\sum_{i=0}^{\infty} \epsilon_{i} 2^{i}$, where $\epsilon_{i} \in \mathcal{A}$. We consider asymptotics of the summatory function $s_{\mathcal{A}}(r, m)$ of $f_{\mathcal{A}}(n)$ from $m 2^{r}$ to $m 2^{r+1}-1$, and show that $s_{\mathcal{A}}(r, m) \sim c(\mathcal{A}, m)|\mathcal{A}|^{r}$ for some nonzero $c(\mathcal{A}, m) \in \mathbb{Q}$.

1 Introduction

Let $f_{\mathcal{A}}(n)$ denote the number of ways to write $n=\sum_{i=0}^{\infty} \epsilon_{i} 2^{i}$, where ϵ_{i} belongs to the set

$$
\mathcal{A}:=\left\{0=a_{0}, a_{1}, \ldots, a_{z}\right\},
$$

with $a_{i} \in \mathbb{N}$ and $a_{i}<a_{i+1}$ for all $0 \leq i \leq z-1$. For more on this topic, see the author's previous work [1]. We parameterize \mathcal{A} in terms of its s even elements and $(z+1)-s:=t$ odd elements as follows:

$$
\mathcal{A}=\left\{0=2 b_{1}, 2 b_{2}, \ldots, 2 b_{s}, 2 c_{1}+1, \ldots, 2 c_{t}+1\right\} .
$$

[^0]If n is even, then $\epsilon_{0}=0,2 b_{2}, 2 b_{3}, \ldots$, or $2 b_{s}$ and

$$
f_{\mathcal{A}}(n)=f_{\mathcal{A}}(n / 2)+f_{\mathcal{A}}\left(\left(n-2 b_{2}\right) / 2\right)+f_{\mathcal{A}}\left(\left(n-2 b_{3}\right) / 2\right)+\cdots+f_{\mathcal{A}}\left(\left(n-2 b_{s}\right) / 2\right) .
$$

Writing $n=2 \ell$, we have

$$
f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}\left(\ell-b_{2}\right)+f_{\mathcal{A}}\left(\ell-b_{3}\right)+\cdots+f_{\mathcal{A}}\left(\ell-b_{s}\right),
$$

so for any even $n, f_{\mathcal{A}}(n)$ satisfies a recurrence relation of order b_{s}.
Similarly, if $n=2 \ell+1$ is odd, then $\epsilon_{0}=2 c_{1}+1,2 c_{2}+1, \ldots$, or $2 c_{t}+1$, and

$$
f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}\left(\ell-c_{1}\right)+f_{\mathcal{A}}\left(\ell-c_{2}\right)+\cdots+f_{\mathcal{A}}\left(\ell-c_{t}\right),
$$

so for any odd $n, f_{\mathcal{A}}(n)$ satisfies a recurrence relation of order c_{t}. Dennison, Lansing, Reznick, and the author [3] gave this argument for $f_{\mathcal{A}, b}(n)$, the b-ary representation of n with coefficients from \mathcal{A}, using residue classes $\bmod b$.

Example 1. Let $\mathcal{A}=\{0,1,3,4\}$. We can write $\mathcal{A}=\{2(0), 2(0)+1,2(1)+1,2(2)\}$. Then

$$
\begin{equation*}
f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-2) \quad \text { and } \quad f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-1) \tag{1}
\end{equation*}
$$

In general, let

$$
\omega_{k}(m)=\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right) \\
\vdots \\
f_{\mathcal{A}}\left(2^{k} m-a_{z}\right)
\end{array}\right)
$$

We shall consider the fixed $\left(a_{z}+1\right) \times\left(a_{z}+1\right)$ matrix $M_{\mathcal{A}}$ such that for any $k \geq 0$,

$$
\omega_{k+1}=M_{\mathcal{A}} \omega_{k}
$$

Example 2. Returning to the set $\mathcal{A}=\{0,1,3,4\}$ of Example 1 and using the equations in (1), we have

$$
\begin{align*}
\omega_{k+1}(m) & =\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k+1} m\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-1\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-2\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-3\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-4\right)
\end{array}\right)=\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right)+f_{\mathcal{A}}\left(2^{k} m-2\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right)+f_{\mathcal{A}}\left(2^{k} m-2\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right)+f_{\mathcal{A}}\left(2^{k} m-3\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right)+f_{\mathcal{A}}\left(2^{k} m-3\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right)+f_{\mathcal{A}}\left(2^{k} m-4\right)
\end{array}\right) \tag{2}\\
& =\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right) \\
f_{\mathcal{A}}\left(2^{k} m-3\right) \\
f_{\mathcal{A}}\left(2^{k} m-4\right)
\end{array}\right)
\end{align*}
$$

If $M_{\mathcal{A}}$ is the matrix in (2), then $\omega_{k+1}(m)=M_{\mathcal{A}} \omega_{k}(m)$.

We now review some basic concepts of sequences from Section 8.1 of Lidl and Niederreiter [5] and include a matrix view of recurrence relations, following Reznick [6].

Consider a sequence $(b(n))$ such that

$$
\begin{equation*}
b(n)+c_{k-1} b(n-1)+c_{k-2} b(n-2)+\cdots+c_{0} b(n-k)=0 \tag{3}
\end{equation*}
$$

for all $n \geq k$ and $c_{i} \in \mathbb{N}$. By shifting the sequence, we see that

$$
\begin{equation*}
b(n+k)+c_{k-1} b(n+k-1)+c_{k-2} b(n+k-2)+\cdots+c_{0} b(n+k-k)=0 \tag{4}
\end{equation*}
$$

for $n \geq 0$. Then (3) is a homogeneous k-th order linear recurrence relation, and $(b(n))$ is a homogeneous k-th order linear recurrence sequence. For any sequence ($b(n)$) satisfying (3) we define the characteristic polynomial

$$
\begin{equation*}
f(x)=x^{k}+c_{k-1} x^{k-1}+c_{k-2} x^{k-2}+\cdots+c_{0} . \tag{5}
\end{equation*}
$$

We can also consider a recurrence relation from the point of view of a matrix system, considering k sequences indexed as $\left(b_{i}(n)\right)$ for $1 \leq i \leq k$ which satisfy

$$
b_{i}(n+1)=\sum_{j=1}^{k} m_{i j} b_{j}(n)
$$

for $n \geq 0$ and $1 \leq i \leq k$. Then

$$
\left(\begin{array}{c}
b_{1}(n+1) \\
\vdots \\
b_{k}(n+1)
\end{array}\right)=\left(\begin{array}{ccc}
m_{11} & \cdots & m_{1 k} \\
\vdots & & \vdots \\
m_{k 1} & \cdots & m_{k k}
\end{array}\right)\left(\begin{array}{c}
b_{1}(n) \\
\vdots \\
b_{k}(n)
\end{array}\right)
$$

for $n \geq 0$. To simplify the notation, if $M=\left[m_{i j}\right]$ and

$$
\mathbf{B}(n)=\left(\begin{array}{c}
b_{1}(n) \\
\vdots \\
b_{k}(n)
\end{array}\right)
$$

then $\mathbf{B}(n+1)=M \mathbf{B}(n)$ for $n \geq 0$. Thus $\mathbf{B}(n)=M^{n} \mathbf{B}(0)$ for $n \geq 0$, where

$$
\mathbf{B}(0)=\left(\begin{array}{c}
b_{1}(0) \\
\vdots \\
b_{k}(0)
\end{array}\right)
$$

is the vector of initial conditions.
As an additional connection between these two views of linear recurrence sequences, note that for a sequence satisfying (3),

$$
\left(\begin{array}{c}
b(n+1) \\
b(n+2) \\
\vdots \\
b(n+k-1) \\
b(n+k)
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
-c_{0} & -c_{1} & \cdots & -c_{k-2} & -c_{k-1}
\end{array}\right)\left(\begin{array}{c}
b(n) \\
b(n+1) \\
\vdots \\
b(n+k-2) \\
b(n+k-1)
\end{array}\right)
$$

where this matrix, the companion matrix to g, has characteristic polynomial $(-1)^{k} g$.
In this matrix point of view, the characteristic polynomial of M is

$$
g(\lambda):=\operatorname{det}\left(M-\lambda I_{k}\right) .
$$

By the Cayley-Hamilton Theorem, $g(M)=\mathbf{0}$, the $k \times k$ zero matrix.
If $g(x)$ is the characteristic polynomial in (5), then

$$
\mathbf{0}=g(M)=M^{k}+c_{k-1} M^{k-1}+c_{k-2} M^{k-2}+\cdots+c_{0} I_{k} .
$$

Hence for any $n \geq 0$,

$$
\mathbf{0}=M^{n+k}+c_{k-1} M^{n+k-1}+c_{k-2} M^{n+k-2}+\cdots+c_{0} M^{n}
$$

and thus

$$
\begin{aligned}
\mathbf{0} & =\left(M^{n+k}+c_{k-1} M^{n+k-1}+c_{k-2} M^{n+k-2}+\cdots+c_{0} M^{n}\right) \mathbf{B}(0) \\
& =\mathbf{B}(n+k)+c_{k-1} \mathbf{B}(n+k-1)+c_{k-2} \mathbf{B}(n+k-2)+\cdots+c_{0} \mathbf{B}(n)
\end{aligned}
$$

Thus each sequence $\left(b_{j}(n)\right)$ satisfies the original linear recurrence (4).

2 Main result

We will use the ideas of Section 1 to examine the asymptotic behavior of the summatory function $\sum_{n=m 2^{r}}^{m 2^{r+1}-1} f_{\mathcal{A}}(n)$, but we must first establish a lemma.
Lemma 3 ([4, 5.6.5\& 5.6.9]). Let $M=\left[m_{i j}\right]$ be an $n \times n$ matrix with characteristic polynomial $g(\lambda)$ and eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{y}$. Then

$$
\max _{1 \leq i \leq y}\left|\lambda_{i}\right| \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|m_{i j}\right| .
$$

Theorem 4. Let $\mathcal{A}, f_{\mathcal{A}}(n), M_{\mathcal{A}}$, and $\omega_{k}(m)$ be as above, with the additional assumption that there exists some odd $a_{i} \in \mathcal{A}$. Define

$$
s_{\mathcal{A}}(r, m)=\sum_{n=m 2^{r}}^{m 2^{r+1}-1} f_{\mathcal{A}}(n) .
$$

Let $|\mathcal{A}|$ denote the number of elements in the set \mathcal{A}. Then for a fixed value of m,

$$
\lim _{r \rightarrow \infty} \frac{s_{\mathcal{A}}(r, m)}{|\mathcal{A}|^{r}}=c(\mathcal{A}, m)
$$

for some nonzero constant $c(\mathcal{A}, m) \in \mathbb{Q}$, so $s_{\mathcal{A}}(r, m) \sim c(\mathcal{A}, m)|\mathcal{A}|^{r}$.

Proof. Let $g(\lambda):=\operatorname{det}\left(M_{\mathcal{A}}-\lambda I\right)$ be the characteristic polynomial of $M_{\mathcal{A}}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{y}$, where each λ_{i} has multiplicity e_{i}. We can write

$$
g(\lambda)=\sum_{k=0}^{a_{z}+1} \alpha_{k} \lambda^{k} .
$$

By Cayley-Hamilton, we know that $g\left(M_{\mathcal{A}}\right)=\mathbf{0}$. Thus we have

$$
\mathbf{0}=g\left(M_{\mathcal{A}}\right)=\sum_{k=0}^{a_{z}+1} \alpha_{k} M_{\mathcal{A}}^{k}
$$

and hence, for all r,

$$
\mathbf{0}=\left(\sum_{k=0}^{a_{z}+1} \alpha_{k} M_{\mathcal{A}}^{k}\right) \omega_{r}(m)=\sum_{k=0}^{a_{z}+1} \alpha_{k} \omega_{r+k}(m) .
$$

Since

$$
\omega_{r+k}(m)=\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{r+k} m\right) \\
f_{\mathcal{A}}\left(2^{r+k} m-1\right) \\
\vdots \\
f_{\mathcal{A}}\left(2^{r+k} m-a_{z}\right)
\end{array}\right),
$$

we have

$$
\begin{equation*}
\sum_{k=0}^{a_{z+1}} \alpha_{k} f\left(2^{r+k} m-j\right)=0 \tag{6}
\end{equation*}
$$

for all $0 \leq j \leq a_{z}$.
Let $I_{r}=\left\{2^{r}, 2^{r}+1,2^{r}+2, \ldots, 2^{r+1}-1\right\}$. Then $I_{r}=2 I_{r-1} \cup\left(2 I_{r-1}+1\right)$. Thus

$$
\begin{aligned}
s_{\mathcal{A}}(r, m) & =\sum_{n=m 2^{r}}^{m 2^{r+1}-1} f_{\mathcal{A}}(n) \\
& =\sum_{n=m 2^{r-1}}^{m 2^{r}-1}\left(f_{\mathcal{A}}(2 n)+f_{\mathcal{A}}(2 n+1)\right) \\
& =\sum_{n=m 2^{r-1}}^{m 2^{r-1}}\left(f_{\mathcal{A}}(n)+f_{\mathcal{A}}\left(n-b_{2}\right)+\cdots+f_{\mathcal{A}}\left(n-b_{s}\right)+f_{\mathcal{A}}\left(n-c_{1}\right)+\cdots+f_{\mathcal{A}}\left(n-c_{t}\right)\right) .
\end{aligned}
$$

Since

$$
\sum_{n=m 2^{r-1}}^{m 2^{r}-1} f_{\mathcal{A}}(n-k)=\sum_{n=m 2^{r-1}}^{m 2^{r}-1} f_{\mathcal{A}}(n)+\sum_{j=1}^{k}\left(f_{\mathcal{A}}\left(m 2^{r-1}-j\right)-f_{\mathcal{A}}\left(m 2^{r}-j\right)\right),
$$

we deduce that

$$
\begin{aligned}
s_{\mathcal{A}}(r, m) & =|\mathcal{A}| \sum_{n=m 2^{r-1}}^{m 2^{r}-1} f_{\mathcal{A}}(n)+h(r, m) \\
& =|\mathcal{A}| s_{\mathcal{A}}(r-1, m)+h(r, m)
\end{aligned}
$$

where

$$
h(r, m)=\sum_{i=2}^{s} \sum_{j=1}^{b_{i}}\left(f_{\mathcal{A}}\left(m 2^{r-1}-j\right)-f_{\mathcal{A}}\left(m 2^{r}-j\right)\right)+\sum_{i=1}^{t} \sum_{j=1}^{c_{i}}\left(f_{\mathcal{A}}\left(m 2^{r-1}-j\right)-f_{\mathcal{A}}\left(m 2^{r}-j\right)\right)
$$

and

$$
\sum_{k=0}^{a_{z}+1} \alpha_{k} h(r+k, m)=0
$$

by Equation (6).
Thus we have an inhomogeneous recurrence relation for $s_{\mathcal{A}}(r, m)$ and will first consider the corresponding homogeneous recurrence relation

$$
s_{\mathcal{A}}(r, m)=|\mathcal{A}| s_{\mathcal{A}}(r-1, m),
$$

which has solution $s_{\mathcal{A}}(r, m)=c|\mathcal{A}|^{r}$. Then the solution to our inhomogeneous recurrence relation is of the form

$$
s_{\mathcal{A}}(r, m)=c|\mathcal{A}|^{r}+\sum_{i=1}^{y} p_{i}\left(\lambda_{i}, r\right),
$$

where

$$
p_{i}\left(\lambda_{i}, r\right)=\sum_{j=1}^{e_{i}} c_{i j} r^{j-1} \lambda_{i}^{r} .
$$

By Lemma 3, $\left|\lambda_{i}\right|$ is bounded above by the maximum row sum of $M_{\mathcal{A}}$, which is at most $|\mathcal{A}|-1$ since all elements of $M_{\mathcal{A}}$ are either 0 or 1 and by assumption not all elements have the same parity. Hence the $c|\mathcal{A}|^{r}$ term dominates $s_{\mathcal{A}}(r, m)$ as $r \rightarrow \infty$, so

$$
\lim _{r \rightarrow \infty} \frac{s_{\mathcal{A}}(r, m)}{|\mathcal{A}|^{r}}=c
$$

Observe that

$$
\sum_{k=0}^{a_{z+1}} \alpha_{k} \sum_{i=1}^{y} p_{i}\left(\lambda_{i}, r+k\right)=0
$$

Thus we can compute $\sum_{k=0}^{a_{z}+1} \alpha_{k} s_{\mathcal{A}}(r+k, m)$, and for sufficiently large r,

$$
\sum_{k=0}^{a_{z}+1} \alpha_{k} s_{\mathcal{A}}(r+k, m)=c \sum_{k=0}^{a_{z}+1} \alpha_{k}|\mathcal{A}|^{r+k}+0=c|\mathcal{A}|^{r} g(|\mathcal{A}|) .
$$

Then we can solve for c to see that

$$
\begin{equation*}
c=c(\mathcal{A}, m):=\frac{\sum_{k=0}^{a_{z}+1} \alpha_{k} s_{\mathcal{A}}(r+k, m)}{|\mathcal{A}|^{r} g(|\mathcal{A}|)} . \tag{7}
\end{equation*}
$$

It remains to be shown that $c(A, m) \neq 0$, and we thank the referee for raising this point. For a particular value of n, all $|\mathcal{A}|^{n}$ sums of the form

$$
\sum_{i=0}^{n-1} \epsilon_{i} 2^{i}, \epsilon_{i} \in\left\{0=a_{0}<a_{1}<\cdots<a_{z}\right\}
$$

have the value of the sum less than or equal to $a_{z}\left(2^{n}-1\right)$. Thus

$$
\begin{equation*}
f_{\mathcal{A}}(0)+f_{\mathcal{A}}(1)+\cdots+f_{\mathcal{A}}\left(a_{z}\left(2^{n}-1\right)\right) \geq|\mathcal{A}|^{n} . \tag{8}
\end{equation*}
$$

Fix m. There exists $\ell \in \mathbb{N}$ such that $m 2^{\ell} \geq a_{z}$. Then

$$
\begin{align*}
f_{\mathcal{A}}(0)+f_{\mathcal{A}}(1)+\cdots+f_{\mathcal{A}}\left(a_{z}\left(2^{n}-1\right)\right) & \leq f_{\mathcal{A}}(0)+f_{\mathcal{A}}(1)+\cdots+f_{\mathcal{A}}\left(m 2^{n+\ell}-1\right) \tag{9}\\
& =s_{\mathcal{A}}(0, m)+s_{\mathcal{A}}(1, m)+\cdots+s_{\mathcal{A}}(n+\ell-1, m)
\end{align*}
$$

Combining (8) and (9), we have

$$
|\mathcal{A}|^{n} \leq s_{\mathcal{A}}(0, m)+s_{\mathcal{A}}(1, m)+\cdots+s_{\mathcal{A}}(n+\ell-1, m) .
$$

We know from above that $s_{\mathcal{A}}(r, m)=(c(\mathcal{A}, m)+o(1))|\mathcal{A}|^{r}$. Thus

$$
\begin{aligned}
|\mathcal{A}|^{n} & \leq(c(\mathcal{A}, m)+o(1))\left(|\mathcal{A}|^{0}+|\mathcal{A}|^{1}+|\mathcal{A}|^{2}+\cdots+|\mathcal{A}|^{n+\ell-1}\right) \\
& <(c(\mathcal{A}, m)+o(1)) \frac{|\mathcal{A}|^{n+\ell}}{|\mathcal{A}|-1}
\end{aligned}
$$

Dividing both sides by $|\mathcal{A}|^{n}$, we see that

$$
1 \leq(c(\mathcal{A}, m)+o(1)) \frac{|\mathcal{A}|^{\ell}}{|\mathcal{A}|-1}
$$

Hence $c(\mathcal{A}, m) \neq 0$ and $s_{\mathcal{A}}(r, m) \sim c(\mathcal{A}, m)|\mathcal{A}|^{r}$.

3 Examples

Example 5. Let $\mathcal{A}=\{0,1,8\}$. Then

$$
\begin{equation*}
f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-4) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}(\ell), \tag{11}
\end{equation*}
$$

so

$$
\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k+1} m\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-1\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-2\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-3\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-4\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-5\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-6\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-7\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-8\right)
\end{array}\right)=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right) \\
f_{\mathcal{A}}\left(2^{k} m-3\right) \\
f_{\mathcal{A}}\left(2^{k} m-4\right) \\
f_{\mathcal{A}}\left(2^{k} m-5\right) \\
f_{\mathcal{A}}\left(2^{k} m-6\right) \\
f_{\mathcal{A}}\left(2^{k} m-7\right) \\
f_{\mathcal{A}}\left(2^{k} m-8\right)
\end{array}\right) .
$$

If $M_{\mathcal{A}}$ is the matrix above, then $\omega_{k+1}(m)=M_{\mathcal{A}} \omega_{k}(m)$. The characteristic polynomial of $M_{\mathcal{A}}$ is

$$
\begin{equation*}
g(x)=1-3 x+3 x^{2}-3 x^{3}+6 x^{4}-6 x^{5}+3 x^{6}-3 x^{7}+3 x^{8}-x^{9} . \tag{12}
\end{equation*}
$$

We then compute

$$
\begin{aligned}
s_{\mathcal{A}}(3,1) & -3 s_{\mathcal{A}}(4,1)+3 s_{\mathcal{A}}(5,1)-3 s_{\mathcal{A}}(6,1)+6 s_{\mathcal{A}}(7,1)-6 s_{\mathcal{A}}(8,1) \\
& +3 s_{\mathcal{A}}(9,1)-3 s_{\mathcal{A}}(10,1)+3 s_{\mathcal{A}}(11,1)-s_{\mathcal{A}}(12,1) \\
& =-59184
\end{aligned}
$$

Using the formula from Theorem 4, we see that

$$
c(\mathcal{A}, 1)=\frac{-59184}{g(3) \cdot 27}=\frac{-59184}{-5408 \cdot 27}=\frac{137}{338}
$$

Example 6. Let $\mathcal{A}=\{0,1,3\}$. Then

$$
\begin{equation*}
f_{\mathcal{A}}(2 \ell)=f_{\mathcal{A}}(\ell) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\mathcal{A}}(2 \ell+1)=f_{\mathcal{A}}(\ell)+f_{\mathcal{A}}(\ell-1) \tag{14}
\end{equation*}
$$

so

$$
\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k+1} m\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-1\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-2\right) \\
f_{\mathcal{A}}\left(2^{k+1} m-3\right)
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
f_{\mathcal{A}}\left(2^{k} m\right) \\
f_{\mathcal{A}}\left(2^{k} m-1\right) \\
f_{\mathcal{A}}\left(2^{k} m-2\right) \\
f_{\mathcal{A}}\left(2^{k} m-3\right)
\end{array}\right) .
$$

Hence $M_{\mathcal{A}}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$ satisfies $\omega_{k+1}(m)=M_{\mathcal{A}} \omega_{k}(m)$. The characteristic polynomial of
$M_{\mathcal{A}}$ is

$$
\begin{equation*}
g(x)=(x-1)^{2}\left(x^{2}-x-1\right) . \tag{15}
\end{equation*}
$$

Let F_{k} denote the k-th Fibonacci number. Then

$$
\begin{equation*}
f_{\mathcal{A}}\left(2^{k}-1\right)=F_{k+1} \tag{16}
\end{equation*}
$$

for all $k \geq 0$. This can be shown by using induction and Equations (13) and (14).

Considering the summatory function with $m=1$ and using Equations (13),(14), and (16), we see that

$$
\begin{aligned}
s_{\mathcal{A}}(r, 1) & =\sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n) \\
& =\sum_{n=2^{r-1}}^{2^{r}-1}\left(f_{\mathcal{A}}(2 n)+f_{\mathcal{A}}(2 n+1)\right) \\
& =\sum_{n=2^{r-1}}^{2^{r}-1}\left(f_{\mathcal{A}}(n)+f_{\mathcal{A}}(n)+f_{\mathcal{A}}(n-1)\right) \\
& =2 s_{\mathcal{A}}(r-1,1)+\sum_{n=2^{r-1}}^{2^{r-1}} f_{\mathcal{A}}(n-1) \\
& =2 s_{\mathcal{A}}(r-1,1)+\sum_{n=2^{r-1}}^{2^{r-1}} f_{\mathcal{A}}(n)+f_{\mathcal{A}}\left(2^{r-1}-1\right)-f_{\mathcal{A}}\left(2^{r}-1\right) \\
& =3 s_{\mathcal{A}}(r-1,1)+f_{\mathcal{A}}\left(2^{r-1}-1\right)-f_{\mathcal{A}}\left(2^{r}-1\right) \\
& =3 s_{\mathcal{A}}(r-1,1)+F_{r}-F_{r+1} \\
& =3 s_{\mathcal{A}}(r-1,1)-F_{r-1} .
\end{aligned}
$$

This is an inhomogeneous recurrence relation for $s_{\mathcal{A}}(r, 1)$. We first consider the corresponding homogeneous recurrence relation $s_{\mathcal{A}}(r, 1)=3 s_{\mathcal{A}}(r-1,1)$, which has solution

$$
s_{\mathcal{A}}(r, 1)=d_{1} 3^{r},
$$

for some d_{1} in \mathbb{Q}. Recall that the characteristic polynomial $g(x)$ of $M_{\mathcal{A}}$ has roots $1, \phi$, and $\bar{\phi}$, where the first has multiplicity 2 and the others have multiplicity 1. Hence the solution to the inhomogeneous recurrence relation is

$$
\begin{equation*}
s_{\mathcal{A}}(r, 1)=d_{1} 3^{r}+d_{2} \phi^{r}+d_{3} \bar{\phi}^{r}+d_{4}(1)^{r}+d_{5} r(1)^{r} \tag{17}
\end{equation*}
$$

where $d_{2}, d_{3}, d_{4}, d_{5} \in \mathbb{Q}$. Observe that the $d_{1} 3^{r}$ summand will dominate as $r \rightarrow \infty$, so

$$
\lim _{r \rightarrow \infty} \frac{s_{\mathcal{A}}(r, 1)}{3^{r}}=d_{1}
$$

and $s_{\mathcal{A}}(r, 1) \sim d_{1} 3^{r}$.
Using Equations (15) and (17), we can compute d_{1} as

$$
\begin{aligned}
s_{\mathcal{A}}(r+2,1)-s_{\mathcal{A}}(r+1,1)-s_{\mathcal{A}}(r, 1)= & d_{1} 3^{r}\left(3^{2}-3-1\right)+d_{2} \phi^{r}\left(\phi^{2}-\phi-1\right) \\
& +d_{3} \bar{\phi}^{r}\left(\bar{\phi}^{2}-\bar{\phi}-1\right)+d_{4}\left(1^{2}-1-1\right) \\
& +d_{5}(r+2-(r+1)-r) \\
= & d_{1} 3^{r} \cdot 5-d_{4}-d_{5}(r-1) .
\end{aligned}
$$

Plugging in $r=2, r=1$, and $r=0$ and computing sums, we see that $d_{1}=4 / 5$. Hence

$$
\lim _{r \rightarrow \infty} \frac{s_{\mathcal{A}}(r, 1)}{3^{r}}=\frac{4}{5}
$$

and $s_{\mathcal{A}}(r, 1) \sim \frac{4}{5} \cdot 3^{r}$.
Example 7. Let $\tilde{\mathcal{A}}=\{0,2,3\}$. Then

$$
\begin{equation*}
f_{\tilde{\mathcal{A}}}(2 \ell)=f_{\tilde{\mathcal{A}}}(\ell)+f_{\tilde{\mathcal{A}}}(\ell-1) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\tilde{\mathcal{A}}}(2 \ell+1)=f_{\tilde{\mathcal{A}}}(\ell-1), \tag{19}
\end{equation*}
$$

so

$$
\left(\begin{array}{c}
f_{\tilde{\mathcal{A}}}\left(2^{k+1} m\right) \\
f_{\tilde{\mathcal{A}}}\left(2^{k+1} m-1\right) \\
f_{\tilde{\mathcal{A}}}\left(2^{k+1} m-2\right) \\
f_{\tilde{\mathcal{A}}}\left(2^{k+1} m-3\right)
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
f_{\tilde{\mathcal{A}}}\left(2^{k} m\right) \\
f_{\tilde{\mathcal{A}}}\left(2^{k} m-1\right) \\
f_{\tilde{\mathcal{A}}}\left(2^{k} m-2\right) \\
f_{\tilde{\mathcal{A}}}\left(2^{k} m-3\right)
\end{array}\right) .
$$

Hence $M_{\tilde{\mathcal{A}}}=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ satisfies $\omega_{k+1}(m)=M_{\tilde{\mathcal{A}}} \omega_{k}(m)$. The characteristic polynomial of
$M_{\tilde{\mathcal{A}}}$ is

$$
\begin{equation*}
g(x)=(x-1)^{2}\left(x^{2}-x-1\right) . \tag{20}
\end{equation*}
$$

Let F_{k} denote the k-th Fibonacci number. Then

$$
\begin{equation*}
f_{\tilde{\mathcal{A}}}\left(2^{k}-1\right)=F_{k-1} \tag{21}
\end{equation*}
$$

for all $k \geq 1$. This can be shown by using induction and Equations (18) and (19) to prove that $f_{\tilde{\mathcal{A}}}\left(2^{k}-2\right)=F_{k}$ for all $k \geq 2$ and observing that Equation (19) gives $f_{\tilde{\mathcal{A}}}\left(2^{k}-1\right)=f_{\tilde{\mathcal{A}}}\left(2^{k-1}-2\right)$.

Considering the summatory function with $m=1$ and using Equations (18),(19), and (21) and manipulations similar to those in Example 6, we see that

$$
s_{\tilde{\mathcal{A}}}(r, 1)=3 s_{\tilde{\mathcal{A}}}(r-1,1)-2 F_{r-3} .
$$

Again, the corresponding homogeneous recurrence relation has solution

$$
s_{\tilde{\mathcal{A}}}(r, 1)=d_{1} 3^{r},
$$

for some d_{1} in \mathbb{Q}, and we can use Equation (20) to see that the solution to the inhomogeneous recurrence relation is

$$
\begin{equation*}
s_{\tilde{\mathcal{A}}}(r, 1)=d_{1} 3^{r}+d_{2} \phi^{r}+d_{3} \bar{\phi}^{r}+d_{4}(1)^{r}+d_{5} r(1)^{r}, \tag{22}
\end{equation*}
$$

where $d_{2}, d_{3}, d_{4}, d_{5} \in \mathbb{Q}$. Observe that the $d_{1} 3^{r}$ summand will dominate as $r \rightarrow \infty$, so

$$
\lim _{r \rightarrow \infty} \frac{s_{\tilde{\mathcal{A}}}(r, 1)}{3^{r}}=d_{1}
$$

and $s_{\tilde{\mathcal{A}}}(r, 1) \sim d_{1} 3^{r}$.
Using Equations (20) and (22), we can compute d_{1} as

$$
s_{\tilde{\mathcal{A}}}(r+2,1)-s_{\tilde{\mathcal{A}}}(r+1,1)-s_{\tilde{\mathcal{A}}}(r, 1)=d_{1} 3^{r} \cdot 5-d_{4}-d_{5}(r-1) .
$$

Plugging in $r=2, r=1$, and $r=0$ and computing sums, we see that $d_{1}=2 / 5$. Hence

$$
\lim _{r \rightarrow \infty} \frac{s_{\tilde{\mathcal{A}}}(r, 1)}{3^{r}}=\frac{2}{5}
$$

and $s_{\tilde{\mathcal{A}}}(r, 1) \sim \frac{2}{5} \cdot 3^{r}$.
In Example 6, we had $\mathcal{A}=\{0,1,3\}$, and in Example 7, we had $\tilde{\mathcal{A}}=\{0,2,3\}=\{3-3,3-$ $1,3-0\}$. We found $c(\mathcal{A}, 1)$ in Example 6 and $c(\tilde{\mathcal{A}}, 1)$ in Example 7 and can observe that they have the same denominator.

Given a set $\mathcal{A}=\left\{0, a_{1}, \ldots, a_{z}\right\}$, let $\tilde{\mathcal{A}}$ be

$$
\tilde{\mathcal{A}}:=\left\{0, a_{z}-a_{z-1}, \ldots, a_{z}-a_{1}, a_{z}\right\} .
$$

The following chart displays the value $c(\mathcal{A}, 1)$ for various sets \mathcal{A} and their corresponding sets $\tilde{\mathcal{A}}$, where $s_{\mathcal{A}}(\underset{\sim}{\mathcal{A}}, 1) \sim c(\mathcal{A}, 1)|\mathcal{A}|^{r}$. Note that in all cases the denominator of $c(\mathcal{A}, 1)$ is the same as that of $c(\tilde{\mathcal{A}}, 1)$. The following theorem will show that this holds for all \mathcal{A}.

\mathcal{A}	$c(\mathcal{A}, 1)$	$\mathrm{N}(c(\mathcal{A}, 1))$	$\tilde{\mathcal{A}}$	$c(\tilde{\mathcal{A}}, 1)$	$\mathrm{N}(c(\tilde{\mathcal{A}}, 1))$
$\{0,1,2,4\}$	$\frac{7}{11}$	0.636	$\{0,2,3,4\}$	$\frac{3}{11}$	0.273
$\{0,1,3,4\}$	$\frac{1}{2}$	0.500	$\{0,1,3,4\}$	$\frac{1}{2}$	0.500
$\{0,2,3,6\}$	$\frac{33}{149}$	0.221	$\{0,3,4,6\}$	$\frac{21}{149}$	0.141
$\{0,1,6,9\}$	$\frac{6345}{28670}$	0.221	$\{0,3,8,9\}$	$\frac{2007}{28670}$	0.070
$\{0,1,7,9\}$	$\frac{2069}{10235}$	0.202	$\{0,2,8,9\}$	$\frac{1023}{10235}$	0.100
$\{0,4,5,6,9\}$	$\frac{4044}{83753}$	0.048	$\{0,3,4,5,9\}$	$\frac{6716}{83753}$	0.080

Table 1: $c(\mathcal{A}, 1)$ for various sets \mathcal{A} and $\tilde{\mathcal{A}}$

Theorem 8. Let $\mathcal{A}, f_{\mathcal{A}}(n), M_{\mathcal{A}}=\left[m_{\alpha, \beta}\right]$, and $\tilde{\mathcal{A}}$ be as above, with $0 \leq \alpha, \beta \leq a_{z}$. Let $M_{\tilde{\mathcal{A}}}=$ $\left[m_{\alpha, \beta}^{\prime}\right]$ be the $\left(a_{z}+1\right) \times\left(a_{z}+1\right)$ matrix such that

$$
\left(\begin{array}{c}
f_{\tilde{\mathcal{A}}}(2 n) \\
f_{\tilde{\mathcal{A}}}(2 n-1) \\
\vdots \\
f_{\tilde{\mathcal{A}}}\left(2 n-a_{z}\right)
\end{array}\right)=M_{\tilde{\mathcal{A}}}\left(\begin{array}{c}
f_{\tilde{\mathcal{A}}}(n) \\
f_{\tilde{\mathcal{A}}}(n-1) \\
\vdots \\
f_{\tilde{\mathcal{A}}}\left(n-a_{z}\right)
\end{array}\right) .
$$

Then $m_{\alpha, \beta}=m_{a_{z}-\alpha, a_{z}-\beta}^{\prime}$.
Proof. Recall that we can write

$$
\mathcal{A}:=\left\{0,2 b_{2}, \ldots, 2 b_{s}, 2 c_{1}+1, \ldots, 2 c_{t}+1\right\},
$$

so that

$$
f_{\mathcal{A}}(2 n-2 j)=f_{\mathcal{A}}(n-j)+f_{\mathcal{A}}\left(n-j-b_{2}\right)+\cdots+f_{\mathcal{A}}\left(n-j-b_{s}\right)
$$

and

$$
f_{\mathcal{A}}(2 n-2 j-1)=f_{\mathcal{A}}\left(n-j-c_{1}-1\right)+\cdots+f_{\mathcal{A}}\left(n-j-c_{t}-1\right)
$$

for j sufficiently large.
Then $m_{\alpha, \beta}=1$ if and only if $f_{\mathcal{A}}(n-\beta)$ is a summand in the recursive sum that expresses $f_{\mathcal{A}}(2 n-\alpha)$, which happens if and only if $2 n-\alpha=2(n-\beta)+K$, where $K \in \mathcal{A}$, and this is equivalent to $2 \beta-\alpha$ belonging to \mathcal{A}.

Now $m_{a_{z}-\alpha, a_{z}-\beta}^{\prime}=1$ if and only if $f_{\tilde{\mathcal{A}}}\left(n-\left(a_{z}-\beta\right)\right)$ is a summand in the recursive sum that expresses $f_{\tilde{\mathcal{A}}}\left(2 n-\left(a_{z}-\alpha\right)\right)$, which happens if and only if $2 n-\left(a_{z}-\alpha\right)=2\left(n-\left(a_{z}-\beta\right)\right)+\tilde{K}$, where $\tilde{K} \in \mathcal{A}$. This means that $a_{z}+\alpha-2 \beta=\tilde{K}$, which gives $2 \beta-\alpha \in \mathcal{A}$.

Thus $M_{\mathcal{A}}=S^{-1} M_{\tilde{\mathcal{A}}} S$, where

$$
S=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right),
$$

so $M_{\mathcal{A}}$ and $M_{\tilde{\mathcal{A}}}$ are similar matrices and thus have the same characteristic polynomial, [4, 1.3.3]. Hence the denominator in (7) for \mathcal{A} is equal to the denominator in (7) for $\tilde{\mathcal{A}}$.

4 Open questions

A nicer formula for $c(\mathcal{A}, m)$ than that given in Equation (7) is desired and seems likely. To that end, we have computed values of $c(\mathcal{A})$ for a variety of sets \mathcal{A} but have not been able
to detect any patterns. Table 2 shows $c(\mathcal{A}, 1)$ for all sets of the form $\mathcal{A}=\{0,1, t\}$, where $2 \leq t \leq 17$, and we have obtained the following bounds on $c(\mathcal{A}, 1)$ for sets \mathcal{A} of this form.

Let $t \in \mathbb{N}$ with $t>1$ and $\mathcal{A}=\{0,1, t\}$. Choose k such that $2^{k}<t \leq 2^{k+1}$. Recall that $f_{\mathcal{A}}(s)$ is the number of ways to write s in the form

$$
s=\sum_{i=0}^{\infty} \epsilon_{i} 2^{i}, \text { where } \epsilon_{i} \in\{0,1, t\} .
$$

Then

$$
s_{\mathcal{A}}(r, 1)=\sum_{n=2^{r}}^{2^{r+1}-1} f_{\mathcal{A}}(n) \sim c(\mathcal{A}, 1) 3^{r},
$$

as shown in Theorem 4. Thus

$$
\begin{aligned}
\sum_{s=1}^{2^{n}-1} f_{\mathcal{A}}(s) & =\sum_{j=0}^{n-1} \sum_{s=2^{j}}^{2^{j+1}-1} f_{\mathcal{A}}(s) \sim \sum_{j=0}^{n-1} c(\mathcal{A}, 1) 3^{j} \\
& =c(\mathcal{A}, 1)\left(\frac{3^{n}-1}{2}\right) \approx \frac{1}{2} c(\mathcal{A}, 1) 3^{n} .
\end{aligned}
$$

Consider choosing $\epsilon_{i} \in\{0,1, t\}$ for $0 \leq i \leq n-k-3$ and $\epsilon_{i} \in\{0,1\}$ for $n-k-2 \leq i \leq n-2$. Then

$$
\begin{aligned}
\sum_{i=0}^{n-2} \epsilon_{i} 2^{i} & \leq t+t \cdot 2+t \cdot 2^{2}+\cdots+t \cdot 2^{n-k-3}+2^{n-k-2}+2^{n-k-1}+\cdots+2^{n-2} \\
& <t \cdot 2^{n-k-2}+2^{n-1}-1 \\
& \leq 2^{k+1} \cdot 2^{n-k-2}+2^{n-1}-1 \\
& =2^{n}-1 \\
& <2^{n} .
\end{aligned}
$$

There are $3^{n-k-2} \cdot 2^{k+1}$ such sums, and each of them is counted in $\sum_{s=1}^{2^{n}-1} f_{\mathcal{A}}(s)$. Thus

$$
\frac{1}{2} c(\mathcal{A}, 1) 3^{n} \geq 3^{n-k-2} \cdot 2^{k+1}=3^{n} \cdot \frac{2^{k+1}}{3^{k+2}}
$$

and so $c(\mathcal{A}, 1) \geq\left(\frac{2}{3}\right)^{k+2}$.
Now suppose there exists some $i_{0} \geq n-k$ such that $\epsilon_{i_{0}}=t$. Then

$$
\sum_{i=0}^{\infty} \epsilon_{i} 2^{i} \geq t \cdot 2^{i_{0}} \geq t \cdot 2^{n-k}>2^{k} 2^{n-k}=2^{n}
$$

Thus the sums counted in $\sum_{s=1}^{2^{n}-1} f_{\mathcal{A}}(s)$ all have the property that $\epsilon_{i} \in\{0,1\}$ for $n-k \leq i \leq n-1$, and there are $3^{n-k} \cdot 2^{k}$ such sums. Hence $3^{n-k} \cdot 2^{k} \geq \frac{1}{2} c(\mathcal{A}, 1) \cdot 3^{n}$ and $\frac{2^{k+1}}{3^{k}} \geq c(\mathcal{A}, 1)$.

Combining the above, we see that

$$
\frac{2^{k+1}}{3^{k}} \cdot \frac{2}{9} \leq c(\mathcal{A}, 1) \leq \frac{2^{k+1}}{3^{k}}
$$

\mathcal{A}	$c(\mathcal{A}, 1)$	$\mathrm{N}(c(\mathcal{A}, 1))$	\mathcal{A}	$c(\mathcal{A}, 1)$	$\mathrm{N}(c(\mathcal{A}, 1))$
$\{0,1,2\}$	1	1.000	$\{0,1,3\}$	$\frac{4}{5}$	0.800
$\{0,1,4\}$	$\frac{5}{8}$	0.625	$\{0,1,5\}$	$\frac{14}{25}$	0.560
$\{0,1,6\}$	$\frac{35}{71}$	0.493	$\{0,1,7\}$	$\frac{176}{391}$	0.450
$\{0,1,8\}$	$\frac{137}{338}$	0.405	$\{0,1,9\}$	$\frac{1448}{3775}$	0.384
$\{0,1,10\}$	$\frac{1990}{5527}$	0.360	$\{0,1,11\}$	$\frac{3223}{9476}$	0.340
$\{0,1,12\}$	$\frac{2020}{6283}$	0.322	$\{0,1,13\}$	$\frac{47228}{154123}$	0.306
$\{0,1,14\}$	$\frac{35624}{122411}$	0.291	$\{0,1,15\}$	$\frac{699224}{2501653}$	0.280
$\{0,1,16\}$	$\frac{68281}{256000}$	0.267	$\{0,1,17\}$	$\frac{38132531}{146988000}$	0.259

Table 2: $c(\mathcal{A}, 1)$ for all sets of the form $\mathcal{A}=\{0,1, t\}$, where $2 \leq t \leq 17$

To compare these bounds with Table 2, note that if $8<t \leq 15$, then $k=3$, and we have

$$
0.132 \leq c(\mathcal{A}, 1) \leq 0.593
$$

for $\mathcal{A}=\{0,1, t\}$, with t in this range.
We have also computed $c(\mathcal{A}, 1)$ for some sets with $|\mathcal{A}|=4$ and $|\mathcal{A}|=5$, and that data is contained in Table 1. Larger sets have not been considered because computations become increasingly tedious as the cardinality of \mathcal{A} grows.

5 Acknowledgements

The author acknowledges support from National Science Foundation grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students". The results in this paper were part of the author's doctoral dissertation [2] at the University of Illinois at UrbanaChampaign. The author wishes to thank Professor Bruce Reznick for his time, ideas, and encouragement.

References

[1] K. Anders, Odd behavior in the coefficients of reciprocals of binary power series, Int. J. Number Theory 12 (2016), 635-648.
[2] K. Anders, Properties of digital representations, Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2014, https://www.ideals.illinois.edu/handle/2142/50698.
[3] K. Anders, M. Dennison, J. Lansing, and B. Reznick, Congruence properties of binary partition functions, Ann. Comb. 17 (2013), 15-26.
[4] R. Horn and C. Johnson, Matrix Analysis, 2nd ed., Cambridge Univ. Press, Cambridge, 2013.
[5] R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Encyclopedia of Mathematics and Its Applications, Vol. 20, Cambridge Univ. Press, Cambridge, 1997.
[6] B. Reznick, A Stern introduction to combinatorial number theory, Class notes, Math 595, University of Illinois at Urbana-Champaign, Spring 2012.

2010 Mathematics Subject Classification: Primary 11A63.
Keywords: digital representation, non-standard binary representation, summatory function.

Received August 25 2015; revised versions received January 19 2016; March 11 2016; April 5 2016. Published in Journal of Integer Sequences, April 62016.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ The author acknowledges support from National Science Foundation grant DMS 08-38434, "EMSW21MCTP: Research Experience for Graduate Students".

