# On Equivalence Classes of Generalized Fibonacci Sequences 

Miho Aoki and Yuho Sakai<br>Department of Mathematics<br>Shimane University<br>Matsue, Shimane 690-8504<br>Japan<br>aoki@riko.shimane-u.ac.jp<br>s149410@matsu.shimane-u.ac.jp


#### Abstract

We consider a generalized Fibonacci sequence $\left(G_{n}\right)$ by $G_{1}, G_{2} \in \mathbb{Z}$ and $G_{n}=G_{n-1}+$ $G_{n-2}$ for any integer $n$. Let $p$ be a prime number and let $d(p)$ be the smallest positive integer $n$ which satisfies $p \mid F_{n}$. In this article, we introduce equivalence relations for the set of generalized Fibonacci sequences. One of the equivalence relations is defined as follows. We write $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime}\right)$ if there exist integers $m$ and $n$ satisfying $G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p)$. We prove the following: if $p \equiv \pm 2(\bmod 5)$, then the number of equivalence classes $\overline{\left(G_{n}\right)}$ satisfying $p \nmid G_{n}$ for any integer $n$ is $(p+1) / d(p)-1$. If $p \equiv \pm 1(\bmod 5)$, then the number is $(p-1) / d(p)+1$. Our results are refinements of a theorem given by Kôzaki and Nakahara in 1999. They proved that there exists a generalized Fibonacci sequence $\left(G_{n}\right)$ such that $p \nmid G_{n}$ for any $n \in \mathbb{Z}$ if and only if one of the following three conditions holds: (1) $p=5 ;(2) p \equiv \pm 1(\bmod 5) ;(3)$ $p \equiv \pm 2(\bmod 5)$ and $d(p)<p+1$.


## 1 Introduction and main results

We consider a generalized Fibonacci sequence $\left(G_{n}\right)$ defined by

$$
G_{1}, G_{2} \in \mathbb{Z}, G_{n}=G_{n-1}+G_{n-2}(n \in \mathbb{Z})
$$

If $G_{1}=1$ and $G_{2}=1$, then it is the Fibonacci sequence $\left(F_{n}\right)$, and if $G_{1}=1$ and $G_{2}=3$, then it is the Lucas sequence $\left(L_{n}\right)$. It is well-known that such generalized Fibonacci sequences are periodic modulo $m$ for any natural numbers $m$. For example, the sequence $\left(F_{n} \bmod 3\right)$ is $\ldots 1,1,2,0,2,2,1,0,1,1,2,0, \ldots$ (the period is 8 ). There are many interesting results concerning the generalized Fibonacci sequences. We recommend two books by Koshy [2, §7] and Nakamura [4] as references.

We fix a prime number $p$, and define two relations $\sim$ and $\sim^{*}$ for the set of generalized Fibonacci sequences. The first relation $\sim$ is defined in our previous paper [1].

Definition 1. Let $\left(G_{n}\right)$ and $\left(G_{n}^{\prime}\right)$ be generalized Fibonacci sequences. We write $\left(G_{n}\right) \sim\left(G_{n}^{\prime}\right)$ if the congruence $G_{2} G_{1}^{\prime} \equiv G_{2}^{\prime} G_{1}(\bmod p)$ holds.

Definition 2. Let $\left(G_{n}\right)$ and $\left(G_{n}^{\prime}\right)$ be generalized Fibonacci sequences. We write $\left(G_{n}\right) \sim^{*}$ $\left(G_{n}^{\prime}\right)$ if there are some integers $m$ and $n$ satisfying $G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p)$.

By the definitions, the next lemma follows.
Lemma 3. If $\left(G_{n}\right) \sim\left(G_{n}^{\prime}\right)$, then we have $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime}\right)$.
Note that if $\left(G_{n}\right)$ satisfies $p \mid G_{1}$ and $p \mid G_{2}$, then we have $\left(G_{n}\right) \sim\left(G_{n}^{\prime}\right)$ and $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime}\right)$ for any generalized Fibonacci sequences $\left(G_{n}^{\prime}\right)$. We can show by the definition that the first relation $\sim$ is an equivalence relation for the set $\left\{\left(G_{n}\right) \mid p \nmid G_{1}\right.$ or $\left.p \nmid G_{2}\right\}$.

We will show in $\S 2$ that the second relation $\sim^{*}$ is also an equivalence relation. Since the relations $\sim$ and $\sim^{*}$ are equivalence relations, we can consider the quotient sets using these relations. We put

$$
\begin{array}{ll}
X_{p}:=\left\{\left(G_{n}\right) \mid p \nmid G_{1} \text { or } p \nmid G_{2}\right\} / \sim, & Y_{p}:=\left\{\overline{\left(G_{n}\right)} \in X_{p} \mid p \nmid G_{n} \text { for any } n \in \mathbb{Z}\right\} . \\
X_{p}^{*}:=\left\{\left(G_{n}\right) \mid p \nmid G_{1} \text { or } p \nmid G_{2}\right\} / \sim^{*}, & Y_{p}^{*}:=\left\{\overline{\left(G_{n}\right)} \in X_{p}^{*} \mid p \nmid G_{n} \text { for any } n \in \mathbb{Z}\right\} .
\end{array}
$$

The sets $Y_{p}$ and $Y_{p}^{*}$ are well-defined by [1, Lemma 2] and Lemma 10 in $\S 2$. We considered the set $X_{p}^{\prime}=\left\{\left(G_{n}\right) \mid p \nmid G_{1}\right.$ and $\left.p \nmid G_{2}\right\} / \sim$ and $Y_{p}^{\prime}=\left\{\overline{\left(G_{n}\right)} \in X_{p}^{\prime} \mid p \nmid G_{n}\right.$ for any $\left.n \in \mathbb{Z}\right\}$ instead of $X_{p}$ and $Y_{p}$ [1]. Note that the cardinality of $Y_{p}$ and $Y_{p}^{\prime}$ are equal. Let $p$ be a prime number and let $d(p)$ be the smallest positive integer $n$ for which $p \mid F_{n}$. We proved the following theorem in a previous paper [1].

Theorem 4 ([1, Theorem 1 (2)]).

$$
\left|Y_{p}\right|=p+1-d(p)
$$

In this article, we will reduce the number of equivalence classes by using the new relation $\sim^{*}$ instead of $\sim$, and will prove the following theorem in $\S 3$.
Theorem 5. (1) If $p \equiv \pm 2(\bmod 5)$, then we have

$$
\left|Y_{p}^{*}\right|=\frac{\left|Y_{p}\right|}{d(p)}=\frac{p+1}{d(p)}-1
$$

(2) If $p \equiv \pm 1(\bmod 5)$, then we have

$$
\left|Y_{p}^{*}\right|=2+\frac{\left|Y_{p}\right|-2}{d(p)}=\frac{p-1}{d(p)}+1
$$

(3) If $p=5$, then we have $\left|Y_{p}^{*}\right|=\left|Y_{p}\right|=1$.

In §4, we will show that our results imply the following result given by Kôzaki and Nakahara in 1999. An integer $m$ is called the type of a non-divisor when there exists a generalized Fibonacci sequence $\left(G_{n}\right)$ such that $m \nmid G_{n}$ for any $n \in \mathbb{Z}$. For a prime number $p$, we denote the period of $\left(F_{n} \bmod p\right)$ by $k(p)$.

Theorem 6 ([3, Kôzaki and Nakahara]). A prime number $p$ is the type of non-divisor if and only if one of the following three conditions holds.
(1) $p=5$.
(2) $p \equiv 1,9,11,13,17,19(\bmod 20)$.
(3) $p \equiv 3,7(\bmod 20)$ and $k(p)<2(p+1)$.

In $\S 5$, we will give some examples of the cardinalities of the set $Y_{p}$ and $Y_{p}^{*}$.

## 2 Equivalence relations

In this section, we will give some lemmas on the relation $\sim^{*}$. The following lemma follows from the recurrence relation $G_{n}=G_{n-1}+G_{n-2}$.

Lemma 7. Let $\left(G_{n}\right)$ be a generalized Fibonacci sequence that satisfies $p \nmid G_{1}$ or $p \nmid G_{2}$. If $p \mid G_{n}$, then we have $p \nmid G_{n-1}$ and $p \nmid G_{n+1}$.

Lemma 8. Let $\left(G_{n}\right)$ and $\left(G_{n}^{\prime}\right)$ be generalized Fibonacci sequences. If $G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p)$, then we have $G_{m+2} G_{n+1}^{\prime} \equiv G_{n+2}^{\prime} G_{m+1}(\bmod p)$.

Proof.

$$
\begin{aligned}
G_{m+2} G_{n+1}^{\prime} & =\left(G_{m+1}+G_{m}\right) G_{n+1}^{\prime} \\
& =G_{m+1} G_{n+1}^{\prime}+G_{m} G_{n+1}^{\prime} \\
& \equiv G_{m+1}^{\prime} G_{n+1}^{\prime}+G_{m+1} G_{n}^{\prime} \quad \text { (by the assumption) } \\
& =G_{m+1}\left(G_{n+1}^{\prime}+G_{n}^{\prime}\right) \\
& =G_{m+1} G_{n+2}^{\prime} .
\end{aligned}
$$

For any integer $G$ that is not divisible by $p$, we denote an inverse element modulo $p$ by $G^{-1}(\in \mathbb{Z})$ (i.e., $G G^{-1} \equiv 1(\bmod p)$ ).

Lemma 9. The relation $\sim^{*}$ is an equivalence relation for the set $\left\{\left(G_{n}\right) \mid p \nmid G_{1}\right.$ or $\left.p \nmid G_{2}\right\}$.
Proof. Since this relation is reflexive and symmetric, we will prove the transitivity: if $\left(G_{n}\right) \sim^{*}$ $\left(G_{n}^{\prime}\right)$ and $\left(G_{n}^{\prime}\right) \sim^{*}\left(G_{n}^{\prime \prime}\right)$, then $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime \prime}\right)$. By the assumption, there exist integers $m, n, k$ and $\ell$ satisfying

$$
G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p) \quad \text { and } \quad G_{k+1}^{\prime} G_{\ell}^{\prime \prime} \equiv G_{\ell+1}^{\prime \prime} G_{k}^{\prime}(\bmod p)
$$

Put $t=\max (n, k)$. Using Lemma 8, we get integers $m$ and $\ell$ satisfying

$$
\begin{equation*}
G_{m+1} G_{t}^{\prime} \equiv G_{t+1}^{\prime} G_{m}(\bmod p) \quad \text { and } \quad G_{t+1}^{\prime} G_{\ell}^{\prime \prime} \equiv G_{\ell+1}^{\prime \prime} G_{t}^{\prime}(\bmod p) \tag{1}
\end{equation*}
$$

If we assume $p \mid G_{t}^{\prime}$, then we get $p \nmid G_{t+1}^{\prime}$ using Lemma 7. From (1), we get $p \mid G_{m}$ and $p \mid G_{\ell}^{\prime \prime}$. Therefore we have $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime \prime}\right)$ since $G_{m+1} G_{\ell}^{\prime \prime} \equiv 0 \equiv G_{\ell+1}^{\prime \prime} G_{m}(\bmod p)$. If we assume $p \mid G_{t+1}^{\prime}$, then we get $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime \prime}\right)$ by the same argument. Next, we assume $p \nmid G_{t}^{\prime}$ and $p \nmid G_{t+1}^{\prime}$. Then we get $p \nmid G_{m}$ and $p \nmid G_{\ell}^{\prime \prime}$ from (1). Hence we get $G_{m+1} G_{m}^{-1} \equiv$ $G_{t+1}^{\prime} G_{t}^{\prime-1} \equiv G_{\ell+1}^{\prime \prime} G_{\ell}^{\prime \prime-1}(\bmod p)$, and hence $G_{m+1} G_{\ell}^{\prime \prime} \equiv G_{\ell+1}^{\prime \prime} G_{m}(\bmod p)$. This congruence implies $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime \prime}\right)$.

Lemma 10. Assume $\left(G_{n}\right),\left(G_{n}^{\prime}\right) \in\left\{\left(G_{n}\right) \mid p \nmid G_{1}\right.$ or $\left.p \nmid G_{2}\right\}$. If $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime}\right)$ and $p \nmid G_{n}$ for any $n \in \mathbb{Z}$. Then we have $p \nmid G_{n}^{\prime}$ for any $n \in \mathbb{Z}$.

Proof. We can assume that there exist integers $m, n$ satisfying $G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p)$. We assume that there exists an integer $\ell$ such that $p \mid G_{\ell}^{\prime}$. Due to the periodicity of $\left(G_{n}^{\prime} \bmod p\right)$, we can assume $\ell \geq n$. Using Lemma 8 , there exists an integer $k$ such that $G_{k+1} G_{\ell}^{\prime} \equiv G_{\ell+1}^{\prime} G_{k}(\bmod p)$. Since $p$ divides $G_{\ell}^{\prime}$ and does not divide $G_{\ell+1}^{\prime}$, we get $p \mid G_{k}$. This contradicts the assumption.

Lemma 11. Let $\left(G_{n}\right)$ be a generalized Fibonacci sequence. Then there exists an integer $n$ which satisfies $p \mid G_{n}$ if and only if $\left(G_{n}\right) \sim^{*}\left(F_{n}\right)$.

Proof. We first assume that there is an integer $n$ that satisfies $p \mid G_{n}$. We have $\left(G_{n}\right) \sim^{*}\left(F_{n}\right)$ since $F_{1} G_{n} \equiv 0 \equiv G_{n+1} F_{0}(\bmod p)\left(\right.$ note that $\left.F_{0}=0\right)$.

Next, we assume $\left(G_{n}\right) \sim^{*}\left(F_{n}\right)$. Then there must exist some integers $m$ and $n$ satisfying $G_{m+1} F_{n} \equiv F_{n+1} G_{m}(\bmod p)$. On the other hand, since $F_{0}=0$ and the periodicity of $\left(F_{n} \bmod p\right)$, there exists an integer $\ell$ satisfying $p \mid F_{\ell}$ and $\ell \geq n$. By using Lemma 8 , we get an integer $k$ such that $G_{k+1} F_{\ell} \equiv F_{\ell+1} G_{k}(\bmod p)$. Since $p \nmid F_{\ell+1}$ by Lemma 7 , we have $p \mid G_{k}$.

## Lemma 12.

(1) $X_{p}^{*}=Y_{p}^{*} \cup\left\{\overline{\left(F_{n}\right)}\right\}$.
(2) For any equivalence classes $\overline{\left(G_{n}\right)}$ of $X_{p}^{*}$, we can choose the representative $\left(G_{n}\right)$ satisfying $p \nmid G_{1}, G_{2}$.
(3) Let $\overline{\left(G_{n}\right)}$ be an equivalence class of $Y_{p}^{*}$. For any sequences $\left(G_{n}^{\prime}\right) \in \overline{\left(G_{n}\right)}$, we have $p \nmid G_{1}^{\prime}, G_{2}^{\prime}$.

Proof. The assertion (1) follows from Lemma 11. We will prove (2). If $p \mid G_{1}$ or $p \mid G_{2}$, then we have $\left(G_{n}\right) \sim^{*}\left(F_{n}\right)$ by Lemma 11. Therefore, we have $\overline{\left(G_{n}\right)}=\overline{\left(F_{n}\right)}$ and $F_{1}=F_{2}=1$. The assertion (3) follows from Lemma 10.

## 3 Equivalence classes

In our previous paper [1], we gave the cardinality of the set $Y_{p}$. In this section, using this result, we will prove the main theorem (Theorem 5 in §1) that gives the cardinality of the set $Y_{p}^{*}$.

Lemma 13. Let $p(\neq 2,5)$ be a prime number.
(1) If $p \equiv \pm 1(\bmod 5)$, then $X^{2}-X-1=0$ has different two solutions in $\mathbb{F}_{p}$.
(2) If $p \equiv \pm 2(\bmod 5)$, then $X^{2}-X-1=0$ does not have a solution in $\mathbb{F}_{p}$.

Proof. The solutions of $X^{2}-X-1=0$ in $\overline{\mathbb{F}}_{p}$ (the algebraic closure of $\mathbb{F}_{p}$ ) are $X=2^{-1}(1 \pm \sqrt{5})$. By the assumption $p \neq 2,5$, these solutions are different. We get $2^{-1}(1 \pm \sqrt{5}) \in \mathbb{F}_{p}$ if and only if $\sqrt{5} \in \mathbb{F}_{p}$. Furthermore, this is equivalent to $\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)=1$, that is, $p \equiv \pm 1(\bmod 5)$.

We next define the number $d(p)$ for a prime number $p$, and the sequences $\left(f_{n}\right)$ and $\left(g_{n}\right)$. These are important in this article.

Definition 14. Let $p$ be a prime number. Let $d(p)$ denote the smallest positive integer $n$ which satisfies $F_{n} \equiv 0(\bmod p)$.
(1) For any integer $n$ which satisfies $n \not \equiv 0(\bmod d(p))$, we define the integer $f_{n}\left(0 \leq f_{n} \leq\right.$ $p-1)$ such that $f_{n} \equiv F_{n+1} F_{n}^{-1}(\bmod p)$.
(2) Let $\left(G_{n}\right)$ be a generalized Fibonacci sequence that satisfies $p \nmid G_{n}$ for any $n \in \mathbb{Z}$. We can then define the integer $g_{n}\left(1 \leq g_{n} \leq p-1\right)$ such that $g_{n} \equiv G_{n+1} G_{n}^{-1}(\bmod p)$.

We will prove some relations between $\left(f_{n}\right),\left(g_{n}\right)$ and $d(p)$. The following lemma was given in [1, Lemma 3].

Lemma 15 ([1, Lemma 3]). Let $m$ and $n$ be integers that satisfy $m, n \not \equiv 0(\bmod d(p))$. We then have $f_{m}=f_{n}$ if and only if $m \equiv n(\bmod d(p))$.

We can show the following two lemmas by induction on $n$ and the recurrence relation.
Lemma 16. For any $n, m \in \mathbb{Z}$, we have $G_{n}=F_{n-m} G_{m+1}+F_{n-m-1} G_{m}$.
Lemma 17. For any $n \in \mathbb{Z}$, we have

$$
G_{n+1}^{2}-G_{n} G_{n+1}-G_{n}^{2}=-\left(G_{n}^{2}-G_{n-1} G_{n}-G_{n-1}^{2}\right)
$$

For simplicity, we introduce a new notation. If a generalized Fibonacci sequence $\left(G_{n}\right)$ satisfies $G_{1}=a$ and $G_{2}=b$, then we denote it as $\left(G_{n}\right)=(G(a, b))$.

Theorem 18. Assume that $\left(G_{n}\right)=(G(a, b))$ satisfies $p \nmid G_{n}$ for any $n \in \mathbb{Z}$. Furthermore, let $a$ and $b$ satisfy $b^{2}-a b-a^{2} \not \equiv 0(\bmod p)$. For any integers $n$ and $m$, we have $g_{n}=g_{m}$ if and only if $n \equiv m(\bmod d(p))$.

Proof. First, by the definition of $g_{n}$ and $g_{m}$, we have $g_{n}=g_{m}$ if and only if $G_{m} G_{n+1} \equiv$ $G_{m+1} G_{n}(\bmod p)$. Since $G_{n+1}=F_{n-m+1} G_{m+1}+F_{n-m} G_{m}$ and $G_{n}=F_{n-m} G_{m+1}+F_{n-m-1} G_{m}$ from Lemma 16, we have $g_{n} \equiv g_{m}$ if and only if

$$
\begin{equation*}
G_{m+1}^{2} F_{n-m}-G_{m} G_{m+1}\left(F_{n-m+1}-F_{n-m-1}\right)-G_{m}^{2} F_{n-m} \equiv 0(\bmod p) \tag{2}
\end{equation*}
$$

By Lemma 17, for the left side of (2), we have

$$
\begin{aligned}
G_{m+1}^{2} F_{n-m} & -G_{m} G_{m+1}\left(F_{n-m+1}-F_{n-m-1}\right)-G_{m}^{2} F_{n-m} \\
& \equiv G_{m+1}^{2} F_{n-m}-G_{m} G_{m+1} F_{n-m}-G_{m}^{2} F_{n-m} \\
& \equiv\left(G_{m+1}^{2}-G_{m} G_{m+1}-G_{m}^{2}\right) F_{n-m} \\
& \equiv(-1)^{m-1}\left(G_{2}^{2}-G_{1} G_{2}-G_{1}^{2}\right) F_{n-m} \\
& \equiv(-1)^{m-1}\left(b^{2}-a b-a^{2}\right) F_{n-m}(\bmod p) .
\end{aligned}
$$

By the assumption $b^{2}-a b-a^{2} \not \equiv 0(\bmod p)$, we conclude that $g_{n} \equiv g_{m}$ if and only if $n \equiv m$ $(\bmod d(p))$.

For a generalized Fibonacci sequence $\left(G_{n}\right)$, let $\left(g_{n}\right)$ be the sequence defined in Definition 14.

Definition 19. Assume $\left(G_{n}\right)=(G(a, b))$ satisfies $p \nmid G_{n}$ for any $n \in \mathbb{Z}$. We define the second period of $\left(G_{n}\right)$ by the period of $\left(g_{n}\right)$.

Then we get the following corollary concerning the second period.
Corollary 20. Assume that $\left(G_{n}\right)=(G(a, b))$ satisfies $p \nmid G_{n}$ for any $n \in \mathbb{Z}$.
(1) If $b^{2}-a b-a^{2} \equiv 0(\bmod p)$, then the second period of $\left(G_{n}\right)$ is equal to 1.
(2) If $b^{2}-a b-a^{2} \not \equiv 0(\bmod p)$, then the second period of $\left(G_{n}\right)$ is equal to $d(p)$.

Proof. The assertion (2) follows from Theorem 18. We will prove (1) by showing $g_{n}=g_{1} \equiv$ $b a^{-1}(\bmod p)$ for any $n \in \mathbb{Z}$. Due to the periodicity of $\left(G_{n}\right) \bmod p$, it is sufficient to consider $n \in \mathbb{N}$. We use the induction. When $n=1$, the result is shown. We assume that it holds for any natural numbers less than $n+1$. We then have the following congruences.

$$
\begin{aligned}
g_{n+1} & \equiv G_{n+2} G_{n+1}^{-1} \\
& \equiv\left(G_{n+1}+G_{n}\right)\left(G_{n}+G_{n-1}\right)^{-1} \\
& \equiv\left(G_{n+1} G_{n}^{-1}+1\right)\left(1+G_{n-1} G_{n}^{-1}\right)^{-1} \\
& \equiv\left(g_{n}+1\right)\left(1+g_{n-1}^{-1}\right)^{-1} \\
& \equiv\left(b a^{-1}+1\right)\left(1+b^{-1} a\right)^{-1}
\end{aligned}
$$

(by the assumption of the second period 1)
$\equiv\left(b a^{-1}+1\right) \times\left\{b^{-1} a\left(b a^{-1}+1\right)\right\}^{-1}$
$\equiv b a^{-1} \equiv g_{1}(\bmod p)$.
By the above congruences and $1 \leq g_{1}, g_{n+1} \leq p-1$, we have $g_{n+1}=g_{1}$.
Lemma 21. Assume that $\left(G_{n}\right)$ and $\left(G_{n}^{\prime}\right)$ satisfy $p \nmid G_{n}, G_{n}^{\prime}$ for any $n \in \mathbb{Z}$. Let $\nu$ be the second period of $\left(G_{n}^{\prime}\right)$. Then we have $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime}\right)$ if and only if there exists an integer $n$ $(1 \leq n \leq \nu)$ such that $g_{n}^{\prime}=g_{1}\left(\equiv G_{2} G_{1}^{-1}(\bmod p)\right)$.

Proof. First, we assume $g_{n}^{\prime}=g_{1}$ for an integer $n(1 \leq n \leq \nu)$. Then we obtain $G_{n+1}^{\prime} G_{n}^{\prime-1} \equiv$ $G_{2} G_{1}^{-1}(\bmod p)$ and hence we get $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime}\right)$.

Next, we assume $\left(G_{n}\right) \sim^{*}\left(G_{n}^{\prime}\right)$. Then there must exist integers $m$ and $n$ such that $G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p)$. By Lemma 8 on the forward shift index and the periodicity of $\left(G_{n}\right) \bmod p$, there exists an integer $n$ such that $G_{2} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{1}(\bmod p)$. Therefore we obtain $g_{n}^{\prime} \equiv g_{1}(\bmod p)$. We have $g_{1}=g_{n}^{\prime}$ since $1 \leq g_{1} \leq p-1$ and $1 \leq g_{n} \leq p-1$. Furthermore, we can choose such an integer $n$ satisfying $1 \leq n \leq \nu$ because the period of $\left(g_{n}^{\prime}\right)$ is equal to $\nu$.

Next, we will prove the main theorem in $\S 1$.
Proof of Theorem 5. We can prove (3) directly using [1, Corollary 1 (1)]. We will prove (1) and (2). Using [1, Theorem 1 (1)], we obtain

$$
\begin{aligned}
Y_{p} & =X_{p}^{\prime}-\left\{\overline{\left(G\left(1, f_{i}\right)\right)} \mid 1 \leq i \leq d(p)-2\right\} \\
X_{p}^{\prime} & :=\left\{\left(G_{n}\right) \mid p \nmid G_{1} \text { and } p \nmid G_{2}\right\} / \sim \\
& =\{\overline{(G(1, b))} \mid 1 \leq b \leq p-1\} .
\end{aligned}
$$

(1) We consider an equivalence class $\overline{\left(G_{n}\right)}\left(\left(G_{n}\right)=(G(1, b))\right)$ of $Y_{p}$. Since $p \equiv \pm 2(\bmod 5)$, we have $b^{2}-b-1 \not \equiv 0(\bmod p)$ because $X^{2}-X-1=0$ does not have a solution in $\mathbb{F}_{p}$ from Lemma 13 (2). Therefore, the second period of $\left(G_{n}\right)$ is $d(p)$ from Corollary 20
(2), and all of the values $g_{1}, g_{2}, \ldots, g_{d(p)}$ are different from each other from Theorem 18 , where $g_{n}$ is the integer such that $g_{n}=G_{n+1} G_{n}^{-1}(\bmod p)$ and $1 \leq g_{n} \leq p-1$. From the definition of the relation $\sim^{*}$, we have $\left(G_{n}\right)=(G(1, b)) \sim^{*}\left(G\left(1, g_{i}\right)\right)$ for any $i(1 \leq$ $i \leq d(p))$. On the other hand, for any equivalence classes $\overline{\left(G_{n}^{\prime}\right)}\left(\left(G_{n}^{\prime}\right)=\left(G\left(1, b^{\prime}\right)\right)\right)$ of $Y_{p}$ satisfying $b^{\prime} \not \equiv g_{1}, \ldots, g_{d(p)}(\bmod p)$, we have $\left(G_{n}\right) \not \varkappa^{*}\left(G_{n}^{\prime}\right)$ from Lemma 21. Then for any class $\overline{(G(1, b))}$ in $Y_{p}^{*}$, it produces distinct $d(p)$ classes $\overline{\left(G\left(1, g_{i}\right)\right)}(1 \leq i \leq d(p))$ under the equivalence relation $\sim$. Therefore we obtain $\left|Y_{p}^{*}\right|=\frac{\left|Y_{p}\right|}{d(p)}$. The last equality: $\frac{\left|Y_{p}\right|}{d(p)}=\frac{p+1}{d(p)}-1$ follows from [1, Theorem 1 (2)].
(2) If $p \equiv \pm 1(\bmod 5)$, then $X^{2}-X-1=0$ has two different solutions $\alpha$ and $\beta$ in $\mathbb{F}_{p}$ from Lemma 13 (1). We consider the generalized Fibonacci sequence $(G(1, \alpha))=\left(G_{n}\right)$. Since $p \nmid G_{n}$ for any $n \in \mathbb{Z}$ from $\alpha^{2}-\alpha-1 \equiv 0(\underline{\bmod p)}$, Lemma 7 and Corollary 20 (1), we have $\overline{(G(1, \alpha))} \in Y_{p}$. Similarly, we have $\overline{(G(1, \beta))} \in Y_{p}$. Let $b$ be an integer satisfying $1 \leq b \leq p-1$. Since the second periods of $(G(1, \alpha))$ and $(G(1, \beta))$ are 1 from Corollary $20(1)$, we obtain $(G(1, b)) \sim^{*}(G(1, \alpha))$ if and only if $b=\alpha$ from Lemma 21. By these same arguments, we obtain the same result for $(G(1, \beta))$. On the other hand, $d(p)$ classes $\overline{(G(1, b))}$ of $Y_{p}$ satisfying $b \neq \alpha, \beta$ become the same class of $Y_{p}^{*}$. We obtain $\left|Y_{p}^{*}\right|=2+\frac{\left|Y_{p}\right|-2}{d(p)}$, and the last equality follows from [1, Theorem 1 (2)].

## 4 Comparison with a results of Kôzaki and Nakahara

In the section, we will show that our result implies a result given by Kôzaki and Nakahara in 1999.

Definition 22. An integer $m$ is called the type of a non-divisor when there exists a generalized Fibonacci sequence $\left(G_{n}\right)$ such that $m \nmid G_{n}$ for any $n \in \mathbb{Z}$.

Definition 23. For a prime number $p$, we let $k(p)$ denote the period of $\left(F_{n} \bmod p\right)$.
We can get the following corollary from [1, Theorem 1 and Corollary 1].
Corollary $24([1, \S 1])$. A prime number $p$ is the type of non-divisor if and only if one of the following three conditions holds.
(1) $p=5$.
(2) $p \equiv \pm 1(\bmod 5)$.
(3) $p \equiv \pm 2(\bmod 5)$ and $d(p)<p+1$.

We will prove that Theorem 6 in $\S 1$ is equivalent to Corollary 24. More specifically, we will prove (1) or (2) or (3) of Theorem 6 holds if and only if (1) or (2) or (3) of Corollary 24 holds.

Proof. First, we prove that if (1) or (2) or (3) of Theorem 6 holds, then one of (1), (2), or (3) of Corollary 24 holds.

The case in which (1) of Theorem 6 holds already.
We assume that (2) of Theorem 6 holds. If $p \equiv 1,9,11,19(\bmod 20)$, then we have $p \equiv \pm 1$ $(\bmod 5)$. If $p \equiv 13,17(\bmod 20)$, then we have $p \equiv \pm 2(\bmod 5)$ and $p \equiv 1(\bmod 4)$. Using [1, Lemma 1 (2) and Lemma 4], we have $d(p)<p+1$.

We assume (3) of Theorem 6 holds. In this case, we have $p \equiv 3(\bmod 4)$ and $p \equiv \pm 2(\bmod$ 5). By $p \equiv \pm 2(\bmod 5)$, we have $F_{p} \equiv-1(\bmod p)$ and $F_{p+1} \equiv 0(\bmod p)(c f .[4, \S 6])$, and hence we obtain $k(p) \neq p+1$. If $d(p)=p+1$, then we obtain $p+1 \mid k(p)$ since $d(p) \mid k(p)$. However this is a contradiction, since $k(p) \neq p+1, \kappa(p)<2(p+1)$ and $k(p) \mid 2(p+1)$ hold (cf. $[4, \S 9]$ ). We conclude that $d(p)<p+1$.

Next, we prove that if (1) or (2) or (3) of Corollary 24 holds, then one of (1), (2), or (3) of Theorem 6 holds. When (1) of Corollary 24 holds, it is the same as in (1) of Theorem 6. We assume (2) of Corollary 24 holds. If $p \equiv 1(\bmod 5)$, then we have $p \equiv 1,11(\bmod 20)$. If $p \equiv-1(\bmod 5)$, then we have $p \equiv 9,19(\bmod 20)$.

We assume (3) of Corollary 24 holds. When $p \equiv 2(\bmod 5)$, we have $p \equiv 7,17(\bmod$ 20). When $p \equiv-2(\bmod 5)$, we have $p \equiv 3,13(\bmod 20)$. If $p \equiv 13,17(\bmod 20)$, the condition (2) of Theorem 6 holds. We consider the case $p \equiv 3,7(\bmod 20)$. In this case, we have $p \equiv 3(\bmod 4)$ and $p \equiv \pm 2(\bmod 5)$, and hence $k(p) \mid 2(p+1)$. From the well-known formula $F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n}$, we get $F_{d(p)-1} F_{d(p)+1}-F_{d(p)}^{2} \equiv(-1)^{d(p)}(\bmod p)$. Therefore we have $F_{d(p)-1}^{2} \equiv(-1)^{d(p)}(\bmod p)$ since $F_{d(p)} \equiv 0(\bmod p)$ and $F_{d(p)-1} \equiv F_{d(p)+1}(\bmod$ p). If $F_{d(p)-1}^{2} \equiv-1(\bmod p)$, then this contradicts $\left(\frac{-1}{p}\right)=-1$ since $p \equiv 3(\bmod 4)$. If $F_{d(p)-1}^{2} \equiv 1(\bmod p)$, then $F_{d(p)-1} \equiv \pm 1(\bmod p)$ holds. In the case of $F_{d(p)-1} \equiv 1(\bmod p)$, we have $k(p)=d(p)$, and hence $k(p)<p+1$. In the case of $F_{d(p)-1} \equiv-1(\bmod p)$, we have $k(p) \leq 2 d(p)<2(p+1)$ since $F_{2 d(p)-1} \equiv 1(\bmod p)$.

## 5 Examples

| $p$ | $d(p)$ | $Y_{p}$ | $Y_{p}^{*}$ |
| :---: | :---: | :---: | :---: |
| 3 | 4 | $\emptyset$ | $\emptyset$ |
| 5 | 5 | $\overline{(G(1,3))}$ | $\overline{(G(1,3))}$ |
| 7 | 8 | $\emptyset$ | $\emptyset$ |
| 11 | 10 | $\overline{(G(1,4))}, \overline{(G(1,8))}$ | $\overline{(G(1,4))}, \overline{(G(1,8))}$ |
| 13 | 7 | $\overline{(G(1,3))}, \overline{(G)} \overline{(G(1,9))}, \overline{(1,4))}, \overline{(G(1,5))}, \overline{(G(1,10))}, \overline{(G(1,11))}),$ | $\overline{(G(1,3))}$ |
| 17 | 9 | $\overline{\overline{(G(1,3))}, \overline{(G(1,4))}, \overline{(G(1,6))}, \overline{(G(1,7))}, \overline{(G(1,9))},} \overline{(G(1,11))}, \overline{(G(1,12))}, \overline{(G(1,14))}, \overline{(G(1,15))},$ | $\overline{(G(1,3))}$ |
| 19 | 18 | $\overline{(G(1,5))}, \overline{(G(1,15))}$ | $\overline{(G(1,5))}, \overline{(G(1,15))}$ |

Table 1: Examples

## 6 Acknowledgments

We thank the editor and the referee for reading carefully. We also express our gratitude to Toru Nakahara for valuable suggestions.

## References

[1] M. Aoki and Y. Sakai, On divisibility of generalized Fibonacci numbers, Integers 15 (2015), Paper No. A31.
[2] T. Koshy, Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, 2001.
[3] M. Kôzaki and T. Nakahara, On arithmetic properties of generalized Fibonacci sequences, Reports of the Faculty of Science and Engineering, Saga University, Mathematics 28 (1999), 1-18.
[4] S. Nakamura, Fibonacci Sū no Micro Cosmos (Japanese), Nippon Hyoronsha, 2002.

2010 Mathematics Subject Classification: Primary 11B39.
Keywords: Fibonacci number, Lucas number, generalized Fibonacci sequence.

Received November 7 2015; revised versions received January 18 2016; January 20 2016; January 25 2016. Published in Journal of Integer Sequences, February 52016.

Return to Journal of Integer Sequences home page.

