

Journal of Integer Sequences, Vol. 19 (2016), Article 16.2.6

On Equivalence Classes of Generalized Fibonacci Sequences

Miho Aoki and Yuho Sakai Department of Mathematics Shimane University Matsue, Shimane 690-8504 Japan aoki@riko.shimane-u.ac.jp s149410@matsu.shimane-u.ac.jp

Abstract

We consider a generalized Fibonacci sequence (G_n) by $G_1, G_2 \in \mathbb{Z}$ and $G_n = G_{n-1} + G_{n-2}$ for any integer n. Let p be a prime number and let d(p) be the smallest positive integer n which satisfies $p \mid F_n$. In this article, we introduce equivalence relations for the set of generalized Fibonacci sequences. One of the equivalence relations is defined as follows. We write $(G_n) \sim^* (G'_n)$ if there exist integers m and n satisfying $G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$. We prove the following: if $p \equiv \pm 2 \pmod{5}$, then the number of equivalence classes $\overline{(G_n)}$ satisfying $p \nmid G_n$ for any integer n is (p+1)/d(p)-1. If $p \equiv \pm 1 \pmod{5}$, then the number is (p-1)/d(p) + 1. Our results are refinements of a theorem given by Kôzaki and Nakahara in 1999. They proved that there exists a generalized Fibonacci sequence (G_n) such that $p \nmid G_n$ for any $n \in \mathbb{Z}$ if and only if one of the following three conditions holds: (1) p = 5; (2) $p \equiv \pm 1 \pmod{5}$; (3) $p \equiv \pm 2 \pmod{5}$ and d(p) .

1 Introduction and main results

We consider a generalized Fibonacci sequence (G_n) defined by

$$G_1, G_2 \in \mathbb{Z}, \ G_n = G_{n-1} + G_{n-2} \ (n \in \mathbb{Z}).$$

If $G_1 = 1$ and $G_2 = 1$, then it is the Fibonacci sequence (F_n) , and if $G_1 = 1$ and $G_2 = 3$, then it is the Lucas sequence (L_n) . It is well-known that such generalized Fibonacci sequences are periodic modulo m for any natural numbers m. For example, the sequence $(F_n \mod 3)$ is ...1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, ... (the period is 8). There are many interesting results concerning the generalized Fibonacci sequences. We recommend two books by Koshy [2, §7] and Nakamura [4] as references.

We fix a prime number p, and define two relations \sim and \sim^* for the set of generalized Fibonacci sequences. The first relation \sim is defined in our previous paper [1].

Definition 1. Let (G_n) and (G'_n) be generalized Fibonacci sequences. We write $(G_n) \sim (G'_n)$ if the congruence $G_2G'_1 \equiv G'_2G_1 \pmod{p}$ holds.

Definition 2. Let (G_n) and (G'_n) be generalized Fibonacci sequences. We write $(G_n) \sim^* (G'_n)$ if there are some integers m and n satisfying $G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$.

By the definitions, the next lemma follows.

Lemma 3. If $(G_n) \sim (G'_n)$, then we have $(G_n) \sim^* (G'_n)$.

Note that if (G_n) satisfies $p \mid G_1$ and $p \mid G_2$, then we have $(G_n) \sim (G'_n)$ and $(G_n) \sim^* (G'_n)$ for any generalized Fibonacci sequences (G'_n) . We can show by the definition that the first relation \sim is an equivalence relation for the set $\{(G_n) \mid p \nmid G_1 \text{ or } p \nmid G_2\}$.

We will show in §2 that the second relation \sim^* is also an equivalence relation. Since the relations \sim and \sim^* are equivalence relations, we can consider the quotient sets using these relations. We put

$$X_p := \{ (G_n) \mid p \nmid G_1 \text{ or } p \nmid G_2 \} / \sim, \qquad Y_p := \{ \overline{(G_n)} \in X_p \mid p \nmid G_n \text{ for any } n \in \mathbb{Z} \}.$$
$$X_p^* := \{ (G_n) \mid p \nmid G_1 \text{ or } p \nmid G_2 \} / \sim^*, \qquad Y_p^* := \{ \overline{(G_n)} \in X_p^* \mid p \nmid G_n \text{ for any } n \in \mathbb{Z} \}.$$

The sets Y_p and Y_p^* are well-defined by [1, Lemma 2] and Lemma 10 in §2. We considered the set $X'_p = \{(G_n) \mid p \nmid G_1 \text{ and } p \nmid G_2\}/\sim \text{ and } Y'_p = \{\overline{(G_n)} \in X'_p \mid p \nmid G_n \text{ for any } n \in \mathbb{Z}\}$ instead of X_p and Y_p [1]. Note that the cardinality of Y_p and Y'_p are equal. Let p be a prime number and let d(p) be the smallest positive integer n for which $p \mid F_n$. We proved the following theorem in a previous paper [1].

Theorem 4 ([1, Theorem 1 (2)]).

$$|Y_p| = p + 1 - d(p)$$

In this article, we will reduce the number of equivalence classes by using the new relation \sim^* instead of \sim , and will prove the following theorem in §3.

Theorem 5. (1) If $p \equiv \pm 2 \pmod{5}$, then we have

$$|Y_p^*| = \frac{|Y_p|}{d(p)} = \frac{p+1}{d(p)} - 1.$$

(2) If $p \equiv \pm 1 \pmod{5}$, then we have

$$|Y_p^*| = 2 + \frac{|Y_p| - 2}{d(p)} = \frac{p - 1}{d(p)} + 1.$$

(3) If p = 5, then we have $|Y_p^*| = |Y_p| = 1$.

In §4, we will show that our results imply the following result given by Kôzaki and Nakahara in 1999. An integer m is called the type of a non-divisor when there exists a generalized Fibonacci sequence (G_n) such that $m \nmid G_n$ for any $n \in \mathbb{Z}$. For a prime number p, we denote the period of $(F_n \mod p)$ by k(p).

Theorem 6 ([3, Kôzaki and Nakahara]). A prime number p is the type of non-divisor if and only if one of the following three conditions holds.

- (1) p = 5.
- (2) $p \equiv 1, 9, 11, 13, 17, 19 \pmod{20}$.
- (3) $p \equiv 3,7 \pmod{20}$ and k(p) < 2(p+1).

In §5, we will give some examples of the cardinalities of the set Y_p and Y_p^* .

2 Equivalence relations

In this section, we will give some lemmas on the relation \sim^* . The following lemma follows from the recurrence relation $G_n = G_{n-1} + G_{n-2}$.

Lemma 7. Let (G_n) be a generalized Fibonacci sequence that satisfies $p \nmid G_1$ or $p \nmid G_2$. If $p \mid G_n$, then we have $p \nmid G_{n-1}$ and $p \nmid G_{n+1}$.

Lemma 8. Let (G_n) and (G'_n) be generalized Fibonacci sequences. If $G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$, then we have $G_{m+2}G'_{n+1} \equiv G'_{n+2}G_{m+1} \pmod{p}$.

Proof.

$$G_{m+2}G'_{n+1} = (G_{m+1} + G_m)G'_{n+1}$$

= $G_{m+1}G'_{n+1} + G_mG'_{n+1}$
= $G_{m+1}G'_{n+1} + G_{m+1}G'_n$ (by the assumption)
= $G_{m+1}(G'_{n+1} + G'_n)$
= $G_{m+1}G'_{n+2}$.

For any integer G that is not divisible by p, we denote an inverse element modulo p by $G^{-1} \ (\in \mathbb{Z})$ (i.e., $GG^{-1} \equiv 1 \pmod{p}$).

Lemma 9. The relation \sim^* is an equivalence relation for the set $\{(G_n) \mid p \nmid G_1 \text{ or } p \nmid G_2\}$.

Proof. Since this relation is reflexive and symmetric, we will prove the transitivity: if $(G_n) \sim^* (G'_n)$ and $(G'_n) \sim^* (G''_n)$, then $(G_n) \sim^* (G''_n)$. By the assumption, there exist integers m, n, k and ℓ satisfying

$$G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$$
 and $G'_{k+1}G''_{\ell} \equiv G''_{\ell+1}G'_k \pmod{p}$.

Put $t = \max(n, k)$. Using Lemma 8, we get integers m and ℓ satisfying

$$G_{m+1}G'_t \equiv G'_{t+1}G_m \pmod{p}$$
 and $G'_{t+1}G''_\ell \equiv G''_{\ell+1}G'_t \pmod{p}$. (1)

If we assume $p \mid G'_t$, then we get $p \nmid G'_{t+1}$ using Lemma 7. From (1), we get $p \mid G_m$ and $p \mid G''_\ell$. Therefore we have $(G_n) \sim^* (G''_n)$ since $G_{m+1}G''_\ell \equiv 0 \equiv G''_{\ell+1}G_m \pmod{p}$. If we assume $p \mid G'_{t+1}$, then we get $(G_n) \sim^* (G''_n)$ by the same argument. Next, we assume $p \nmid G'_t$ and $p \nmid G'_{t+1}$. Then we get $p \nmid G_m$ and $p \nmid G''_\ell$ from (1). Hence we get $G_{m+1}G_m^{-1} \equiv$ $G'_{t+1}G'_t^{-1} \equiv G''_{\ell+1}G''_\ell^{-1} \pmod{p}$, and hence $G_{m+1}G''_\ell \equiv G''_{\ell+1}G_m \pmod{p}$. This congruence implies $(G_n) \sim^* (G''_n)$.

Lemma 10. Assume $(G_n), (G'_n) \in \{(G_n) \mid p \nmid G_1 \text{ or } p \nmid G_2\}$. If $(G_n) \sim^* (G'_n)$ and $p \nmid G_n$ for any $n \in \mathbb{Z}$. Then we have $p \nmid G'_n$ for any $n \in \mathbb{Z}$.

Proof. We can assume that there exist integers m, n satisfying $G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$. We assume that there exists an integer ℓ such that $p \mid G'_{\ell}$. Due to the periodicity of $(G'_n \mod p)$, we can assume $\ell \geq n$. Using Lemma 8, there exists an integer k such that $G_{k+1}G'_{\ell} \equiv G'_{\ell+1}G_k \pmod{p}$. Since p divides G'_{ℓ} and does not divide $G'_{\ell+1}$, we get $p \mid G_k$. This contradicts the assumption.

Lemma 11. Let (G_n) be a generalized Fibonacci sequence. Then there exists an integer n which satisfies $p|G_n$ if and only if $(G_n) \sim^* (F_n)$.

Proof. We first assume that there is an integer n that satisfies $p | G_n$. We have $(G_n) \sim^* (F_n)$ since $F_1G_n \equiv 0 \equiv G_{n+1}F_0 \pmod{p}$ (note that $F_0 = 0$).

Next, we assume $(G_n) \sim^* (F_n)$. Then there must exist some integers m and n satisfying $G_{m+1}F_n \equiv F_{n+1}G_m \pmod{p}$. On the other hand, since $F_0 = 0$ and the periodicity of $(F_n \mod p)$, there exists an integer ℓ satisfying $p|F_\ell$ and $\ell \ge n$. By using Lemma 8, we get an integer k such that $G_{k+1}F_\ell \equiv F_{\ell+1}G_k \pmod{p}$. Since $p \nmid F_{\ell+1}$ by Lemma 7, we have $p \mid G_k$.

Lemma 12.

(1) $X_p^* = Y_p^* \cup \{\overline{(F_n)}\}.$

- (2) For any equivalence classes $\overline{(G_n)}$ of X_p^* , we can choose the representative (G_n) satisfying $p \nmid G_1, G_2$.
- (3) Let $\overline{(G_n)}$ be an equivalence class of Y_p^* . For any sequences $(G'_n) \in \overline{(G_n)}$, we have $p \nmid G'_1, G'_2$.

Proof. The assertion (1) follows from Lemma 11. We will prove (2). If $p | G_1$ or $p | G_2$, then we have $(G_n) \sim^* (F_n)$ by Lemma 11. Therefore, we have $\overline{(G_n)} = \overline{(F_n)}$ and $F_1 = F_2 = 1$. The assertion (3) follows from Lemma 10.

3 Equivalence classes

In our previous paper [1], we gave the cardinality of the set Y_p . In this section, using this result, we will prove the main theorem (Theorem 5 in §1) that gives the cardinality of the set Y_p^* .

Lemma 13. Let $p \ (\neq 2, 5)$ be a prime number.

- (1) If $p \equiv \pm 1 \pmod{5}$, then $X^2 X 1 = 0$ has different two solutions in \mathbb{F}_p .
- (2) If $p \equiv \pm 2 \pmod{5}$, then $X^2 X 1 = 0$ does not have a solution in \mathbb{F}_p .

Proof. The solutions of $X^2 - X - 1 = 0$ in $\overline{\mathbb{F}}_p$ (the algebraic closure of \mathbb{F}_p) are $X = 2^{-1}(1 \pm \sqrt{5})$. By the assumption $p \neq 2, 5$, these solutions are different. We get $2^{-1}(1 \pm \sqrt{5}) \in \mathbb{F}_p$ if and only if $\sqrt{5} \in \mathbb{F}_p$. Furthermore, this is equivalent to $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) = 1$, that is, $p \equiv \pm 1 \pmod{5}$. \Box

We next define the number d(p) for a prime number p, and the sequences (f_n) and (g_n) . These are important in this article.

Definition 14. Let p be a prime number. Let d(p) denote the smallest positive integer n which satisfies $F_n \equiv 0 \pmod{p}$.

- (1) For any integer n which satisfies $n \not\equiv 0 \pmod{d(p)}$, we define the integer $f_n \ (0 \leq f_n \leq p-1)$ such that $f_n \equiv F_{n+1}F_n^{-1} \pmod{p}$.
- (2) Let (G_n) be a generalized Fibonacci sequence that satisfies $p \nmid G_n$ for any $n \in \mathbb{Z}$. We can then define the integer g_n $(1 \leq g_n \leq p-1)$ such that $g_n \equiv G_{n+1}G_n^{-1} \pmod{p}$.

We will prove some relations between (f_n) , (g_n) and d(p). The following lemma was given in [1, Lemma 3].

Lemma 15 ([1, Lemma 3]). Let m and n be integers that satisfy $m, n \neq 0 \pmod{d(p)}$. We then have $f_m = f_n$ if and only if $m \equiv n \pmod{d(p)}$.

We can show the following two lemmas by induction on n and the recurrence relation.

Lemma 16. For any $n, m \in \mathbb{Z}$, we have $G_n = F_{n-m}G_{m+1} + F_{n-m-1}G_m$.

Lemma 17. For any $n \in \mathbb{Z}$, we have

$$G_{n+1}^2 - G_n G_{n+1} - G_n^2 = -(G_n^2 - G_{n-1}G_n - G_{n-1}^2).$$

For simplicity, we introduce a new notation. If a generalized Fibonacci sequence (G_n) satisfies $G_1 = a$ and $G_2 = b$, then we denote it as $(G_n) = (G(a, b))$.

Theorem 18. Assume that $(G_n) = (G(a, b))$ satisfies $p \nmid G_n$ for any $n \in \mathbb{Z}$. Furthermore, let a and b satisfy $b^2 - ab - a^2 \not\equiv 0 \pmod{p}$. For any integers n and m, we have $g_n = g_m$ if and only if $n \equiv m \pmod{d(p)}$.

Proof. First, by the definition of g_n and g_m , we have $g_n = g_m$ if and only if $G_m G_{n+1} \equiv G_{m+1}G_n \pmod{p}$. Since $G_{n+1} = F_{n-m+1}G_{m+1} + F_{n-m}G_m$ and $G_n = F_{n-m}G_{m+1} + F_{n-m-1}G_m$ from Lemma 16, we have $g_n \equiv g_m$ if and only if

$$G_{m+1}^2 F_{n-m} - G_m G_{m+1} (F_{n-m+1} - F_{n-m-1}) - G_m^2 F_{n-m} \equiv 0 \pmod{p}.$$
 (2)

By Lemma 17, for the left side of (2), we have

$$G_{m+1}^2 F_{n-m} - G_m G_{m+1} (F_{n-m+1} - F_{n-m-1}) - G_m^2 F_{n-m}$$

$$\equiv G_{m+1}^2 F_{n-m} - G_m G_{m+1} F_{n-m} - G_m^2 F_{n-m}$$

$$\equiv (G_{m+1}^2 - G_m G_{m+1} - G_m^2) F_{n-m}$$

$$\equiv (-1)^{m-1} (G_2^2 - G_1 G_2 - G_1^2) F_{n-m}$$

$$\equiv (-1)^{m-1} (b^2 - ab - a^2) F_{n-m} \pmod{p}.$$

By the assumption $b^2 - ab - a^2 \not\equiv 0 \pmod{p}$, we conclude that $g_n \equiv g_m$ if and only if $n \equiv m \pmod{d(p)}$.

For a generalized Fibonacci sequence (G_n) , let (g_n) be the sequence defined in Definition 14.

Definition 19. Assume $(G_n) = (G(a, b))$ satisfies $p \nmid G_n$ for any $n \in \mathbb{Z}$. We define the second period of (G_n) by the period of (g_n) .

Then we get the following corollary concerning the second period.

Corollary 20. Assume that $(G_n) = (G(a, b))$ satisfies $p \nmid G_n$ for any $n \in \mathbb{Z}$.

- (1) If $b^2 ab a^2 \equiv 0 \pmod{p}$, then the second period of (G_n) is equal to 1.
- (2) If $b^2 ab a^2 \not\equiv 0 \pmod{p}$, then the second period of (G_n) is equal to d(p).

Proof. The assertion (2) follows from Theorem 18. We will prove (1) by showing $g_n = g_1 \equiv ba^{-1} \pmod{p}$ for any $n \in \mathbb{Z}$. Due to the periodicity of $(G_n) \mod p$, it is sufficient to consider $n \in \mathbb{N}$. We use the induction. When n = 1, the result is shown. We assume that it holds for any natural numbers less than n + 1. We then have the following congruences.

$$g_{n+1} \equiv G_{n+2}G_{n+1}^{-1}$$

$$\equiv (G_{n+1} + G_n)(G_n + G_{n-1})^{-1}$$

$$\equiv (G_{n+1}G_n^{-1} + 1)(1 + G_{n-1}G_n^{-1})^{-1}$$

$$\equiv (g_n + 1)(1 + g_{n-1}^{-1})^{-1}$$

$$\equiv (ba^{-1} + 1)(1 + b^{-1}a)^{-1}$$

(by the assumption of the second period 1)

$$\equiv (ba^{-1} + 1) \times \{b^{-1}a(ba^{-1} + 1)\}^{-1}$$

$$\equiv ba^{-1} \equiv g_1 \pmod{p}.$$

By the above congruences and $1 \leq g_1, g_{n+1} \leq p-1$, we have $g_{n+1} = g_1$.

Lemma 21. Assume that (G_n) and (G'_n) satisfy $p \nmid G_n, G'_n$ for any $n \in \mathbb{Z}$. Let ν be the second period of (G'_n) . Then we have $(G_n) \sim^* (G'_n)$ if and only if there exists an integer n $(1 \leq n \leq \nu)$ such that $g'_n = g_1 (\equiv G_2 G_1^{-1} \pmod{p})$.

Proof. First, we assume $g'_n = g_1$ for an integer $n \ (1 \le n \le \nu)$. Then we obtain $G'_{n+1} G'_n^{-1} \equiv G_2 G_1^{-1} \pmod{p}$ and hence we get $(G_n) \sim^* (G'_n)$.

Next, we assume $(G_n) \sim^* (G'_n)$. Then there must exist integers m and n such that $G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$. By Lemma 8 on the forward shift index and the periodicity of $(G_n) \mod p$, there exists an integer n such that $G_2G'_n \equiv G'_{n+1}G_1 \pmod{p}$. Therefore we obtain $g'_n \equiv g_1 \pmod{p}$. We have $g_1 = g'_n$ since $1 \leq g_1 \leq p - 1$ and $1 \leq g_n \leq p - 1$. Furthermore, we can choose such an integer n satisfying $1 \leq n \leq \nu$ because the period of (g'_n) is equal to ν .

Next, we will prove the main theorem in $\S1$.

Proof of Theorem 5. We can prove (3) directly using [1, Corollary 1 (1)]. We will prove (1) and (2). Using [1, Theorem 1 (1)], we obtain

$$Y_p = X'_p - \{ \overline{(G(1, f_i))} \mid 1 \le i \le d(p) - 2 \}$$

$$X'_p := \{ (G_n) \mid p \nmid G_1 \text{ and } p \nmid G_2 \} / \sim$$

$$= \{ \overline{(G(1, b))} \mid 1 \le b \le p - 1 \}.$$

(1) We consider an equivalence class $\overline{(G_n)}$ $((G_n) = (G(1, b)))$ of Y_p . Since $p \equiv \pm 2 \pmod{5}$, we have $b^2 - b - 1 \not\equiv 0 \pmod{p}$ because $X^2 - X - 1 = 0$ does not have a solution in \mathbb{F}_p from Lemma 13 (2). Therefore, the second period of (G_n) is d(p) from Corollary 20 (2), and all of the values $g_1, g_2, \ldots, g_{d(p)}$ are different from each other from Theorem 18 , where g_n is the integer such that $g_n = G_{n+1}G_n^{-1} \pmod{p}$ and $1 \leq g_n \leq p-1$. From the definition of the relation \sim^* , we have $(G_n) = (G(1,b)) \xrightarrow{\sim^*} (G(1,g_i))$ for any $i \ (1 \leq i \leq d(p))$. On the other hand, for any equivalence classes $\overline{(G'_n)} \quad ((G'_n) = (G(1,b')))$ of Y_p satisfying $b' \not\equiv g_1, \ldots, g_{d(p)} \pmod{p}$, we have $(G_n) \nsim^* (G'_n)$ from Lemma 21. Then for any class $\overline{(G(1,b))}$ in Y_p^* , it produces distinct d(p) classes $\overline{(G(1,g_i))} \quad (1 \leq i \leq d(p))$ under the equivalence relation \sim . Therefore we obtain $|Y_p^*| = \frac{|Y_p|}{d(p)}$. The last equality: $\frac{|Y_p|}{d(p)} = \frac{p+1}{d(p)} - 1$ follows from [1, Theorem 1 (2)].

(2) If $p \equiv \pm 1 \pmod{5}$, then $X^2 - X - 1 = 0$ has two different solutions α and β in \mathbb{F}_p from Lemma 13 (1). We consider the generalized Fibonacci sequence $(G(1, \alpha)) = (G_n)$. Since $p \nmid G_n$ for any $n \in \mathbb{Z}$ from $\alpha^2 - \alpha - 1 \equiv 0 \pmod{p}$, Lemma 7 and Corollary 20 (1), we have $\overline{(G(1, \alpha))} \in Y_p$. Similarly, we have $\overline{(G(1, \beta))} \in Y_p$. Let b be an integer satisfying $1 \leq b \leq p-1$. Since the second periods of $(G(1, \alpha))$ and $(G(1, \beta))$ are 1 from Corollary 20 (1), we obtain $(G(1, b)) \sim^* (G(1, \alpha))$ if and only if $b = \alpha$ from Lemma 21. By these same arguments, we obtain the same result for $(G(1, \beta))$. On the other hand, d(p) classes $\overline{(G(1, b))}$ of Y_p satisfying $b \neq \alpha, \beta$ become the same class of Y_p^* . We obtain $|Y_p^*| = 2 + \frac{|Y_p| - 2}{d(p)}$, and the last equality follows from [1, Theorem 1 (2)].

4 Comparison with a results of Kôzaki and Nakahara

In the section, we will show that our result implies a result given by Kôzaki and Nakahara in 1999.

Definition 22. An integer m is called the type of a non-divisor when there exists a generalized Fibonacci sequence (G_n) such that $m \nmid G_n$ for any $n \in \mathbb{Z}$.

Definition 23. For a prime number p, we let k(p) denote the period of $(F_n \mod p)$.

We can get the following corollary from [1, Theorem 1 and Corollary 1].

Corollary 24 ([1, \S 1]). A prime number p is the type of non-divisor if and only if one of the following three conditions holds.

- (1) p = 5.
- (2) $p \equiv \pm 1 \pmod{5}$.
- (3) $p \equiv \pm 2 \pmod{5}$ and d(p) .

We will prove that Theorem 6 in $\S1$ is equivalent to Corollary 24. More specifically, we will prove (1) or (2) or (3) of Theorem 6 holds if and only if (1) or (2) or (3) of Corollary 24 holds.

Proof. First, we prove that if (1) or (2) or (3) of Theorem 6 holds, then one of (1), (2), or (3) of Corollary 24 holds.

The case in which (1) of Theorem 6 holds already.

We assume that (2) of Theorem 6 holds. If $p \equiv 1, 9, 11, 19 \pmod{20}$, then we have $p \equiv \pm 1 \pmod{5}$. If $p \equiv 13, 17 \pmod{20}$, then we have $p \equiv \pm 2 \pmod{5}$ and $p \equiv 1 \pmod{4}$. Using [1, Lemma 1 (2) and Lemma 4], we have d(p) .

We assume (3) of Theorem 6 holds. In this case, we have $p \equiv 3 \pmod{4}$ and $p \equiv \pm 2 \pmod{5}$. By $p \equiv \pm 2 \pmod{5}$, we have $F_p \equiv -1 \pmod{p}$ and $F_{p+1} \equiv 0 \pmod{p}$ (cf. [4, §6]), and hence we obtain $k(p) \neq p+1$. If d(p) = p+1, then we obtain $p+1 \mid k(p)$ since $d(p) \mid k(p)$. However this is a contradiction, since $k(p) \neq p+1$, $\kappa(p) < 2(p+1)$ and $k(p) \mid 2(p+1)$ hold (cf. [4, §9]). We conclude that d(p) < p+1.

Next, we prove that if (1) or (2) or (3) of Corollary 24 holds, then one of (1), (2), or (3) of Theorem 6 holds. When (1) of Corollary 24 holds, it is the same as in (1) of Theorem 6. We assume (2) of Corollary 24 holds. If $p \equiv 1 \pmod{5}$, then we have $p \equiv 1, 11 \pmod{20}$. If $p \equiv -1 \pmod{5}$, then we have $p \equiv 9, 19 \pmod{20}$.

We assume (3) of Corollary 24 holds. When $p \equiv 2 \pmod{5}$, we have $p \equiv 7, 17 \pmod{20}$. 20). When $p \equiv -2 \pmod{5}$, we have $p \equiv 3, 13 \pmod{20}$. If $p \equiv 13, 17 \pmod{20}$, the condition (2) of Theorem 6 holds. We consider the case $p \equiv 3, 7 \pmod{20}$. In this case, we have $p \equiv 3 \pmod{4}$ and $p \equiv \pm 2 \pmod{5}$, and hence $k(p) \mid 2(p+1)$. From the well-known formula $F_{n-1}F_{n+1} - F_n^2 = (-1)^n$, we get $F_{d(p)-1}F_{d(p)+1} - F_{d(p)}^2 \equiv (-1)^{d(p)} \pmod{p}$. Therefore we have $F_{d(p)-1}^2 \equiv (-1)^{d(p)} \pmod{p}$ since $F_{d(p)} \equiv 0 \pmod{p}$ and $F_{d(p)-1} \equiv F_{d(p)+1} \pmod{p}$. If $F_{d(p)-1}^2 \equiv -1 \pmod{p}$, then this contradicts $\left(\frac{-1}{p}\right) = -1$ since $p \equiv 3 \pmod{4}$. If $F_{d(p)-1}^2 \equiv 1 \pmod{p}$, then $F_{d(p)-1} \equiv \pm 1 \pmod{p}$ holds. In the case of $F_{d(p)-1} \equiv 1 \pmod{p}$, we have k(p) = d(p), and hence $k(p) . In the case of <math>F_{d(p)-1} \equiv -1 \pmod{p}$, we have $k(p) \leq 2d(p) < 2(p+1)$ since $F_{2d(p)-1} \equiv 1 \pmod{p}$.

5 Examples

p	d(p)	Y_p	Y_p^*
	u(p)	1 p	1 p
3	4	Ø	Ø
5	5	$\overline{(G(1,3))}$	$\overline{(G(1,3))}$
7	8	Ø	Ø
11	10	$\overline{(G(1,4))}, \ \overline{(G(1,8))}$	$\overline{(G(1,4))}, \ \overline{(G(1,8))}$
13	7	$\overline{(G(1,3))}, \ \overline{(G(1,4))}, \ \overline{(G(1,5))}, \ \overline{(G(1,7))}, \ \overline{(G(1,7))}, \ \overline{(G(1,7))}, \ \overline{(G(1,7))}, \ \overline{(G(1,11))}, \ ($	$\overline{(G(1,3))}$
17	9	$\overline{(G(1,3))}, \ \overline{(G(1,4))}, \ \overline{(G(1,6))}, \ \overline{(G(1,7))}, \ \overline{(G(1,9))}, \\ \overline{(G(1,11))}, \ \overline{(G(1,12))}, \ \overline{(G(1,12))}, \ \overline{(G(1,14))}, \overline{(G(1,15))}$	$\overline{(G(1,3))}$
19	18	$\overline{(G(1,5))}, \overline{(G(1,15))}$	$\overline{(G(1,5))}, \overline{(G(1,15))}$

Table 1: Examples

6 Acknowledgments

We thank the editor and the referee for reading carefully. We also express our gratitude to Toru Nakahara for valuable suggestions.

References

- M. Aoki and Y. Sakai, On divisibility of generalized Fibonacci numbers, *Integers* 15 (2015), Paper No. A31.
- [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, 2001.
- [3] M. Kôzaki and T. Nakahara, On arithmetic properties of generalized Fibonacci sequences, Reports of the Faculty of Science and Engineering, Saga University, Mathematics 28 (1999), 1–18.
- [4] S. Nakamura, Fibonacci Sū no Micro Cosmos (Japanese), Nippon Hyoronsha, 2002.

2010 Mathematics Subject Classification: Primary 11B39. Keywords: Fibonacci number, Lucas number, generalized Fibonacci sequence. Received November 7 2015; revised versions received January 18 2016; January 20 2016; January 25 2016. Published in *Journal of Integer Sequences*, February 5 2016.

Return to Journal of Integer Sequences home page.